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Abstract—We address the problem of program partitioning:
dividing a program into isolated compartments that communicate
via remote procedure calls to follow a security policy. Existing
solutions for C programs often use a simple model that offers only
“sensitive or not” control and do not provide formal guarantees
of partition correctness. We present a C program partitioner for
security-conscious applications that addresses these shortcomings
through annotation with fine-grained security constraints (chiefly,
declassification of sensitive data to select parties); from these
annotations, we automatically determine a partition and auto-
generate code for marshaling, serialization, and remote procedure
calls. We provide post-partition verification, which leverages
translation validation to show that output program partitions are
behaviorally equivalent to their input programs and satisfy the
security policy specified by annotations. We present results that
show our approach is practical when partitioning large realistic
C applications with non-trivial security constraints.

Index Terms—Program partitioning, Program equivalence,
Constraint solving, Multi-level security, Compartmentalization

I. INTRODUCTION

Software systems, especially those written in C, suffer from
security vulnerabilities that adversaries can exploit to gain
unauthorized access to sensitive data. Even unprivileged code
can expose vulnerabilities when it shares memory [1].

Program partitioning secures software against these vul-
nerabilities by splitting the program into isolated hardware
enclaves and configuring them to communicate via remote
procedure calls (RPC). A partition must obey a security policy:
rules prescribing data ownership and whether it can be released
to other enclaves (e.g., an authentication service should not
release stored passwords, but must release validity information
about passwords). Effective partitioning ensures that if an
unprivileged enclave is compromised, sensitive data in other
enclaves is not necessarily also compromised. Such partition-
ing is important in both military (e.g., coalition information
sharing) and civilian applications (e.g., IT/OT separation in
critical infrastructure, patient medical records, and avionics).

The C language is a natural target for automated program
partitioning [2]–[9] because it is commonly used for security-
critical applications yet inadvertent vulnerabilities are easy to
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Fig. 1. The operation of our C program partitioner

introduce. These tools allow a developer to express a security
policy in annotations; static analysis determines a partition.

Unfortunately, existing C partitioners use a simplistic anno-
tation model that does not allow sensitive data to be declas-
sified to only certain enclaves. Furthermore, existing program
partitioners do not make formal correctness guarantees.

We present CAPO, an annotation-driven C program parti-
tioner for hardware isolation for security that provides fine-
grained data sharing and post-partition verification. Fig. 1
illustrates how our system operates: from a C application and
a Bell-LaPadula-inspired [10] security policy, the developer
annotates source code with ownership and declassification
rules. Developer-audited annotated functions may declassify
sensitive data and pass it to a shareability set of other levels.

An automated conflict analysis step passes the annotated
code to a constraint solver that attempts to distribute functions
and global variables among enclaves according to the security
policy. Success then directs a source transformation and RPC
generation tool to generate an executable partition.

Finally, our post-partition verification tool, ParTV , evaluates
whether the partitioned result correctly implements the orig-
inal source and its security annotations, adapting translation
validation (TV)—a studied verification technique for program
transformers—to the domain of program partitioning. A TV
pass proves that the generated partition is behaviorally equiv-
alent to the original program and satisfies its security require-
ments, and outputs an SMT-LIB certificate of correctness.

We used our tool to partition certain Linux shadow-utils
scripts, annotated according to a Bell-LaPadula model inex-
pressible with existing C partitioners; and Security Desk, a
25 kLoC application composed of an embedded web applica-
tion framework, sqlite3, and OpenCV for facial recognition.
We find the number of annotations required is low (thirteen for
Security Desk), and the auto-generated RPC code is a small



fraction of the application’s size. Post-partition verification
uncovered subtle partitioning errors, including leakage of a
#pragma pack(1) into the entire application.

II. RELATED WORK

Program partitioners are generally language-extending or
annotation-driven, although few are verified. We adopt the
latter to avoid a new language toolchain.

Language-extending partitioners employ a security type sys-
tem, e.g., the Decentralized Label Model [11]. Type inference
assigns levels to expressions and partitioning divides the
application into enclaves by level. Jif [12] extends Java with
a security type system for program partitioning. Swift [13]
leverages Jif for web applications to partition client and server
code. Viaduct [14] includes security types and a partitioner.

Such systems have been augmented with mutable dependent
types [15], [16], applied to cryptography [14], and integrated
with hardware security [17], and can enforce security models
such as Bell-LaPadula, Biba [18], or Clark-Wilson [19].

An annotation-driven approach works better with an existing
language like C because developers only need to add security
requirements, not rewrite everything. Mir [20] follows annota-
tions to add runtime checks to reduce privileges for third-party
libraries. SOAAP [21] annotations guide program refactoring
for memory isolation. JOANA [22] observes annotations on
Java data sinks to check for sensitive data leaks, but does not
partition and its security model is often too coarse.

Annotation-driven C program partitioners support numerous
application domains. PtrSplit [7] generates marshaling code for
data with pointers; PM [8] enables security and performance
tradeoffs. SeCage [4] splits applications into memory-isolated
compartments. Trellis [5] uses a hierarchy of privilege levels
for multi-user applications. Glamdring [6] partitions C for
execution on Intel SGX. ProgramCutter [3] and SeCage use
execution traces to shrink the privileged partition.

None of these tools support fine-grained policies. Priv-
Trans [2], PtrSplit, PM, Glamdring, and Huang et al. use
a simple privileged/unprivileged model. Trellis and SeCage
allow multiple levels, but Trellis prohibits declassification and
SeCage only allows it to one specific component. Such models
are inadequate for common policies such as multi-party Bell-
LaPadula [10] where certain data may be shared with certain
parties. CAPO supports fine-grained access control: arbitrary,
unordered data sensitivity levels and select declassification.

Formally verifying a partitioner is desired but challeng-
ing [14]. Employing a proof assistant would require Herculean
proofs of the security model, partitioner algorithm, and the
semantics of a language like C. Our post-partition verification
tool, ParTV , instead employs translation validation (TV):
each generated program is compared to the original [23]. We
compare LLVM IR of the generated partition to that of the
original for behavioral equivalence and security compliance.
Alive [24] uses TV to verify peephole optimizations. Tools
such as CompCert [25] combine TV with a proof assistant.
General program equivalence is undecidable [26]; the limited
scope of CAPO’s transformations keep our problem tractable.

double get_C() { double get_B() {
static double c = 0.0; static double b = 0.0;
_read_C(&c); _read_B(&b);
return c; return b;

} }
int main() {

static double a = 0.0;
for ( int i = 0; i < 10; i++) {

_read_A(&a);
printf ("sum: %f\n", a + get_B() + get_C ());

} }

Fig. 2. A program fragment that sums values from three sensitive data sources

#pragma label A Orange
#pragma label B Purple
#pragma label C Green [ Purple ]
#pragma label SUM Purple [ Orange ]

#pragma func Green [ Purple ] codeTaints: C \
retTaints : TAG_RESPONSE_GET_C

double get_C() {
#pragma taint C
static double c = 0.0;
_read_C(&c);
return c;

}
#pragma func Purple codeTaints: B C \

retTaints : SUM
double sum_BC() {

#pragma taint B
static double b = 0.0;
_read_B(&b);
return b + get_C ();

}
#pragma func Purple [ Orange ] codeTaints: SUM \

retTaints : TAG_RESPONSE_SUM_BC
double get_sum_BC() { return sum_BC(); }

int main() {
#pragma taint A
double a = 1.0;
for ( int i = 0; i < 10; i++) {

_read_A(&a);
printf ("sum: %f\n", a + get_sum_BC());

}}

Fig. 3. A refactored, annotated version of Fig. 2

While researchers continue to generalize and improve the
power of TV [27], none of the aforementioned partitioning
tools employ it or any kind of post-partition verification. To
our knowledge, ours is the first to perform formal verification.

III. THE NEED FOR FINE-GRAINED SHARING POLICIES

Consider Fig. 2, an application fragment that models a
computation that combines three pieces of sensitive data into a
non-sensitive result. Its main() reads data from three sources,
_read_A(), _read_B(), and _read_C(), and prints their sum.
As written, an attacker able to gain control of a single _read
function can call the others to access all sensitive data. A
typical solution is to partition the application to isolate the
data streams so that hijacking one does not yield the others.

Unfortunately, the security model in existing C partitioners
is too coarse to handle this scenario. Most only allow data to
be marked sensitive or not, so all three sources would have to
be marked, along with main(), since it reads all three, and we
are back to the original monolithic program.



It would be better to isolate the three streams at three
security levels, say Orange for a, Purple for b, and Green
for c, and prohibit them from communicating, but what to do
about the sum operation in main()?

To sum three values, at least one party must be allowed
to see two of the values. CAPO’s fine-grained access control
policies allow us to express this without also exposing the
third. Fig. 3 shows our solution, in which we moved the part
of sum that accesses two values to a new function sum_BC().
To illustrate cross-domain calls, we also added get_sum_BC(),
but this is optional.

The security policy expressed with pragmas in Fig. 3 is
(A) sensitive data a must remain at level Orange;
(B) sensitive data b must remain at level Purple;
(C) sensitive data c resides at level Green, and may be

shared with Purple; and
(SUM) the sum of b and c may be shared with Orange.

Here, we have kept the three colored security levels with
their three variables but introduced a fourth rule (SUM) that
allows the partial sum to be passed to Orange.

First, consider get_C(). Rule (C) specifies data in Green
may also be passed to Purple, written in Fig. 3 as #pragma
label C (brackets indicate additional levels allowed access).
The variable c is tainted C, indicating the rule its contents
must follow. Like its data, the function get_C() is annotated
as residing in Green and may be called from Purple.

The TAG_RESPONSE taint on the return data from get_C()
refers to a synthesized rule that coerces the cross-enclave data
from the level of the source to the destination without changing
the data’s shareability. Such labels do not affect the choice of
partition; they make annotations consistent after partitioning.

Variable b is constrained to security level (Purple) with its
own taint (B), but sum_BC() is tasked with declassifying data
from both Green and Purple, so it is expressly allowed to
handle data marked B or C and returns data tainted SUM,
which resides in Purple but may be shared with Orange.

By design, we do not allow sum_BC() to be called outside
Purple so we introduced get_sum_BC() to perform this role
(different rules for sum_BC() could eliminate the need for
get_sum_BC()). Like data tainted SUM, get_sum_BC() resides
in Purple and may be called from Orange.

Finally, A restricts a to Orange. main() calls get_sum_BC(),
which returns data that may be shared with Orange and Purple
(SUM), so the taints in main() are consistent.

From this example, it may appear we require substantial
annotation, but the burden only falls on sensitive data and
cross-domain function calls, usually only a small portion of
an application. For example, we found a 25 KLoC Security
Desk application needed only thirteen annotations; see § VI.

IV. ANNOTATION AND PARTITIONING

Fig. 4 shows the grammar of annotations: #pragma label
defines a label; #pragma taint marks a variable with a label;
and #pragma func annotates a function with the constraints
on how it may be called and what data it is allowed to

annotation ::= #pragma label label level ( [ level+ ] )?

| #pragma taint label
| #pragma func level ( [ level+ ] )?

( argTaints: label+ ( , label+ )∗ )?

( codeTaints: label+ )?

( retTaints: label+ )?

Fig. 4. The grammar of annotations: pragmas that define labels, taint
variables, and specify function security constraints. level denotes the name
of a security level (e.g., Orange); label is a taint name (e.g., SUM); ∗, ?,
and + denote zero or more, zero or one, and one or more; Terminals include
square brackets and commas, but not paretheses.

send and receive. Annotations on functions and variables must
immediately precede their definitions, as in Fig. 3.

A label definition #pragma label defines a data taint: the
security level of the data followed by an optional square-
bracketed set of security levels to which the data can be
declassified. E.g., in Fig. 3, data labeled SUM is pinned to
Purple, but may also be declassified to Orange.

Preceding a variable declaration with #pragma taint pre-
scribes the variable’s taint. The constraint solver assigns
consistent taints to the remaining unannotated variables.

Functions annotated with #pragma func are similarly pinned
to a specific security level and may optionally be made callable
from additional security levels. For example, in Fig. 3, get_C()
is pinned to Green, but may also be called from Purple.

Annotated functions may also prescribe taints on input,
output, and body data. The argTaints and codeTaints define sets
of labels that the function accepts on its incoming arguments
and in the function body; retTaints define those allowed on a
function’s return value. Annotated functions can thus declas-
sify data: incoming argTaints and codeTaints are coerced to a
retTaint, which may have different shareability. Taint coercing
functions usually redact data. E.g., in Fig. 3, sum_BC() sums
two tainted variables, hiding their values from the caller.

We designed our annotations to be sparse and highlight
declassification, which is limited to annotated functions; unan-
notated functions cannot coerce taints or be called from other
enclaves. Furthermore, since annotation is only mandatory on
sensitive data and functions that coerce taints or are called
cross-domain, the annotation burden only grows with the
complexity of the security policy.

Our annotation grammar and semantics were inspired by
the Bell-LaPadula security model [10] and CALIPSO [28]. By
design, this model can express a far greater variety of policies
than existing C partitioners, which usually only distinguish
sensitive data from non-sensitive.

CAPO translates an annotated C program into the model in
Fig. 5, applies the constraints from Fig. 6, and runs a constraint
solver to assign enclaves to functions and variables. Our model
only characterizes inter-function control- and data-flow; user-
provided annotations give the security specification. We use
clang to convert a C program into LLVM IR, build a program
dependence graph (PDG) to identify inter-function control-
and data-flow, then construct the Fig. 5 model.



Symbol Meaning

Program Model

V, G⊆V Set of all variables; global variables
F Set of all functions
func : V → F ∪{global} Function containing variable, if any
calls⊂ F×F Function call control flow edge
argIn⊂V ×V ×N Function parameter passing
argOut⊂V ×V ×N Pass-by-reference output
returns⊂V ×V Function return value edge
globAcc⊂ F×G Global variable access

Security Specification

L Set of security levels
E Set of enclaves
elevel : E→ L Security level of each enclave
T Set of labels
tlevel : T → L Security level of each label
shareable : T → 2L Where data may be shared
W ⊆V User-annotated variables
varTaint : W → T User-provided variable annotation
A⊆ F, U = F−A User-annotated and unannotated funcs.
funLevel : A→ L Level of annotated function
callable : A→ 2L Can be called from these levels
argTaints : A→ (2T )∗ Labels allowed on each argument
codeTaints : A→ 2T Labels allowed inside function
retTaints : A→ 2T Labels allowed on return

Determined by the Constraint Solver

taint : V ∪U → T Label of variable or unannotated func.
enclave : G∪F → E Enclave of global variable or function

Fig. 5. An annotated C program is translated into this system model, then
functions and global variables are assigned to enclaves following Fig. 6.

In our model, “variables” (V ) model data in a running
program, but are not simply C variables. Ours are either global
variables (G) or “locals” owned by a function that act primarily
as anchor points for argument and return value data. We treat
aggregate types as single variables.

Overall, unannotated functions are placed in a single en-
clave and only operate on data with a single taint, annotated
variables are placed in a suitable enclave and only accessed by
functions with permission, and that data entering and leaving
annotated functions comply with their policy.

Taint propagation is a non-trivial but decidable problem.
We encode the constraint problem in the solver frontend
Minizinc, which converts our constraints into an Integer Linear
Programming (ILP) problem and dispatches it to the Gecode
solver. We call this conflict analysis since taint propagation
only fails as a result of a conflicting assignment of two
different enclaves to a single function or variable.

Using a constraint solver allows us to optimize for sec-
ondary objectives: when multiple acceptable solutions exist,
we instruct Minizinc to choose the partition with the fewest
functions called cross-domain to reduce the amount of RPC
wrapper code and improve performance.

Modern constraint solvers fly through ILP problems.
Gecode solved our 550k-variable constraint problem for the
25 kLoC Security Desk application in under five minutes.

Using a constraint solver here also benefits a human auditor:

Helper allTaints : A→ 2T collects a function’s allowed labels:
allTaints(a) = codeTaints(a)∪ retTaints(a)∪

⋃
k argTaints(a)k

Labeled data is always shareable with its level:
∀t ∈ T, tlevel(t) ∈ shareable(t)

Each function is callable at its level:
∀a ∈ A, funLevel(a) ∈ callable(a)

Annotating a variable sets its label:
∀v ∈W, taint(v) = varTaint(v)

A global or unannotated function must reside in its labeled enclave:
∀o ∈ G∪U, tlevel(taint(o)) = elevel(enclave(o))

An annotated function must be in its labeled enclave:
∀a ∈ A, funLevel(a) = elevel(enclave(a))

Same label on unannotated func. vars.; annotated vars. constrained:
∀v ∈V, func(v) ∈U ⇒ taint(v) = taint(func(v))
∀v ∈V, func(v) ∈ A⇒ taint(v) ∈ allTaints(func(v))

Unannotated called intra-enclave; annotated prescribe levels:
∀s ∈ F,d ∈U, calls(s,d)⇒ enclave(s) = enclave(d)
∀s ∈ F,d ∈ A, calls(s,d)⇒ tlevel(taint(s)) ∈ callable(d)

Function arguments and return data must be shareable:
∀s,d ∈V,k ∈ N, argIn(s,d,k)∨ argOut(s,d,k)∨

returns(s,d)⇒ tlevel(taint(d)) ∈ shareable(taint(s))

Unannotated access globals w/ same label; annotated have a policy:
∀ f ∈U,g ∈ G, globAcc( f ,g)⇒ taint(g) = taint( f )
∀ f ∈ A,g ∈ G, globAcc( f ,g)⇒ taint(g) ∈ allTaints( f )

Unannotated may only communicate with those with the same label:
∀s,d ∈V,k ∈ N, argIn(s,d,k)∧ func(d) ∈U ⇒ taint(s) = taint(d)
∀s,d ∈V,k ∈ N, argOut(s,d,k)∧ func(s) ∈U ⇒ taint(d) = taint(s)

∀s,d ∈V, returns(s,d)∧ func(s) ∈U ⇒ taint(d) = taint(s)
Calling annotated within same enclave only with certain labels:

∀s,d ∈V,k ∈ N, enclave(func(s)) = enclave(func(d))⇒
argIn(s,d,k)∧ func(d) ∈ A⇒ taint(s) ∈ argTaints(func(d))k

argOut(s,d,k)∧ func(s) ∈ A⇒ taint(d) ∈ argTaints(func(s))k
returns(s,d)∧ func(s) ∈ A⇒ taint(d) ∈ retTaints(func(s))

Fig. 6. Constraints on the model

the input to Minizinc is textual, declarative, and far easier to
reason about than an imperative, algorithmic solution.

Conflict analysis produces a topology assigning functions
and variables to hardware enclaves. CAPO then follows this
to transform the code into an executable partition.

First, CAPO divides the source by enclaves, replaces cross-
domain function calls with RPC wrapper calls, and adds
headers for auto-generated code. For all but the main enclave,
new main functions are created that initialize cross-domain
communications before waiting for incoming RPC calls.

CAPO then collects data about cross-domain calls: the
function signature, whether each argument is an input, output,
or both, and dimensions of any arrays. These are inferred
through heuristics; the developer must fill in any remaining
information the heuristics could not infer.

CAPO then uses per-function data to generate (i) an RPC
wrapper that serializes and sends a function’s inputs then
waits for and unmarshals a response back to the caller; (ii) a
matching RPC handler that receives and passes the request to
the actual function then serializes and sends output arguments
and the return values (iii) a listener thread for each RPC
handler; (iv) type definitions for each request and response
structure; (v) serialization, deserialization, and print proce-
dures for each request and response structure; (vi) Data Format
Description Language specifications of the messages to allow



Fig. 7. Two verification techniques. (Left) Traditional proof-assisted verifi-
cation (Right) ours: translation validation backed by a correctness certificate.

deep content inspection; and (vii) configuration information
for communication interfaces.

The partitioned and auto-generated code is compiled into
one executable per enclave. The generated RPC code is small,
typically around a hundred lines per cross-domain function.

V. POST-PARTITION VERIFICATION

Generating a secure partition that respects the developer’s
annotations and is semantically equivalent to the original is
prone to subtle bugs. With security the goal of partitioning,
correctness is paramount so we turn to formal verification.

Instead of the classical but time-consuming process of
attempting to prove a program partitioner correct, we employ
post-partition verification in which, for each run, we con-
struct a proof that the particular output of the partitioner is
behaviorally equivalent to the input (Fig. 7). Such translation
validation (TV) [23] has checked compiler optimizations [29];
we appear to be the first to apply it to program partitioning.

Our translation validation pass ParTV checks the generated
partition behaves like the original program, but instead of tack-
ling arbitrary program equivalence, which is undecidable [26]
and practically difficult [30], we adopt a stricter but easier-to-
check policy that only accepts the modest changes of CAPO.

Definition 1 (Equivalence under renaming—EUR). Let O and
P be two programs in the LLVM IR. Let M be a mapping
between LLVM names, M(n1) = n2, and Pn→M(n) designate
a version P in which every named IR element is renamed
according to M. O and P are equivalent under renaming if
there exists an M such that mainPn→M(n) = mainO, that is, when
every named IR element in P is re-named according to M, the
main() functions in both programs are deeply equal.

EUR admits syntactic transformations such as function
renaming but insists any instruction reachable from main()
in one program is identical in the other. It largely ignores
semantics to be checkable in linear time (Algorithm 1). EUR
programs behave equivalently because they perform the same
operations in the same order on corresponding data.

EUR does not hold for our partitioned programs because
CAPO inserts communications code and produces multiple
programs. We first effectively reverse partitioning (Fig. 8):

Definition 2 (Partition reconstruction). Let P =
{p1, p2, . . . , pn} be a partitioned program of n component
programs communicating via RPC, all in LLVM IR. The
reconstruction of P is RP = ∪n

i=1 prpc_∗→∗
i , the union of

all global definitions in each program pi, with every RPC
invocation in pi of a locally defined function in p j replaced
with an invocation of the local function in p j.

Fig. 8. Code EUR() verifies equivalent vs. what must be manually audited

ParTV checks equivalence using EUR(O,RP), which if true,
implies O and its partition P can only differ in the behavior
of the RPC initialization, send, and receive functions. ParTV
does not analyze RPC wrapper code, but we plan to make it.

ParTV’s EUR-checking algorithm, implemented in Haskell,
reads the partitioned program’s LLVM IR, translates it to
native Haskell, and finds and replaces each RPC invocation
to build RP from the set of components p1, . . . , pn. The core
of the algorithm, given in Algorithm 1, traverses the IR
representations of O and RP in lockstep, beginning from the
main() functions and recursively checking the equivalence of
the two programs bottom-up. Certain nodes require special
treatment e.g., basic blocks are matched under renaming.

Algorithm 1 Checking EUR on two LLVM IR programs
1: function EUR(O,RP,M) . Start at main() funcs., M empty
2: if RP.name then
3: if M[RP.name]∧M[RP.name] 6= O.name then
4: return FALSE
5: M[RP.name]← O.name
6: if O.constructor 6= RP.constructor then
7: return FALSE
8: for i← 0,LEN(O.fields) do
9: EMITSMTEQUIV(O.fields[i],RP.fields[i])

10: if ¬EUR(O.fields[i],RP.fields[i],M) then
11: return FALSE
12: return TRUE

In addition to verifying behavioral equivalence, ParTV
checks the partitioned program complies with the security
policy. Since our solver-backed constraint model defines com-
pliance, we run the generated partition back through our
conflict analyzer to verify. This approach is sound because
Algorithm 1 also check annotations, guaranteeing the original
labels are preserved in the partition; conflict analysis therefore
checks the same policy over equivalent code.

As with equivalence checking, we reassemble the parti-
tioned programs by coupling RPC calls. The level-coercing
TAG labels enable conflict analysis in the presence of RPC
wrapper code.

Unlike computing a partition, levels of functions and vari-
ables are available during verification, so we populate the
constraint model with them. This greatly simplifies constraint
solving, which must only check whether the code has been
partitioned consistently. A constraint solver allows most con-
straints to remain unmodified despite a different algorithm.

We generally trust our translation validator because it is
small, simple, written in a safe language, and relies only



Fig. 9. A model of the Security Desk application. A web frontend accepts a
name and photo ID; facial recognition identifies a set of features, which are
searched for in a sqlite3 database of user credentials.

on well-exercised libraries. A ParTV bug might bless an
erroneous partition, but the tool and partitioner would require
synergistic bugs. Nevertheless, the authors of Alive rewrote
their translation validator in Lean and caught several bugs [31].

To further increase the trust in our translation validator
(Algorithm 1), it emits a machine-checkable proof of each
run that confirms its results meets an independently specified
model of equivalence. ParTV emits an SMT-LIB file that
contains models of the two programs it is comparing, asser-
tions that corresponding parts of each program are equivalent
(generated during the recursive check of the two programs),
and a model of LLVM IR equivalence that effectively says
objects are equivalent if their fields are equivalent (essentially,
the EUR property). The first two components are specific
to the programs being compared; the third is always the
same. Furthermore, we generate the third using template meta-
programming because of its detailed yet mechanical nature.

Running the generated SMT-LIB file through the SMT
solver/theorem prover z3 [32] provides further confirms that
ParTV correctly concluded that its input programs were equiv-
alent. But a bug in ParTV could produce a SMT-LIB theorem
that is true yet does not faithfully reflect the input programs,
something we have only manually checked. ParTV would
benefit from being re-written in a proof assistant such a Coq.

VI. EVALUATION

CAPO and ParTV are implemented as part of publicly avail-
able toolchain: https://github.com/gaps-closure. We evaluated
them by annotating, partitioning, and verifying a set of real-
world C applications of varying complexity, with realistic
security demands; these benchmarks are given in Fig. 10.

In this section, we discuss the results of these experiments
and the data we collected. All data was collected on an 8-
core Intel i7 machine running Ubuntu 20.04. Our evaluation
on all experiments was guided by the following questions:
How many annotations are necessary to encode fine-grained
security constraints, and how much additional code does
the partitioner generate? Does the amount scale well with
application size? (§ VI-A) How efficient is the partitioner?
How does its performance scale to large programs? (§ VI-B)
What insights can be gained, and what bugs detected, through
the post-partition verification pass? (§ VI-C)

Fig. 10 lists the experiments we ran from small to large.
We provide the total size in lines of code, the number of
function and global variable definitions in the program, and

Program SLoC Globals Target partition

Toy example 37 8 Access only weighted avg
chsh 564 18 Protect password file
passwd 1168 47 Protect password file
useradd 2395 73 Protect password file
thttpd 11403 273 Separate send(), send2()
Security Desk 23654 1341 Isolate facial recognition

Fig. 10. A summary of the programs used for our evaluation.

Program Size Annotations RPC code

(SLoC) Function Data (SLoC)

Toy example 37 1 3 1064
chsh 564 1 2 1054
passwd 1168 2 2 1111
useradd 2395 2 3 1176
thttpd 11403 3 2 1329
Security Desk 23654 7 6 1646

Fig. 11. The number of user-provided annotations to express a security policy

a summary of the desired partition—that is, the specific data
or functionality we wish to isolate in each enclave.

A toy example shows CAPO’s baseline code generation
and annotation burden. Three smaller programs requiring au-
thentication are from Linux’s shadow-utils package to demon-
strate the real-world applicability and lightweight annotation
footprint. For stress testing and to demonstrate the variety
of software and policies that CAPO and ParTV can handle,
we secured the authentication functions of open-source HTTP
server thttpd following PM [8]. We further partitioned Security
Desk (Fig. 9), a custom embedded web application that uses
OpenCV for facial recognition to match an image to a person’s
database credentials. We isolate the facial recognition from the
rest of the application and control which data is shared.

Our experiments specify partitions that cannot be generated
without fine-grained data sharing: what our tool is uniquely
capable of generating (for the shadow-utils, we over-specify
a security policy to exercise fine-grained access control, since
the applications themselves are rather simple).

A. Annotation and Code Generation Footprint

Fig. 11 compares the size of the original programs against
the number of annotations needed to express their security
policies and the amount of auto-generated RPC wrapper code.

Security Desk and thttpd suggest the annotation burden
remains small even for large applications, depending on the
security policy as intended. The number of function and data
annotations tend to be similar; this suggests there is usually
some means of declassifying sensitive data to at least one party
(e.g. every data annotation begets a function annotation).

The amount of auto-generated code similarly scales up with
how many cross-domain calls need to be made, but it has
a large constant value—no matter how simple the policy,
upwards of 1000 lines of wrapper code are needed to initialize
and mediate RPC communication. This makes code generation
unwieldy for small programs, but much more reasonable for
applications such as Security Desk and thttpd.



Experiment Total Conflict Code Verification
time Analysis Gen.

Toy example 9.9 s 1.3 5.0 3.6
chsh 14 3.4 4.4 5.7
passwd 18 3.6 6.1 8.1
useradd 29 7.7 7.6 14
thttpd 1390 620 390 380
SecDesk 1560 630 430 500

Fig. 12. Total time taken by the partitioner in each phase.

B. Performance and Scalability

Fig. 12 lists the times taken by our partitioner and verifier at
each stage of each experiment. We are pleased with the time
for the solver-invoking conflict analyzer and verifier. Solvers
are notoriously difficult to tune for performance.

For smaller benchmarks, code generation is a larger share of
time spent; analysis and constraint solving dominate on larger
ones. The rate of slowdown up to Security Desk’s 25 minute
runtime suggests that CAPO and ParTV are usable in practical
settings, but will not scale indefinitely.

C. Verification Results

ParTV caught interesting bugs in CAPO. The most substan-
tial was an un-closed #pragma pack(1) in auto-generated RPC
header files. At best this incurs a performance hit, but it could
have caused undefined behavior on some architectures, and
yet would go undetected without either carefully examining
auto-generated header files or the compiled LLVM IR.

Other problems we found include an incorrect conversion
from zero-argument functions to variadic functions and incon-
sistent string outputs from applications that printed __FILE__.

Our experience with post-partition verification makes a
strong argument for leveraging formal methods in program
partitioning. Source code transformation and code generation
is often mundane, and burdensome at scale, but it cannot be
safely automated until it is backed by correctness guarantees.

VII. CONCLUSION

Automatically partitioning C programs to safeguard sen-
sitive data remains valuable because C makes it easy to
introduce vulnerabilities yet sensitive programs continue to
be written. But C program partitioners still require work to
support fine-grained access control, mandatory redaction of
sensitive data, and data integrity constraints. Furthermore, to
truly gain the confidence of developers, C partitioners need
the strong correctness guarantees of formal verification.

Our annotation-driven C program partitioner expands the
security expressiveness of existing work by allowing the
developer to write annotations that express fine-grained access
control among multiple parties in a computation. Ours is the
first program partitioner to employ post-partition verification,
which provides a per-partition guarantee of correctness and
security compliance. Our experiments show we can quickly
partition large, realistic applications with security requirements
inexpressible by current partitioners and that our post-partition
verification pass is scale and catch partitioner bugs.
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