
Towards Sparse Synchronous Programming in Lua
John Hui

j-hui@cs.columbia.edu
Columbia University

New York, New York, USA

Stephen A. Edwards
sedwards@cs.columbia.edu

Columbia University
New York, New York, USA

ABSTRACT
Most software considers timing a performance issue, but for many
embedded applications, the timing of a result is as important as its
value. Most modern computers do have precise hardware timers,
but they are not easily used to make a whole system timing-aware.

Earlier, we presented the Sparse Synchronous Model for specify-
ing deterministic, concurrent, timing-aware systems and proposed
an awkward-to-use C library; here, we present lua-ssm, a Lua li-
brary that provides the benefits of SSM in a more accessible setting.

Relying on Lua’s incremental garbage collector and support
for coroutines, lua-ssm is both easier to use and was simpler to
implement than its C counterpart. It provides both a flexible way
for users to construct SSM systems and a way for us to more quickly
experiment with new features.

CCS CONCEPTS
• Computer systems organization → Real-time languages;
Real-time system specification.

KEYWORDS
real time systems, concurrency control, computer languages, timing

ACM Reference Format:
John Hui and Stephen A. Edwards. 2023. Towards Sparse Synchronous
Programming in Lua. In Cyber-Physical Systems and Internet of Things Week
2023 (CPS-IoT Week Workshops ’23), May 09–12, 2023, San Antonio, TX, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3576914.3587502

1 INTRODUCTION
Earlier, we introduced the Sparse Synchronous Model (SSM) [6,
9], an imperative programming model featuring precise timing
prescriptions and deterministic concurrency. We intended for SSM
to be the basis of a compiled language that runs on microcontrollers.

However, implementing a new programming language from
scratch is difficult. Writing a compiler is laborious and error-prone,
and new languages suffer from a lack of libraries and tooling that
established languages enjoy. Building and maintaining a custom
language runtime is further complicated by our desire to support a
wide range of microcontroller platforms.

This work was supported by the NIH under grant RF1MH120034-01.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0049-1/23/05. . . $15.00
https://doi.org/10.1145/3576914.3587502

1 local ssm = require("ssm")

2

3 function ssm.pause(d)

4 local t = ssm.Channel {}

5 t:after(ssm.msec(d), { go = true })

6 ssm.wait(t)

7 end

8

9 function ssm.fib(n)

10 if n < 2 then

11 ssm.pause(1)

12 return n

13 end

14 local r1 = ssm.fib:spawn(n - 1)

15 local r2 = ssm.fib:spawn(n - 2)

16 local rp = ssm.pause:spawn(n)

17 ssm.wait { r1, r2, rp }

18 return r1[1] + r2[1]

19 end

20

21 local n = 10

22

23 ssm.start(function()

24 local v = ssm.fib(n)

25

26 print(("fib(%d) => %d"):format(n, v))

27 −− prints “fib(10) => 55”
28

29 local t = ssm.as_msec(ssm.now())

30 print(("Completed in %.2fms"):format(t))

31 −− prints “Completed in 10.00ms”
32 end)

Figure 1: A synchronous Fibonacci example in lua-ssm with
delayed table assignment (after), waiting for table writes
(wait), and concurrent function calls (spawn). Library primi-
tives are highlighted in blue; −− starts comments.

In this work, we implement SSM as a library for Lua, a light-
weight scripting language that can be easily embedded in other
applications [10]. Our library, lua-ssm1, extends Lua with synchro-
nous concurrency primitives à la SSM. Lua-ssm builds on existing
Lua features like stackful coroutines [4] and tables (what Lua calls
associative arrays [3]) to implement SSM concepts like processes
and scheduled variables. Lua-ssm is implemented in <1000 LoC of
pure Lua, does not require modifications to its host language or its
runtime, and is compatible with Lua 5.1 to 5.4.
1Source code available at https://github.com/ssm-lang/lua-ssm

361

https://orcid.org/0000-0002-6355-3767
https://orcid.org/0000-0003-2609-4861
https://doi.org/10.1145/3576914.3587502
https://doi.org/10.1145/3576914.3587502
https://github.com/ssm-lang/lua-ssm
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576914.3587502&domain=pdf&date_stamp=2023-05-09

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA John Hui and Stephen A. Edwards

1.1 Example: Synchronous Fibonacci
Figure 1 shows an adaptation of the Fibonacci example from Ed-
wards & Hui [6], implemented using lua-ssm (imported in line 1).
This deterministic synchronous program logically terminates in
10ms. Like SSM, lua-ssm programs reason about logical time (in-
stead of physical “wall-clock” time), which only advances when
the program explicitly requests it to. Most statements execute and
terminate in the same logical time instant, and the future is always
referred to relative to the current instant. Isolating logical from
physical time like this allows our library to give deterministic guar-
antees about programs’ logical temporal behavior, independent of
platform speed. The lua-ssm runtime strives to keep logical time
synchronized to physical time, but may lag behind.

Our program defines a helper function, pause(d) (lines 3–7),
which suspends execution for d ms using a local channel table t

created by the Channel constructor in line 4. The after() method
on line 5 schedules a delayed assignment of t.go = true for dms in
the future (here, the choice to assign the key "go" the value true is
arbitrary). The call of after() is non-blocking, so pause() in line 7
immediately calls wait() to suspend the process until t is written
d ms later.

The recursive fib() function (lines 9–19) uses pause() in two
ways. In line 11, fib() calls pause() synchronously, meaning the
caller, fib(), will block until the callee, pause(), returns. So, fib()
will pause for 1ms when called with n < 2 before returning n.

By contrast, fib() calls pause() concurrently in line 16 using
our library’s spawn() function. This spawns a new process that
immediately executes the first instant of pause(). Once the newly
spawned pause() process reaches the wait() at line 6, fib() will
resume execution at line 17, in the same instant it called spawn().

The two recursive fib() calls in lines 15 and 16 are similarly
concurrent. A spawned process is placed at a priority just above the
process that spawned it and below any existing higher-priority pro-
cesses, so processes spawned from the same process are prioritized
in the order they are created with highest first. So, after line 17, the
processes are prioritized as follows (here, ≺ means “is at a higher
priority than”):

fib(n - 1) ≺ fib(n - 2) ≺ pause(n) ≺ fib(n)

Lua-ssm uses tag-range relabeling [2, 5] to dynamically allocate
priority numbers; see Section 3.1.

Functions called synchronously behave as usual: calling a func-
tion synchronously blocks its calling processes until the result is
calculated and returned. For example, fib()’s return value is bound
to local variable v in line 24 once fib() terminates. By contrast,
spawning a process returns a return channel that will be written
with the return value when the spawned process terminates. The
return channels from the processes spawned in lines 14–16 are
bound to variables r1, r2, and rp. When fib() terminates, its return
value is written to key 1 of its return channel; e.g., as read in line 18.

Processes can wait() on return channels just like they can on
regular channel tables. For example, at line 17, fib() waits for the
spawned fib() and pause() processes to complete. When invoked
with braces, such as in line 17, wait() is conjunctive—it will only
unblock once r1, r2, and rp have all been written; see Section 2.2.
After wait() at line 17, fib() returns the sum of the return values
from its two concurrent recursive calls.

In lines 23–32, the program uses lua-ssm’s start() function to
call fib() within a synchronous context. This execution context is
managed by lua-ssm and provides processes, priorities, and instants.
Library primitives like wait() and spawn() only work within such
a context.

The program in Figure 1 specifies that it executes in exactly
10ms of logical time because it prescribes that fib(n) produces a
result at 𝑛 ms. start() executes its first argument, a Lua closure,
starting at instant 0. The synchronous call to fib() in line 24 blocks
until fib() returns, so the call to now() in line 29 tells us the amount
of logical time elapsed since fib() was called. Here, all 177 pro-
cesses are spawned at instant 0, so the overall execution time is
set by the largest n passed to fib(). Though spawning so many
processes like this is contrived and inefficient, lua-ssm supports a
practically unbounded number of processes. Lua’s garbage collector
automatically reclaims unused memory after processes terminate.

1.2 Overview
In this paper, we discuss the design and implementation of lua-
ssm. In Section 2, we describe our library’s API and semantics; in
Section 3, we discuss our library’s implementation; in Section 4, we
conclude with a discussion on related and future work.

2 SEMANTICS
Lua-ssm adapts SSM to better suit the idioms of Lua. In this section,
we describe the semantics of our library and compare it to the SSM
toy language of Edwards & Hui [6]. We will focus our discussion on
library-provided primitives like after() and wait(). Utilities like
pause() can be implemented using these primitives, and can be
made available to lua-ssm programs in a separate library.

2.1 Channel Tables
Lua-ssm’s channel tables replace SSM’s scheduled variables, and
support delayed assignments (using after()) and blocking (using
wait()). They are implemented as an extension of Lua’s native
tables, which consist of entries that map non-nil keys to non-nil
values. Their fields are initialized by passing a table literal to the
Channel constructor, and are accessed using Lua’s dot- and index-
notation:

local tbl = ssm.Channel { key = 42 }

assert(tbl.key == 42) −− dot notation
assert(tbl["key"] == 42) −− equivalent index notation

Assigning to keys in a channel table is an instantaneous assign-
ment: in contrast to assignments scheduled using after(), instanta-
neous assignments take effect immediately like regular table writes:

tbl.key = 420 −− write existing entry
tbl.newkey = 0 −− define new entry
assert(tbl.key == 420 and tbl.newkey == 0)

As in SSM, instantaneous assignments unblock all lower priority
processes waiting on that channel table. However, lua-ssm’s chan-
nel tables are written at a finer granularity than SSM’s scheduled
variables, whose scheduled variables can only be written in their en-
tirety. In fact, there is no direct lua-ssm equivalent for updating an
entire table: tbl = different_tbl sets tbl to refer to different_tbl,
rather than writing values into the channel table referred by tbl.

362

Towards Sparse Synchronous Programming in Lua CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

Lua-ssm’s per-key semantics extend to its after() primitive,
which schedules delayed assignments only to the specified keys:

tbl:after(ssm.msec(10), { key = 24 })

ssm.wait(tbl) −− wait for the write; only tbl.key is written
assert(tbl.key == 24 and tbl.newkey == 0)

Note that the delayed assignment key = 24 is specified as a table
literal in the second argument to after(); we can schedule multiple
assignments for the same time by adding more entries to this table.

Lua-ssm also allows us to schedule delayed assignments to mul-
tiple keys at different times, provided those keys do not overlap:

tbl:after(ssm.msec(10), { key = 10 })

tbl:after(ssm.msec(20), { newkey = 20 })

ssm.wait(tbl) −− wait for the write; only tbl.key is written
assert(tbl.key == 10 and tbl.newkey == 0)

ssm.wait(tbl) −− wait for the write; this time tbl.newkey is written
assert(tbl.key == 10 and tbl.newkey == 20)

Each key may only have one outstanding assignment; scheduling
another assignment on the same key overwrites any existing one.

2.2 Conjunctive and Disjunctive Waiting
As in SSM, lua-ssm’s wait() primitive allows processes to suspend
execution until one or more channel tables are written. That write
may be due to any delayed assignment, or an instantaneous as-
signment by a higher-priority process. wait() is lua-ssm’s only
directly blocking primitive; processes may also block indirectly by
synchronously calling a function that calls wait().

Any write to a channel table triggers a wait(), including those
that do not change a value:

local tbl = Channel { go = true }

tbl:after(ssm.msec(10), { go = true })

ssm.wait(tbl) −− unblocks after 10ms

The “wait” primitive in the original SSM proposal was strictly
disjunctive: wait 𝑎 | 𝑏 would unblock the instant either 𝑎 or 𝑏 are
updated. Conjunctive waiting—unblocking when both 𝑎 and 𝑏 are
updated—using SSM’s conjunctive fork primitive, which spawns
multiple processes and blocks until all of them terminate:

fork (wait 𝑎) & (wait 𝑏)
However, SSM’s reliance on this fork-wait pattern makes it awk-
ward to express statements such as, “wait until both buttons (e.g., 𝑎
and 𝑏) have been pressed, or we’ve timed out (e.g., on 𝑡).” The top-
level disjunction needs to be distributed into the inner conjunction:

fork (wait 𝑎 | 𝑡) & (wait 𝑏 | 𝑡)
Further work is needed to determine which condition—both buttons
being pressed or timing out—caused the statement to unblock.

To address this limitation, lua-ssm’s wait() provides both dis-
junctive and conjunctive semantics, with the unblocking condi-
tion given in disjunctive normal form (DNF). Its general form is
wait(𝑤1, . . ., 𝑤𝑛), where each wait specification𝑤𝑘 may be a sin-
gle channel table 𝑐 or a Lua array of channel tables {𝑐1, . . ., 𝑐𝑘}.
wait() is disjunctive over all wait specifications, but conjunctive
within each wait specification, so the above unblocking condition
can be succinctly expressed as:

ssm.wait({a, b}, t) −− i.e., (a & b) | t

Since Lua syntax allows us to omit parentheses for function calls
when the only argument is a table literal, we can write purely
conjunctive wait() statements like wait {r1, r2, rp}, from line 17
of Figure 1. wait() returns an array of Booleans indicating which
wait specifications were met.

2.3 Concurrent Function Calls
Within a synchronous context, all running processes are ordered
according to their priority—we write 𝑝 ≺ 𝑝′ to mean process 𝑝 has
a higher priority than process 𝑝′. This total ordering is what gives
SSM its determinism: each process may execute at most once per
instant, and once a process suspends execution, no process of a
higher priority may execute that instant.

Lua-ssm provides two concurrent function call primitives for
creating processes, spawn() and defer(). When a process is cre-
ated, the user does not need to explicitly specify a process priority.
Instead, the priority of a newly created process—the child—is deter-
mined relative to that of the current running process—the parent.
When a child is spawn()ed, it is given the next highest priority, i.e.,
the lowest priority that is still higher than that of its parent. The
child immediately runs its first instant before yielding control to its
parent. defer() is the dual of spawn(): a child created by defer() is
given the next lowest priority. It does not run its first instant until
the parent suspends or terminates.

The first argument of spawn() and defer() is a synchronous func-
tion that the newly created process will run. A synchronous function
is a Lua function (or closure) that may invoke lua-ssm primitives,
and can only run within a synchronous context. Since anonymous
closures are first-class values in Lua, we can pass them directly
to spawn() and defer(). For example, the following helper routine
waits on chan with a specified timeout, using a closure:

local function wait_for(chan, timeout)

return ssm.wait(chan, ssm.spawn(function()

local t = ssm.Channel {}

t:after(timeout, { go = true })

ssm.wait(t)

end))

end

The closure’s body is the same as the pause() implementation from
Figure 1, except it captures timeout from its enclosing scope.

If we want to run wait_for() as its own process, we can pass its
name as the first parameter, followed by the arguments:

ssm.spawn(wait_for, some_chan, some_timeout)

For convenience, lua-ssm also supports concurrent function calls
usingmethod call syntax (e.g., ssm.fib:spawn(), as seen in Figure 1)
when synchronous functions are defined on keys of the ssmmodule:

function ssm.wait_for(chan, timeout)

−− same as wait_for()
end

When a synchronous function is defined this way, concurrent calls
may be made with method call syntax:

ssm.wait_for:spawn(some_chan, some_timeout)

363

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA John Hui and Stephen A. Edwards

local ctx = {

time = 0, −− the current time
proc = nil, −− the current running process
event_q = Heap {}, −− pending delayed assignments
run_q = Heap {}, −− processes to execute this instant

}

Figure 2: Initialization of lua-ssm’s synchronous context.

2.4 Synchronization and Return Channels
The assigned priorities are relative to those of processes that exist
at the time of creation. So, calling spawn()multiple times will create
processes with successively lower priorities:

ssm.foo:spawn() −− highest priority
ssm.foo:spawn() −− next highest priority
−− (parent) lowest priority

and vice versa for defer():

ssm.foo:defer() −− lowest priority
ssm.foo:defer() −− next lowest priority
−− (parent) highest priority

Lua-ssm’s concurrent function calls differ from SSM’s blocking
fork in that they do not suspend the execution of the parent. As
such, they allow more flexibility than nested fork/join. For instance,
lua-ssm permits calling spawn() in a loop to create a variable number
of processes in one instant.

A lua-ssm process is created with a return channel that allows
a parent to wait for its children and receive their return values.
Return channels behave like regular channel tables, and are (in-
stantaneously) assigned the return values of a process when it
terminates. As such, they function as a future for the child process,
which can be queried by the parent to check for return values.

Return channels support Lua functions that return multiple val-
ues at once (e.g., return true, "mesg"). These are assigned to return
channels positionally, so each return value is written to a successive
key, starting from 1:

local rc = ssm.foo:spawn()

−− foo(): return true, “mesg”
assert(rc[1] == true and rc[2] == "mesg")

3 IMPLEMENTATION
As a Lua library, lua-ssm takes advantage of its host language’s
existing features, libraries, and ecosystem. For instance, Lua’s in-
cremental garbage collector relieves a major burden from the im-
plementation of SSM, while its standard library, module system,
and FFI capabilities allow lua-ssm to integrate with existing code.

However, SSM’s scheduled variables and synchronous execution
model are foreign concepts to Lua, as they rely on the synchronous
context maintained by lua-ssm. The synchronous context, shown
in Figure 2, keeps track of the timestamp of the current instant, the
current running process, and two queues used by the scheduler.

In this section, we discuss how lua-ssm uses Lua’s coroutines and
metatables to embed a synchronous programming model within a
procedural scripting language.

local function run_instant()

ctx.time = next_scheduled_event_time(ctx)

for c in scheduled_events(ctx.event_q, ctx.time) do

channel_do_update(c)

end

for p in scheduled_processes(ctx.run_q) do

process_resume(p)

end

end

Figure 3: lua-ssm’s “tick” function, which executes the syn-
chronous context for an instant. Each backend drives ex-
ecution by calling run_instant() while synchronizing with
a platform-specific clock. channel_do_update() (not shown)
copies scheduled updates from each channel’s later field
to its shadow field and adds sensitive processes to ctx.run_q.

local function process_resume(next_proc)

local prev_proc

prev_proc, ctx.proc = ctx.proc, next_proc

coroutine.resume(ctx.proc.tid)

ctx.proc = prev_proc

end

function ssm.wait(...)

local wait_specs = { ... }

sensitize(ctx.proc, wait_specs)

while not specs_satisfied(wait_specs) do

−− keep waiting until at least one wait specification is satisfied
coroutine.yield()

end

return desensitize(ctx.proc, wait_specs)

end

Figure 4: Implementation of process_resume() and wait(), us-
ing Lua’s built-in coroutine.

3.1 Scheduling Processes
Like the runtime proposed by Edwards & Hui [6], lua-ssm uses two
priority queues implemented as binary heaps: an event queue of
delayed assignments on channel tables and a run queue of active
processes scheduled in the current instant. Each instant is executed
by the “tick” function shown in Figure 3.

Lua’s built-in coroutines [4] greatly simplify managing activa-
tion records of suspended threads. process_resume(), shown in
Figure 4, uses Lua’s built-in coroutine.resume() to resume a sus-
pended process; wait() calls coroutine.yield() to return to the
coroutine.resume() call site. Since Lua’s coroutines are stackful,
coroutine.yield() (hence wait()) works at arbitrarily deep levels
of the Lua call stack.

Where possible, lua-ssm also uses Lua’s own call stack to avoid
adding to the run queue unnecessarily. Synchronous function calls

364

Towards Sparse Synchronous Programming in Lua CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

function ssm.spawn(func, ...)

local retchan = ssm.Channel {} −− allocate return channel

−− current priority goes after new priority
local prio = ctx.proc.prio

ctx.proc.prio = prio:insert_after()

local proc = process_new(func, { ... }, retchan, prio)

process_resume(proc) −− run first instant of new process

return retchan

end

function ssm.defer(func, ...)

local retchan = ssm.Channel {} −− allocate return channel

−− new priority goes after current priority
local prio = ctx.proc.prio:insert_after()

local proc = process_new(func, { ... }, retchan, prio)

process_enqueue(proc) −− add deferred process to run queue

return retchan

end

Figure 5: Implementation of spawn() and defer().

require no special treatment since they are just regular Lua function
calls. spawn(), shown in Figure 5, avoids touching the run queue by
calling process_resume(), instead of yielding back to the tick loop
like the original SSM runtime does.

Each SSM process must be assigned a unique priority to en-
sure that they are totally ordered. The SSM runtime presented by
Edwards & Hui assigns priorities to processes according to their
position in the process tree, but this scheme limits the depth of the
process tree to the number of bits given to priorities (i.e., 32).

To overcome this limitation, lua-ssm implements priorities using
Dietz & Sleator’s tag-range relabeling algorithm [2, 5]. Their solu-
tion to the order maintenance problem occasionally redistributes
densely clustered priority numbers to avoid saturating the range of
assignment numbers. Abstractly, this redistribution is equivalent
to performing rotations on the process tree to limit its height, and
incurs an amortized 𝑂 (log𝑛) cost when inserting a new priority.
This algorithm guarantees up to 2𝑁 /2 − 1 distinct priorities, where
𝑁 is the number of bits used to represent integers. Lua uses IEEE
754 double-precision floating-point numbers [1] by default, which
theoretically allows lua-ssm to support up to 252/2 − 1 processes
(though Lua will likely run out of memory before then).

In lua-ssm’s implementation of priorities, the insert_after()

method constructs a new priority that is inserted immediately after
the priority it is called on. The implementations of spawn() and
defer() in Figure 5 use this method to assign a new priority relative
to that of the current running process.

function ssm.Channel(init)

local chan = {

handle = {}, −− given to user; kept empty
shadow = {}, −− where entries are actually stored
later = {}, −− scheduled updates
triggers = {}, −− what to run when updated
−− other metadata

}

chan.shadow.after = channel_after −− attach after() method
for k, v in pairs(init) do −− initialize shadow table
shadow[k] = v

end

chan.__index = chan.shadow −− read from shadow table
chan.__newindex = channel_set −− overload assignment
setmetatable(chan.handle, chan)

return chan.handle

end

Figure 6: Constructor for channel tables.

3.2 Implementing Channel Tables
Lua-ssm uses Lua’smetatablesmechanism to extend ordinary tables
with the capabilities of SSM scheduled variables. Metatables can be
attached to other tables using Lua’s built-in setmetatable(), and
retrieved using getmetatable():

local t, m = {}, {}

setmetatable(t, m) −− m is used as the metatable of t
assert(getmetatable(t) == m)

The Channel() constructor, shown in Figure 6, attaches metata-
bles to ordinary tables to hold metadata needed for implementing
channel tables, including the times and values of a delayed assign-
ments (later), and the list of processes that need to be woken up
when that channel table is updated (triggers).

A table’s metatable can also be populated withmetamethods that
overload certain table operations; lua-ssm overloads the __index

and __newindex metamethods to intercept accesses to table entries:
t[k] −− reads from getmetatable(t).__index[k]
t[k] = v −− calls getmetatable(t).__newindex(t, k, v)

Since these metamethods are only invoked when reading and
writing absent entries, lua-ssmmaintains the actual table entries in a
separate shadow table. The table returned to the user is just a handle
and is not used to store entries. This ensures that the overloaded
__index and __newindex are used for every channel table access.

The constructor initializes the shadow table using the init ta-
ble. When a user assigns to a channel table’s handle, the over-
loaded __newindex sets the value in the shadow table—leaving the
handle empty—and schedules sensitive lower-priority processes (in
triggers) for execution. When a user reads from a channel table’s
handle, its overloaded __index forwards the read to the shadow table.

3.3 Backend Support
The core lua-ssm library is platform-agnostic and isolates its logical
timing semantics from the external environment. This isolation
maintains the correct logical behavior in spite of the program’s

365

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA John Hui and Stephen A. Edwards

1 local ssm = require("ssm") { backend = "luv" }

2

3 function ssm.pause(d)

4 −− same as before, see Figure 1
5 end

6

7 ssm.start(function()

8 local stdin = ssm.io.get_stdin()

9 local stdout = ssm.io.get_stdout()

10

11 while ssm.wait(stdin) do

12 if not stdin.data then −− stdin was closed
13 break

14 end

15 local str = stdin.data −− buffer data from stdin
16 ssm.pause(250) −− suspend for a bit
17 stdout.data = str −− write to stdout
18 end

19 stdout.data = nil −− close stdout
20 end)

Figure 7: An “echo” program using lua-ssm’s luv backend.

physical timing characteristics. Meanwhile, lua-ssm’s scheduler is
“driven” by a backend that is responsible for synchronizing the pro-
gram with physical time. A backend has access to platform-specific
timing and I/O capabilities (e.g., device registers, system calls), and
repeatedly invokes the core scheduler by calling run_instant()

(Figure 3). A backend may expose asynchronous input sources and
output destinations to lua-ssm programs as channel tables.

Lua-ssm currently supports two backends. The simulation back-
end simulates the execution of lua-ssm programs without synchro-
nizing to a physical clock. It lacks external dependencies, so it is
useful for platform-agnostic prototyping. Due to SSM’s determin-
ism, simulation can be used as an oracle for logical behavior.

The second backend, luv, uses Lua bindings to libuv2, a multi-
platform asynchronous I/O library. For example, the interactive
terminal application in Figure 7 echoes its standard input to stan-
dard output after a 250ms delay. The standard input and output
streams are modeled using channel tables (bound to stdin and
stdout on lines 8–9) that can be waited on and written to. A libuv
callback for standard input assigns the received input to stdin.data,
which the echo program reads (line 15), while a low-priority han-
dler process—created using defer() by io.get_stdout()—forwards
assignments to stdout.data (line 17) to standard output. The stream
is closed when nil is assigned to the data field (lines 12 and 19).

4 RELATED AND FUTUREWORK
Lua-ssm is not the first implementation of the Sparse Synchro-
nous Model [6]. Hui & Edwards [9] are developing a functional
language with user-defined algebraic data types, references, and
pattern matching that implements SSM; Krook et al. [11] embed an
SSM-based imperative language, Scoria, Haskell. Both of these syn-
chronous languages compile to portable C code that links against

2See https://libuv.org and https://github.com/luvit/luv

Edwards & Hui’s ssm-runtime library and runs on embedded hard-
ware. While lua-ssm is based on the same programming model, it is
implemented entirely in Lua. It overcomes many of ssm-runtime’s
limitations that stem from its low-level implementation in C.

Like Copilot [13], Haski [14], and Scoria [11], lua-ssm is an em-
bedded domain-specific language (eDSL) [8] for synchronous com-
puting, though it uses Lua rather than Haskell as its host language.
Unlike the aforementioned eDSLs, which are deep embeddings that
generate C code, lua-ssm is a shallow embedding whose execution
takes place within its host language. While a shallow embedding
precludes compiling and optimizing lua-ssm programs within its
host language, it enables easier integration with the Lua ecosystem.

Like SSM, Lingua Franca (LF) [12]’s reactor model is also inspired
by discrete-event systems, but LF takes the opposite implementation
strategy of lua-ssm. Rather than embedding the reactor model in an
existing language, LF embeds fragments of existing languages like C
and TypeScript within its model. While LF emphasizes analyzability
and scalability, lua-ssm prioritizes flexibility and expressiveness.

We believe that embedded application development with lua-
ssm will greatly benefit from Lua’s flexibility and FFI capabilities.
Using an interpreted language will likely impact performance, so
we plan to quantify that impact and replace lua-ssm’s hot code
paths with optimized C or Pallene [7]. Finally, we hope to evaluate
the suitability of using lua-ssm for non-performance-critical tasks
such as real-time application prototyping, coordination, and testing.

REFERENCES
[1] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008) (2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.8766229
[2] Michael A. Bender, Richard Cole, Erik D. Demaine,Martin Farach-Colton, and Jack

Zito. 2002. Two Simplified Algorithms forMaintaining Order in a List. In European
Symposium on Algorithms. 152–164. https://doi.org/10.1007/3-540-45749-6_17

[3] Jon Bentley. 1985. Programming Pearls: Associative Arrays. Commun. ACM 28,
6 (June 1985), 570–576. https://doi.org/10.1145/3812.315108

[4] Ana Lúcia de Moura and Roberto Ierusalimschy. 2009. Revisiting coroutines.
ACM Transactions on Programming Languages and Systems 31 (2009), 6:1–6:31.

[5] P. Dietz and D. Sleator. 1987. Two Algorithms for Maintaining Order in a List.
In Proceedings of the Symposium on Theory of Computing (STOC). 365—-372.
https://doi.org/10.1145/28395.28434

[6] Stephen A. Edwards and John Hui. 2020. The Sparse Synchronous Model. In
Forum on Specification and Design Languages (FDL). Kiel, Germany. https://doi.
org/10.1109/FDL50818.2020.9232938

[7] Hugo Musso Gualandi and Roberto Ierusalimschy. 2020. Pallene: A companion
language for Lua. Science of Computer Programming 189 (apr 2020), 102393.
https://doi.org/10.1016/j.scico.2020.102393

[8] Paul Hudak. 1996. Building Domain-Specific Embedded Languages. Comput.
Surveys 28, 4es (Dec. 1996), 196–es. https://doi.org/10.1145/242224.242477

[9] John Hui and Stephen A. Edwards. 2022. The Sparse Synchronous Model on
Real Hardware. ACM Transactions on Embedded Computing Systems (Dec. 2022).
https://doi.org/10.1145/3572920 Just Accepted.

[10] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. 2007.
The Evolution of Lua. In Proceedings of the History of Programming Languages
(HOPL III). 2–1–2–26. https://doi.org/10.1145/1238844.1238846

[11] Robert Krook, John Hui, Bo Joel Svensson, Stephen A. Edwards, and Koen
Claessen. 2022. Creating a Language for Writing Real-Time Applications for
the Internet of Things. In Proceedings of the International Conference on Formal
Methods and Models for Codesign (MEMOCODE). Shanghai, China.

[12] Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee. 2021.
Toward a Lingua Franca for Deterministic Concurrent Systems. ACMTransactions
on Embedded Computing Systems 20, 4 (July 2021), 1–27. https://doi.org/10.1145/
3448128

[13] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. 2010. Copilot:
A Hard Real-Time Runtime Monitor. In Proceedings of the 1st Intl. Conference on
Runtime Verification (LNCS). Springer.

[14] Nachiappan Valliappan, Robert Krook, Alejandro Russo, and Koen Claessen. 2020.
Towards secure IoT programming in Haskell. In Proceedings of the 13th ACM
SIGPLAN International Symposium on Haskell. ACM. https://doi.org/10.1145/
3406088.3409027

366

https://libuv.org
https://github.com/luvit/luv
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/3-540-45749-6_17
https://doi.org/10.1145/3812.315108
https://doi.org/10.1145/28395.28434
https://doi.org/10.1109/FDL50818.2020.9232938
https://doi.org/10.1109/FDL50818.2020.9232938
https://doi.org/10.1016/j.scico.2020.102393
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/3572920
https://doi.org/10.1145/1238844.1238846
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3406088.3409027
https://doi.org/10.1145/3406088.3409027

	Abstract
	1 Introduction
	1.1 Example: Synchronous Fibonacci
	1.2 Overview

	2 Semantics
	2.1 Channel Tables
	2.2 Conjunctive and Disjunctive Waiting
	2.3 Concurrent Function Calls
	2.4 Synchronization and Return Channels

	3 Implementation
	3.1 Scheduling Processes
	3.2 Implementing Channel Tables
	3.3 Backend Support

	4 Related and Future Work
	References

