
Edwards and Tardieu

Efficient Code Generation from SHIM Models

Stephen A. Edwards and Olivier Tardieu
Columbia University, Department of Computer Science

{ ����������	
����� ���	
��� ��� } ��� ��� ����� ������� ��� �����

Abstract
Programming concurrent systems is substantially more difficult
than programming sequential systems, yet most embedded systems
need concurrency. We believe this should be addressed through
higher-level models of concurrency that eliminate many of the
usual challenges, such as nondeterminism arising from races.

The SHIM model of computation provides deterministic concur-
rency, and there already exist ways of implementing it in hardware
and software. In this work, we describe how to produce more effi-
cient C code from SHIM systems.

We propose two techniques: a largely mechanical one that pro-
duces tail-recursive code for simulating concurrency, and a more
clever one that statically analyzes the communication pattern of
multiple processes to produce code with far less overhead. Exper-
imentally, we find our tail-recursive technique produces code that
runs roughly twice as fast as a baseline; our statically-scheduled
code can run up to twelve times faster.

Categories and Subject Descriptors
D.3.4 [Programming Languages–Processors]: Compilers

General Terms Algorithms, Performance

Keywords Concurrency, Embedded Systems, Computed gotos,
Code Synthesis, The SHIM model

1. Introduction
To improve embedded system programmer productivity, we need
higher-level, less error-prone programming models. Concurrency,
a common part of most embedded systems, is a particularly perni-
cious challenge to most programmers, yet even modern program-
ming languages such as Java remain stuck in 1960’s-era shared
memory, locks, and threads.

We believe the way forward involves more domain-specific
models of computation tailored for embedded systems. Our SHIM
(Software/Hardware Integration Medium) language and model of
computation [5], which provides deterministic (i.e., race-free) con-
currency, is an example of this.

In this work, we address the challenge of producing efficient
sequential C code from a concurrent SHIM model. While at first
it may seem odd to use a concurrent programming language to be
executed on a single processor, there are a number of reasons to
consider doing so.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

Our technique assists design-space exploration, where it can
generate code for single or multiple processors. Balancing the load
on multiple processors is necessary for the highest performance,
meaning that it may be necessary to redistribute the processing
load across them. To do this efficiently, we advocate describing a
system with the finest concurrency possible to make it easy to move
small processes from one processor to another to load-balance.
Our static scheduling technique can remove most of the overhead
due to simulating concurrency on a single processor. Fine-grained
concurrency also helps if the number of processors is increased: the
system can easily be split into more pieces.

Simulating an eventual hardware implementation is another ap-
plication of our technique. The SHIM semantics are amenable to
hardware synthesis (we describe a basic technique elsewhere [5]),
and we plan an automatic hardware/software synthesis mechanism.
Simulating a system is almost always part of the development pro-
cess, and our techniques can be used for this.

We present two things: a technique for producing code that sim-
ulates SHIM-style concurrency without operating system support
(we synthesize purely ANSI C), and a static scheduling procedure
that can compile together arbitrary groups of processes for effi-
ciency. We produce C for portability and to take advantage of the
many low-level optimizations provided by good C compilers.

After reviewing related work, we describe the SHIM model of
computation and the small language we have devised for it (Sec-
tion 3), present our basic code generation technique that produces
tail-recursive ANSI C code that simulates the concurrency in SHIM
(Section 4), then present our static scheduling technique that is able
to combine a group of concurrently-running processes into a single
one that generally runs faster (Sections 5 and 6). We conclude with
experimental results that show our static scheduling technique can
produce code that runs as much as twelve times faster than a base-
line translation of SHIM (Section 7).

2. Related Work
Ours is not the first compilation technique that generates statically-
scheduled code from a concurrent formalism. Table 1 lists related
techniques and how they compare to ours. A key difference is the
model of computation being compiled. SHIM is an asynchronous
model with rendezvous-style communication. Others use a syn-
chronous model (Esterel, Lustre), FIFOs (Sgroi et al.), and shared
memory (Phantom). See Edwards’s survey [4] for more detail.

Another distinguishing feature of our work is its ability to stat-
ically compile arbitrary sets of processes in a system (the Partial
column in Table 1), a very useful attribute because our compiler
can be applied to very large systems once they are partitioned into
pieces small enough to be compiled statically, and our technique
does not place restrictions on which partitions are legal; they may
be chosen to optimize code size or speed.

Another difference is our choice of how to abstract the state of
the system during compilation. Like others, our technique trades



state tracked at compile time, which reduces execution time at the
expense of potentially exponential code size, and state tracked at
runtime, which is exactly the opposite. We consider our approach
superior because empirically it appears to produce small automata
that nevertheless lead to faster code.

Our code-generation procedure (i.e., that does not perform static
scheduling) resembles Zhu and Lin’s [14], which generates code
for SHIM-like process in isolation and then runs them using a simple
round-robin scheduler. Ours has a more efficient scheduler that uses
a stack of pending function and tail-recursive calls.

Lin [11] proposes a static scheduling technique for generating
code from a SHIM-like model. He translates his language into a
Petri net, unrolls it, breaks it into loop iteration fragments, and
generates code for each (concurrent) fragment. This can produce
exponentially-large code for a single fragment and an exponential
number of fragments. We only model communication and produce
sequential fragments.

Cardelli and Pike’s Squeak [3] takes a similar approach with a
similar formalism: they use a CSP-like language and consider all
possible control paths, generating a large automaton as a result.
Their model does consider communication from the environment,
but is not able to compile arbitrary portions of the system.

Sgroi et al. [13] synthesize embedded software from a richer
model than SHIM that allows unbounded buffers. While this is more
convenient for certain specifications, it makes the scheduling prob-
lem much harder and raises the question of whether a system can
be executed at all (SHIM systems never need unbounded buffers),
and if so, what buffer sizes are necessary.

The synchronous languages community [1] has developed tech-
niques for generating statically-scheduled code from concurrent
formalisms with synchronous communication. Like our technique,
the first Esterel compilers by Berry and Gonthier [2] compile a con-
current language into a single, often large automaton. They also
abstract much of the state of a program to simplify the generated
automaton, but they track control state, not communication as we
do. Furthermore, unlike SHIM, the synchronous model of Esterel
has difficulties with composition; no one has yet developed a tech-
nique for partial static scheduling of Esterel.

Halbwachs et al. [9] generate automata from Lustre [8] using a
technique like that of early Esterel compilers. However, they only
track the values of Boolean variables instead of communication or
control state (Lustre, unlike Esterel, has no explicit control state).
Like Esterel, Lustre’s model of computation has difficulties with
composition so it is not clear how to compile it in pieces.

French et al. [7] generates code from the more-complicated
Verilog discrete-event language. Verilog semantics employ an or-
dered event queue, which could easily produce complex automata
if tracked precisely. Instead, they abstract virtually all of the state
of a Verilog program, always building an automaton consisting of
a single loop. This works because most Verilog programs model
synchronous logic with a periodic clock, but it also greatly limits
the amount of computation that can be performed statically.

Nácul and Givargis’s Phantom [12] compiles standard C pro-
grams written to a subset of the POSIX API that uses semaphores
and shared memory, a nondeterministic asynchronous formalism.

3. The SHIM Model and Language
In the SHIM model [5], a system consists of concurrently-running
sequential processes that communicate exclusively through fixed,
point-to-point communication channels with rendezvous. We have
devised an imperative language with C-like syntax for describing
SHIM systems. Figure 3(a) shows a simple example. Each process
has local variables; there are no global variables. All processes
execute concurrently.

Table 1. A comparison of other automata-generating compilers
Compiler MoC Partial State Tracked

Ours Async. Rendez. yes Communication
Zhu and Lin [14] Async. Rendez. yes none
Lin [11] Async. Rendez. no Comm. & Control
Squeak [3] Async. Rendez. no Comm. & Control
Sgroi et al. [13] Async. FIFOs no Comm. & Control
Esterel V3 [2] Synchronous no Control
Lustre [9] Synchronous no Boolean vars.
Verilog [7] Async. Events no Communication
Phantom [12] Async. mutex no Control

Inter-process communication is synchronous: both sending and
receiving processes must agree on when data is transferred; one
always waits for the other. A process’s formal arguments are in-
put and output channels. Each appearance of a channel’s name be-
comes a write operation if it appears on the left of an assignment
and a read otherwise.

The topology of communication channels and the number of
processes is fixed and each communication channel connects one
writing process to one reader. The communication structure of a
system is therefore a directed graph whose nodes are processes and
whose arcs are channels. The graph may contain cycles.

Below, we describe the small imperative language we developed
that embodies the SHIM model. It is to this language that we apply
the compilation algorithms described in this paper.

3.1 Syntax
A SHIM program consists of a sequence of three kinds of top-level
declarations: struct, process, and network.
Structs. Struct declarations are C-like type declarations. Current
variable types in SHIM are Booleans, fixed-size signed and un-
signed integers, structs, and arrays. Booleans are no different from
1-bit unsigned integers. There are no pointer types in SHIM.
struct s {

bool b; Boolean
int32 i; signed 32-bit integer (including sign bit)
uint16 t[24]; array of 24 unsigned 16-bit integers

};

Processes. A process declaration looks like a C function declara-
tion and contains imperative code that runs sequentially. It is intro-
duced by the process keyword followed by the name of the process,
the formal arguments of the process between parentheses, and the
body of the process delimited with curly braces. E.g.,

process xor(int8 I, int8 J, int8 &O) { O = I^J; }

The formal arguments of a process are its ports. Mimicking
the syntax of C++ pass-by-reference parameters, in SHIM, the &

indicates an output port (i.e., a channel that may only be written;
input ports may only be read). In this example, therefore, I and J

are input ports and O is an output port.
The body of a process consists of regular C code. Currently, we

support a subset of C: if-else and switch-case-default conditionals,
while and for loops (including break and continue), label and goto
statements, expressions (including assignments), block statements
and local variable declarations.

Expressions may mix local variable names and port names
freely. However, output ports cannot be read and input ports cannot
be written (i.e., appear in an l-value position). In particular, no port
can be incremented or decremented. Atomic assignments between
structs or arrays are supported.



Networks. A network declaration, which instantiates a set of pro-
cesses or subnetworks, is introduced by the network keyword fol-
lowed by the name, the formal arguments, and the body of the net-
work. The formal arguments are the ports of the network. The body
of a network consists in a list of local channel declarations followed
by a list of process and network instances.

network xor2(int8 I, int8 J, int8 K, int8 &O) {

int8 X;

xor(X/O);

xor(X/I, K/J);

}

Local channels connect one process (or subnetwork) in a net-
work to another process (or subnetwork) in the same network. The
types of ports connected through a channel must match, i.e., an out-
put port of type t may only be connected to an input port of type t.
Local channel declarations resemble local variable declarations.

The ports of the network come from ports of processes (or
subnetworks) of the network that have no matching reading or
writing process within the network. Port declarations for networks
are no different from port declarations for processes. Port and
local channel declarations in networks may be omitted as they are
inferred by the compiler.

An instance resembles a function call. It consists of the name
of a process or network followed by a list of actual arguments and
a semicolon. The syntax for arguments associates formal and ac-
tual ports by name instead of position. For example, “xor(X/I,
K/J);” instantiates process xor with actual ports “(int8 X,

int8 K, int8 &O)”, i.e., port name X is substituted for name
I, name K for name J, whereas name O is left unchanged.

3.2 Semantics
A SHIM system is a hierarchical network of communicating se-
quential processes running concurrently.

Sequential behavior. Apart from communications, a process runs
like its equivalent C function, although we adopt Java’s semantics
for expression evaluation in SHIM to achieve determinism.

If channel names appear in an expression, communications take
place during the evaluation of that expression. Accesses to local
variables are compiled into loads and stores; accesses to channels
are compiled into reads and writes.

E.g., the assignment “O = I ˆ J;” involving ports int8 I,
int8 J, and int8 &O, consists of receiving one value on input
channel I, receiving one value on J, combining the two values, and
sending the result on output channel O in exactly that order.

Concurrency. Processes run concurrently and asynchronously
unless they engage in communication. Reads and writes are block-
ing, that is, they behave as a synchronization barrier between read-
ing and writing processes.

If a process reaches a write (respectively read) operation on a
channel, it will block until the process at the other end of the chan-
nel reaches a read (respectively write) operation for the channel.
Then one value gets transmitted from the writing process to the
reading process and each process resumes executing. Note that a
process may wait forever on a channel if the process on the other
end never again attempts to communicate on the channel.

Scheduling and determinism. We have shown [5] that the behav-
ior of a SHIM system does not depend on the scheduling algorithm
if preemptive and fair in Kahn’s sense [10]: the sequence of values
transmitted on each channel, whether finite or infinite, is determin-
istic. This property allows us to choose scheduling policies based
on efficiency rather than correctness criteria.

4. Tail-Recursive Code Generation
In this section, we present a code generation technique able to
translate systems written in our SHIM language into reasonably
efficient ANSI C that simulates concurrency using tail-recursive
calls to function pointers.

Minimizing the time spent deciding which tasks to invoke and
invoking them (scheduling overhead) is the main challenge in
efficiently simulating concurrency on a single-threaded proces-
sor. A traditional multi-tasking operating system typically sets the
context-switching frequency to a relatively low 100 times per sec-
ond. Such an approach is unsuitable for SHIM systems with pro-
cesses that must synchronize much more frequently.

Our approach uses an extremely simple scheduler—a stack of
function pointers—that invokes fragments of concurrently-running
processes using tail-recursion. At first glance, the danger of ex-
hausting stack space appears to make recursion impractical. How-
ever, optimizing C compilers, such as recent versions of gcc run-
ning with -O2, can perform tail-recursion optimization that changes
tail-recursive calls to jumps that do not consume stack space. The
result is a practical, efficient way to jump among functions.

In some sense we are using function pointers and tail recursion
as a way to perform computed gotos in ANSI C. While certain di-
alects of C (notably gcc’s) provide true computed gotos, we wanted
to make our code standards-compliant. Switch statements are an-
other alternative, which we used previously to generate code from
SHIM [6]. However, experimental results suggest tail-recursion is
typically twice as fast as using switch (Table 2).

We translate the code for each process into a collection of
functions. The boundaries of these functions are places where the
process may communicate and have to block. So each such process
function begins with code just after a read or a write and terminates
at a read, a write, or when the process itself terminates.

At any time, a process may be running, runnable, blocked on
a channel, or terminated. These states are distinguished by the
contents of the stack, channel meta-data structs, and the program
counter of the process. When a process is runnable, a pointer to
one of its functions is on the stack and its blocked field (defined in
its local variable struct) is 0. A running process has control of the
processor and there is no pointer to any of its functions on the stack.
When a process is blocked, its blocked field is 1 and the reader or
writer function pointer of at least one channel has a function pointer
to one of the process’s functions. When a process has terminated,
no pointers to it appear on the stack and its blocked field is 0.

Normal SHIM processes may only block on a single channel
at once, so it would seem somewhat wasteful to keep a function
pointer per channel to remember where a process is to resume.
In Section 5, however, we will need to relax the block-on-single-
channel restriction to accommodate code that mimicks groups of
concurrently-running processes.

Processes communicate through channels that consist of two
things: a struct channel that contains function pointers to the read-
ing or writing process that is blocked on the channel, and a buffer
that can hold a single object being passed through the channel. A
non-null function pointer points to the process function that should
be invoked when the process becomes runnable again.

Figure 1 shows the implementation of a system consisting of
a source process that writes 42 to channel C and a sink process
that reads it. The synthesized C code consists of data structures
that maintain a set of functions whose execution is pending, a
buffer and state for each communication channel, structs that hold
the local variables of each process, a collection of functions that
hold the code of the processes broken into pieces, a placeholder
function called termination_process that is called when the system
terminates or deadlocks, and finally a main function that initializes
the stack of pending function pointers and starts the system.



process

source(int32 &C) {

C = 42;

}

process

sink(int32 C) {

int v = C;

}

void (*stack[3])(void); /* runnable process stack */
void (**sp)(void); /* stack pointer */

struct channel {
void (*reader)(void); /* process blocked reading, if any */
void (*writer)(void); /* process blocked writing, if any */

};

struct channel C = { 0, 0 };
int C_value;

struct { /* local state of source process */
char blocked; /* 1 = blocked on a channel */
int tmp1;

} source = { 0 };

struct { /* local state of sink process */
char blocked; /* 1 = blocked on a channel */
int v;
int tmp2;

} sink = { 0 };

void source_0(void);
void source_1(void);

void source_0() {
1 2

source.tmp1 = 42;
C_value = source.tmp1; /* write to channel buffer */
if (sink.blocked && /* if reader blocked */

C.reader) {
sink.blocked = 0; /* mark reader unblocked */

*(sp++) = C.reader; /* schedule the reader */
C.reader = 0; /* clear the channel */

}
source.blocked = 1; /* block us, the writer */
C.writer = source_1; /* to continue at source_1 */
(*(--sp))(); return; /* run next process */

}

void source_1() {
3 4

(*(--sp))(); return;
}

void sink_0(void);
void sink_1(void);

void sink_0() {
2 1

if (source.blocked && /* if writer blocked */
C.writer) {

sink_1(); return; /* go directly to sink_1 */
}
sink.blocked = 1; /* block us, the reader */
C.reader = sink_1; /* to continue at sink_1 */
(*(--sp))(); return; /* run next process */

}

void sink_1() {
3

sink.tmp2 = C_value; /* read from channel buffer */
source.blocked = 0; /* unblock the writer */

*(sp++) = C.writer; /* schedule the writer */
C.writer = 0; /* clear the channel */
sink.v = sink.tmp2;
(*(--sp))(); return; /* run next process */

}

void termination_process() {}

int main() {
sp = &stack[0];

*(sp++) = termination_process;

*(sp++) = source_0;

*(sp++) = sink_0;
(*(--sp))();
return 0;

}

Figure 1. Synthesized code for two processes (in the boxes) that
communicate and the main() function that schedules them.

Processes are scheduled by pushing the address of a function on
the stack and performing a tail-recursive call to a function popped
off the top of the stack. The C code for this is as follows.

void func1() {

...

*(sp++) = func2; /* schedule func2() */

...

(*(--sp))(); return; /* run a pending function */

}

void func2() { ... }

Under this scheme, each process is responsible for running the
others; there is no central scheduler code.

SHIM uses blocking rendezvous-style communication through
point-to-point channels. This means that the first process that at-
tempts to read or write on a channel blocks until the process at the
other end of the channel attempts the complementary operation.
Communication is the only cause of blocking behavior in SHIM
systems (i.e., the scheduler is non-preemptive), so processes con-
trol their peers’ execution at communication events.

The sequence of actions at read and write events in the process
is fairly complicated but still fairly efficient. Broadly, when a pro-
cess attempts to read or write, it attempts to unblock its peer, if its
peer is waiting, otherwise it blocks on the channel.

Annotations in Figure 1 illustrate the behavior of the code.
There are two possibilities: when the source runs first ( 1 ), it
immediately writes the value to be communicated into the buffer
for the channel (C_Value, because the code maintains the invariant
that a reader only unblocks a writer after it has read data from the
channel buffer), and checks to see if the reader (the sink process) is
already blocked on the channel.

Since we assumed the source runs first, the sink is not blocked,
so the source blocks on the channel, records that when it is finally
unblocked that control should continue at the source_1 function
(this is the purpose of writing to C.writer), and finally pops the
next waiting process function from the stack and calls it.

Later, ( 2 ) the sink checks if the source is blocked on C. In
this source-before-sink scenario, the source is blocked so sink_0
immediately jumps to sink_1, which fetches the data from the
channel buffer, unblocks and schedules the writer, and clears the
channel before calling the next process function, source_1 ( 3 ).

When the sink runs first ( 1 ), it finds the source is not blocked
and then blocks. Later, the source runs ( 2 ), writes into the buffer,
discovers the waiting sink process, and unblocks and schedules sink
before blocking itself. Later, sink_1 runs ( 3 ), which reads data
from the channel buffer, unblocks and schedules the writer, which
eventually sends control back to source_1 ( 4 ).

4.1 Generating Code
The main challenge in generating the code described above is
identifying the process function boundaries. We use a variant of
extended basic blocks: a new function starts at the beginning of
the process, at a read or write operation, and at any statement with
more than one predecessor. This divides the process into single-
entry, multiple-exit subtrees, which is finer than it needs to be,
but is sufficient and fast. The algorithm is simple: after building
the control-flow graph of a process, a DFS is performed starting
from each read, write, or multiple-fanin node that goes until it hits
such a node. The spanning tree built by each DFS becomes the
control-flow graph for the process function, and code is generated
mechanically from there.

Figure 2 depicts the code generation process for a simple pro-
cess with some interesting control-flow. The process (Figure 2a)
consists of two nested loops. We translate the SHIM code into a



process source(int32 &C) {
bool b = 0;
for (int32 a = 0 ; a < 100 ; ) {
if (b) {
C = a;

} else {
for (int32 d = 0 ; d < 10 ; ++d)

a = a + 1;
}
b = ~b;

}
}

(a)

0 b = 0
1 a = 0
2 ifnot a < 100 goto 14
3 ifnot b goto 7
4 C = a
5 await write C goto 6
6 goto 12
7 d = 0
8 ifnot d < 10 goto 12
9 a = a + 1
10 d = d + 1
11 goto 8
12 b = 1 - b
13 goto 2
14 Exit

(b)

b = 0

a = 0

ifnot a < 100 goto 14

Exit ifnot b goto 7

d = 0 C = a

ifnot d<10 goto 12 await write C goto 6

goto 12

b = 1 - b

goto 2

a = a+1

d = d+1

goto 8

(c)

(d)

b = 0

a = 0

ifnot a < 100 goto 14

Exit ifnot b goto 7

d = 0 C = a

await write C goto 6

goto 12 ifnot d<10 goto 12

a = a+1

d = d+1

goto 8

b = 1 - b

goto 2

struct channel C = {0, 0};
int C_val;

struct {
bool blocked;
bool b;
int32 a;
int32 d;

} source = { 0 };

static void source_0() {
source.b = 0;
source.a = 0;
source_1(); return;

}

static void source_1() {
if (!(source.a < 100)) goto L9;
if (!(source.b)) goto L7;
C_val = source.a;
if (BLOCKED_READING(sink, C))
RUN_READER(sink, C);

BLOCK_WRITING(source, C, source_2);
RUN_NEXT;

L7:
source.d = 0;
source_3(); return;

L9:
RUN_NEXT;

}

static void source_2() {
source_4(); return;

}

static void source_3() {
L1:
if (!(source.d<10)) goto L6;
source.a = source.a + 1;
source.d = source.d + 1;
goto L1;

L6:
source_4(); return;

}

static void source_4() {
source.b = 1 - source.b;
source_1(); return;

}

(e)

Figure 2. Generating tail-recursive code for a single process. Our
compiler translates a process (a) into an intermediate representation
(b). This is translated into a CFG (c), split into extended basic
blocks (d), and each block becomes a function (e).

fairly standard linear IR (Figure 2b). Its main novelty is await, a
statement that represents blocking on one or more channels. E.g.,
await write C goto 6 indicates the process wants to communicate
with its environment on channel C and will branch to statement 6
once this has occurred. Note that the instruction itself only controls
synchronization; the actual data transfer takes place in an earlier as-
signment statement. Although this example (and in fact all simple
SHIM processes) only ever blocks on a single channel at a time, our
static scheduling procedure (Section 5) uses the ability to block on
multiple channels simultaneously.

Our generated C code uses the following macros:

#define BLOCKED_READING(r, ch) \
r.blocked && ch.reader

#define RUN_READER(r, ch) \
r.blocked = 0, *(sp++) = ch.reader, ch.reader = 0

#define BLOCK_WRITING(w, ch, succ) \
w.blocked = 1, ch.writer = succ

#define BLOCKED_WRITING(w, ch) \
w.blocked && ch.writer

#define RUN_WRITER(w, ch) \
w.blocked = 0, *(sp++) = ch.writer, ch.writer = 0

#define BLOCK_READING(r, ch, succ) \
r.blocked = 1, ch.reader = succ

#define RUN_NEXT \
(*(--sp))(); return

BLOCKED_READING is true if the given process is blocked
on the given channel. RUN_READER marks the given process that
is blocked on the given channel as runnable. BLOCK_WRITING
marks the given process (the currently-running one) as blocked
writing on the given channel. The succ parameter specifies the
process function to be executed when the process next becomes
runnable. Finally, RUN_NEXT runs the next runnable process.

5. Statically Scheduling SHIM Networks
In Section 4, we showed how to translate a network of concurrently-
running SHIM processes into C code that simulates the concurrency
using tail-recursive calls to function pointers. In this section, we
describe how to compile together groups of concurrently-running
processes into a single imperative process that we then substitute
for the group of processes. We synthesize the entire system using
the technique described in the previous section.

The advantage of compiling together a group of processs is run-
time efficiency: by analyzing the behavior of a group at compile
time, we are able to eliminate most scheduling overhead. Our pro-
cedure is therefore similar to many known techniques for sequential
code generation [4], but makes different trade-offs. It generates an
automaton for a group of SHIM processes using exhaustive simula-
tion that resembles the subset construction algorithm for generating
deterministic finite automata from nondeterministic ones.

The disadvantage of this approach is a potential explosion in
code size. Since it builds a product machine from concurrently-
running processes, there is a danger of an exponential state explo-
sion. We do not consider this a serious problem for two reasons:
our abstraction of processes often leads to small machines for large
systems, and it is always possible to synthesize smaller subsets of
a system and run them dynamically. Our technique therefore pro-
vides a controllable time/space tradeoff.

The complete state of a SHIM system comprises the program
counter of each process and the value of each process-local vari-
able. While we could build an automaton whose states exactly rep-
resent complete system states, it would be impractically large for
all but the simplest systems. Instead we track an abstract version
of the system state in the automaton. While this does defer many
computations to when the the generated code is running, it greatly
reduces the size of the automata and hence the generated code. Ex-
perimentally, we find this a good trade-off.



Because SHIM systems tend to have periodic communication
patterns, it turns out we can compile away most of the schedul-
ing overhead and still have small automata. Unfortunately, while
compiling away context-switching overhead would also be nice,
it would demand tracking combinations of reachable program
counter states, something that easily grows exponential. We find
our current solution a good trade-off that produces impressive
speed-ups (as much as 12×; see Section 7).

Each state in our generated automaton represents the execution
of one process between context-switch points or a point where the
subnetwork is waiting for its environment. Each transition corre-
sponds to as many as two separate communication events, so the au-
tomaton represents the system’s communication pattern. For each
state, we copy code from the state’s process and replace context-
switching points with gotos to code for the state’s successors.

Each state’s signature—the system state we insist be unique for
each automaton state—is the set of runnable processes and the state
of each channel, either clear, blocked on a reader, or blocked on a
writer. We deliberately ignore program counters and local variables
in the signature—our abstraction to produce compact automata.

Although we do not consider it part of a state’s signature, we
do track what program counter values are possible in each state to
streamline the generated code and reduces the size of the automa-
ton by limiting both the amount of code generated for each state
(unreachable code is omitted) and the number of successor states.
Practically, when we reach a state with the same signature as an
existing state but with additional program counter possibilities, we
consider the two states identical and form the union of the program
counter sets. Our simulation procedure thus combines a depth-first
search and a relaxation procedure that finds a fixed point.

5.1 Example: A Closed Subsystem
Statically scheduling a group of processes that do not communicate
with the outside world is the simpler case. Figure 3 shows such a
simple system being transformed into an automaton. The system’s
three processes (Figure 3(a)) are a sink that always reads, a buffer
that reads and then writes, and a source that sends four numbers
and terminates. Our compiler dismantles processes into statement
lists (Figure 3(b)) that are simulated to produce an automaton
(Figure 3(c)). Our compiler then generates code for each state in
the automaton and connects them with gotos, producing the IR in
Figure 3(d). This IR is then passed to the normal code generation
procedure described in Section 4 to produce executable C.

The structure of Figure 3(c) is typical of systems with periodic
behavior that terminate: the first state initializes the system to
bring it to where periodic behavior begins. The loop represents the
periodic behavior, and the state just outside the loop represents the
process reaching a deadlock because the source has terminated.

Each state in Figure 3(c) is labeled with its name; the set of
runnable processes (marked “+” when runnable, “-” otherwise)
when the state begins; the state of each channel (“-” for clear, “R”
when a reader is blocked on it, and “W” when a writer is blocked);
and a set of program counter values that each process may be in at
the beginning of the state. Thus, in State 1, processes 1 and 2 are
runnable, no process is blocked the first channel (A), and the reader
(the sink process) is blocked on the second channel (B). Moreover,
the first process (sink) must be at instruction 1, the second process
(buffer), may be at instruction 0 or 4, and the third process may be
at instruction 0, 2, 4, 6, or 8.

A theorem says that a SHIM system runs consistently under any
reasonable scheduling policy [5]. Ours selects the lowest-numbered
runnable process. The automaton we generate, therefore, depends
on process labeling (currently from positions in the source file),
but it is guaranteed to produce the same overall behavior. A better
scheduling policy could improve the generated code.

process sink(int32 B) {
for (;;) B;

}

process buffer(int32 &B,
int32 A) {

for (;;) B = A;
}

process source(int32 &A) {
A = 17;
A = 42;
A = 157;
A = 8;

}

network main() {
sink();
buffer();
source();

}

(a) SHIM code

sink
0 PreRead 1
1 PostRead 1 tmp3
2 goto 0

buffer
0 PreRead 0
1 PostRead 0 tmp2
2 tmp1 := tmp2
3 Write 1 tmp1
4 goto 0

source
0 tmp4 := 17
1 Write 0 tmp4
2 tmp5 := 42
3 Write 0 tmp5
4 tmp6 := 157
5 Write 0 tmp7
6 tmp8 := 8
7 Write 0 tmp8
8 Exit

(b) Dismantled

State 0
+++ --

{0} {0} {0}

State 1
-++ -R

{1} {0 4} {0 2 4 6 8}

State 2
--+ RR

{1} {1} {0 2 4 6 8}

State 5
--- RR

{1} {1} {8}

State 3
-+- WR

{1} {1} {2 4 6 8}

State 4
+-+ -W

{1} {4} {2 4 6 8}

(c) The automaton

0 /* State 0 (sink) */
1 sink_state = 1
2 goto 3

3 /* State 1 (buffer) */
4 switch buffer_state

case 0: goto 8
case 4: goto 7

5 buffer_state = 1
6 goto 9
7 goto 5
8 goto 5

9 /* State 2 (source) */
10 switch source_state

case 0: goto 29
case 2: goto 25
case 4: goto 21
case 6: goto 17
case 8: goto 15

11 value__V0 = 17
12 A__V0 = value__V0
13 source_state = 2
14 goto 30
15 source_state = 8
16 goto 42
17 value__V3 = 8
18 A__V0 = value__V3
19 source_state = 8
20 goto 30
21 value__V2 = 157
22 A__V0 = value__V2
23 source_state = 6
24 goto 30
25 value__V1 = 42
26 A__V0 = value__V1
27 source_state = 4
28 goto 30
29 goto 11

30 /* State 3 (buffer) */
31 value__V5 = A__V0
32 received 0 in value__V5
33 value__V4 = value__V5
34 B__V1 = value__V4
35 buffer_state = 4
36 goto 37

37 /* State 4 (sink) */
38 value__V6 = B__V1
39 received 1 in value__V6
40 sink_state = 1
41 goto 3

42 /* State 5 (blocked) */
43 exit

(d) The IR generated from the automaton

Figure 3. Synthesizing the automaton for three concurrently-
running processes. The SHIM code (a) is first translated into a linear
IR (b) that splits read operations into two halves. Simulating these
processes produces an automaton (c), from which a different type
of IR is generated (d). This is passed to the code generation algo-
rithm in Section 4 to be translated into C.

The automaton generation procedure starts with all processes
runnable and all program counters at 0—State 0 in Figure 3(c).
Our scheduling policy then runs the first process—the sink—which



executes instruction 0 and blocks on channel 1 (B), so State 1 has
channel 1 blocked on sink. The first runnable process, 1 (the buffer)
starts at instruction 0 in State 1, tries to read from channel 0 (A),
and blocks. This gives State 2, in which the first two processes (sink
and buffer) are blocked and channels 0 and 1 are blocked on them.

The loop in Figure 3(c) (States 1, 2, 3, and 4) is periodic
behavior: the buffer blocks trying to read, the source emits a token,
the buffer reads it, the source reads it, and the loop repeats.

The simulation traces the loop four times because the source can
be at four control points waiting to write on A, but this does not
create new states because each has the same signature. This shows
how our choice of signature reduces the size of the automaton.

State 2 in Figure 3(c) has two successors: the loop (State 3) and
State 5. This is a choice between the three PC values (2, 4, and 6)
that lead to a write on the A channel and a fourth (8) that brings it
to termination. State 5 corresponds to the state in which no process
is runnable; the buffer is waiting to read from the source and the
sink is waiting to read from the buffer.

Figure 3(d) is the IR generated from the automaton in Fig-
ure 3(c). Each state produces a code fragment, some of which begin
with a switch that sends control to where the process suspended.
The code for each state ends by assigning a constant to the pro-
cess’s state variable that indicates where it should resume. We de-
scribe the generation of such switch statement code elsewhere [6].
The mechanism is analogous to the tail-recursive calls to function
pointers described in Section 4, but keeps the code together.

5.2 Example: An Open Subsystem
It is only slightly more difficult to statically schedule a group
of processes that communicate with their environment. Figure 4
shows how to perform static scheduling on a pair of buffers that
only communicate with their environment, not each other. This il-
lustrates the need for process generated from these two processes
to be able to block on two channels simultaneously since the pair
of buffers running concurrently has this ability. The tail-recursive
code generation technique we described in Section 4 has this abil-
ity, but it goes unused when translating SHIM processes not con-
structed by static scheduling.

As in Figure 3, the SHIM code in Figure 4(a) is translated into
the linear IR in Figure 4(b). This is simulated to produce the au-
tomaton in Figure 4(c), and finally the automaton is translated into
the linear IR in Figure 4(d). Here, however, the automaton includes
states where it (the two buffer processes) are blocked waiting to
communicate with the environment (States 2, 4, 6, and 8).

As shown in Figure 4(d), the code for such states is simple: an
await statement that blocks on multiple channels. The C code gen-
erated for such a state simply makes multiple BLOCK_READING
and BLOCK_WRITING calls to indicate that the process is waiting
on multiple channels simultaneously. One process in the environ-
ment will communicate first with this process and thus send control
to the state in the automaton that assumes that particular communi-
cation takes place. The environment is free to choose which channel
it communicates on first, but the SHIM semantics guarantee that the
overall system behavior is consistent regardless of the choice.

The C code for State 4—the two-channel await—is
if (BLOCKED_READING(sink, C1))
RUN_READER(sink, C1);

BLOCK_WRITING(twobuffers, C1, twobuffers_1);
if (BLOCKED_WRITING(source, C2)) {
twobuffers_13(); return;

}
BLOCK_READING(twobuffers, C2, twobuffers_13);
RUN_NEXT;

“Twobuffers” is the process generated from the automaton, “sink”
reads channel 1, and “source” writes to channel 2.

process buffer(int32 &O,
int32 I) {

for (;;) O = I;
}

network twobuffers () {
buffer(C2/I, C3/O);
buffer(C0/I, C1/0);

}

(a) SHIM code

Process 0
0 PreRead 2
1 PostRead 2 tmp4
2 tmp3 = tmp4
3 Write 3 tmp3
4 goto 0

Process 1
0 PreRead 0
1 PostRead 0 tmp2
2 tmp1 = tmp2
3 Write 1 tmp1
4 goto 0

(b) Dismantled
State 0
++ ----
{0} {0}

State 1
-+ --R-
{1} {0 4}

State 2
-- R-R-
{1} {1}

State 3
-+ W-R-
{1} {1}

State 4
-- -WR-
{1} {4}

State 5
+- R-W-
{1} {1}

State 6
-- R--W
{4} {1}

State 10
+- R---
{4} {1}

State 12
+- -WW-
{1} {4}

State 7
-+ W--W
{4} {1}

State 8
-- -W-W
{4} {4}

State 9
-+ ---W
{4} {4}

State 11
+- -W--
{4} {4}

(c) The automaton

0 /* State 0 (0) */
1 state0 = 1
2 goto 3

3 /* State 1 (1) */
4 switch state1

case 0 goto 8
case 4 goto 7

5 state1 = 1
6 goto 9
7 goto 5
8 goto 5

9 /* State 2 (blocked) */
10 await

read 2 goto 20
read 0 goto 11

11 /* State 3 (1) */
12 tmp2 = channel_0
13 received 0 in tmp2
14 tmp1 = tmp2
15 channel_1 = tmp1
16 state1 = 4
17 goto 18

18 /* State 4 (blocked) */
19 await

read 2 goto 47
write 1 goto 3

20 /* State 5 (0) */
21 tmp4 = channel_2
22 received 2 in tmp4
23 tmp3 = tmp4
24 channel_3 = tmp3
25 state0 = 4
26 goto 27

27 /* State 6 (blocked) */
28 await

read 0 goto 29
write 3 goto 41

29 /* State 7 (1) */
30 tmp2 = channel_0
31 received 0 in tmp2
32 tmp1 = tmp2
33 channel_1 = tmp1
34 state1 = 4
35 goto 36

36 /* State 8 (blocked) */
37 await

write 3 goto 44
write 1 goto 38

38 /* State 9 (1) */
39 state1 = 1
40 goto 27

41 /* State 10 (0) */
42 state0 = 1
43 goto 9

44 /* State 11 (0) */
45 state0 = 1
46 goto 18

47 /* State 12 (0) */
48 tmp4 = channel_2
49 received 2 in tmp4
50 tmp3 = tmp4
51 channel_3 = tmp3
52 state0 = 4
53 goto 36

(d) The IR generated from the automaton

Figure 4. Statically scheduling a pair of buffer processes.



1: procedure visit(state s, PC sets I[1], . . . , I[n])
2: if state s is not part of the automaton then
3: add state s to the automaton
4: let sp be the scheduled process, if any, for state s

5: let sI [p] =

{

/0 if p = sp
I[p] for all other processes

6: let new PCs N[p] = I[i]− sI [p] for all processes p
7: let known PCs sI [p] = sI [p]∪N[p] for all processes p
8: if there is a scheduled process sp then
9: clear R, the set of newly-reached state/PC pairs

10: for each new PC i ∈ N[sp], the scheduled process do
11: R = R∪ simulate(sp,s, i)
12: for each (s′, i′) ∈ R do
13: add s′ to the set of successors of s
14: for each (s′, i′) ∈ R do
15: visit(s′, sI [1], . . . , sI [sp −1], {i′}, sI [sp +1], . . . )
16: else
17: R′ = simulate-blocked(s)
18: add each successor in R′ to the set of successors of s
19: for each s′ ∈ R′ do
20: visit(s′, sI [1], . . . , sI [n])
21: if N[p] 6= /0 for a non-scheduled process p 6= sp then
22: for each successor state s′ of s do
23: visit(s′, N[1], . . . , N[sp −1], /0, N[sp +1], . . . , N[n])

Figure 5. The DFS-based automaton construction algorithm.

The regularity of the automaton in figreftwobuffer-automaton
is no accident since it arises from two identical, non-interacting
processes running in parallel. The main part of the machine (i.e.,
excluding the initial state at the top) is arranged such that hor-
izontal transitions correspond to communication with the second
buffer and vertical transitions correspond to the first. The four cor-
ner states (2, 4, 6, and 8) correspond to the four cases in which
both processes are waiting for input from the environment (i.e.,
both buffers waiting to read; first waiting to read, second waiting
to write; first waiting to write, second waiting to read; and both
waiting to write). In each of these states, the environment is free
to communicate with either process, corresponding to the two out-
going arcs for each. Half of the states between these correspond
to each buffer copying its input to its output (3, 5, 7, and 12); the
other half correspond to each buffer finishing a write and preparing
to read (1, 5, 9, and 11).

As this example suggests, statically scheduling groups of non-
interactive processes can cause an exponential explosion in the
number of states (our scheduling procedure effectively computes
the cross-product of the processes). However, interesting subnet-
works are connected and generate far fewer states.

6. The Automaton Construction Algorithm
Here, we describe in detail the automaton construction algorithm
(Figure 5) that is at the core of our static scheduling procedure. It
uses a variant of depth-first search that visits a state, computes its
successors, and visits them until no new states are found.

Unlike traditional depth-first search, this may visit each state
many times (at least once for every newly-reached program counter
for the process). Since the successors depend on what code the
scheduled process can run, every newly-discovered entry point
may add successors. To limit this procedure, the algorithm only
simulates newly-discovered entry points.

This algorithm makes a subtle but obvious choice to avoid
introducing erroneous deadlocks. The generated automata must be
“as responsive” as the original subnetwork, meaning that after some
sequence of allowed communications, the generated automaton

must be willing to engage in as many communications as the
original subnetwork. If the automaton were lazy in the sense that it
did not always make forward progress (i.e., run internal processes)
where it could, the overall system might deadlock waiting for the
automaton to do something that the original system would.

The solution is simple: the automaton runs as many processes
as it can and only blocks when all of its processes have blocked.

Visit (Figure 5) takes a state s and a set of program counters I[k]
for each process. It first checks whether the state is new (line 2)
and if so, adds it (line 3), determines which process it will run
(i.e., makes the scheduling choice, line 4), and initializes the set of
known program counter values for each process to be those passed
to the procedure for all but the running process, which is initialized
to the empty set (line 5).

By line 6, state s is part of the automaton, so the visit procedure
calculates which PC values are new for this state and adds these to
this state’s set of PCs (line 7).

Next, there are two possibilities. Either there is some scheduled
process sp that can run (handled by lines 9–15), or every process in
the subnetwork is blocked or terminated (handled by lines 17–20).

If there is some scheduled process, we simulate it for each new
PC value (lines 9–11) using Figure 6. This returns a set of PC/state
pairs that are added to the set of successors of s (line 13).

The procedure then recurses on each new state/PC pair, passing
all known PCs for each process except the scheduled one, for which
it passes the newly-discovered PC (lines 14–15).

Conversely, if there is no process that can run, we instead
call simulate-blocked (Figure 7) to determine the successors of s
(line 17), then visit each of these successors (lines 19–20).

Finally, if new PC values were found for any non-scheduled
processes, they are passed to every successor state (lines 21–23).
This is because the PCs for unscheduled processes do not change
when the scheduled process runs.

6.1 Symbolic Simulation of a Process
Automaton construction calls the symbolic simulation procedure
(Figure 6) to compute state successors. Given a process, an initial
state, and an initial program counter for the process, simulate re-
turns a set of state/PC pairs that are the context switching points the
process can reach.

It computes successor states with a depth-first exploration of
a process’s control-flow graph. The visit-instruction procedure
(lines 2–28 in Figure 6) performs the search.

Visit-instruction first checks whether the state/PC pair has been
visited (line 3). Just checking whether a particular instruction has
been visited is not enough because different paths through the
process may produce different states at the same instruction.

After marking the state/PC visited, it either terminates or re-
curses depending on the type of instruction. Non-communication
instructions (lines 6–13) are simple: a straight-line instruction re-
curses on its successor, and a branch instructions recurses on all of
its successors. When control reaches the end of a process, it marks
the process not running and adds a terminal state.

There are two cases for the first half of a read (lines 14–19). If
the writer is blocked on the channel, the data is available and the
read operation can proceed—the procedure recurses (line 16). Oth-
erwise, data is not available so the process blocks on the channel
and adds its successor as a final state (line 19).

Handling the second half of a read operation (lines 20–22) is
easier. Here, the writer must have blocked on the channel, so we
mark it as runnable and recurse on the next instruction.

The final case, writing (lines 23–27), always blocks, so it returns
its successor as a final state, but if the reader is blocked on the
channel, the write makes it runnable (line 25).



1: function simulate(process p, state s, PC i)
2: procedure visit-instruction(s, i)
3: if (s, i) has not been visited then
4: mark (s, i) as visited
5: case type of instruction at PC i in process p of
6: normal instruction :
7: visit-instruction(s, i+1)
8: branch instruction :
9: for each successor i′ of the branch do

10: visit-instruction(s, i′)
11: end-of-process :
12: mark p as not runnable
13: F = F ∪ (s, i)
14: read on channel c :
15: if the writer is blocked on channel c then
16: visit-instruction(s, i+1)
17: else
18: mark reader p as blocked on channel c
19: F = F ∪ (s, i+1)
20: just after a read on channel c :
21: mark as runnable the writer of channel c
22: visit-instruction(s, i+1)
23: write on channel c :
24: if the reader is waiting on channel c then
25: mark the reader process as runnable
26: mark writer p as blocked on channel c
27: F = F ∪ (s, i+1)
28: end procedure
29: clear the set of visited state/pc pairs
30: clear F , the set of final state/pc pairs
31: visit-instruction(s, i)
32: return F

Figure 6. The symbolic simulation procedure.

1: function simulate-blocked(state s)
2: clear S, the set of successors for s
3: for each external channel c do
4: let s′ = s
5: if c is blocked reading in s then
6: set the reader of c to be runnable in s′
7: set c to be blocked writing in s′
8: add s′ to S
9: else if c is blocked writing in s then

10: set the writer of c to be runnable in s′
11: set c to be blocked reading in s′
12: add s′ to S
13: return S

Figure 7. Computing the successors of a blocked state. This as-
sumes the environment communicates on every blocked channel.

6.2 Handling Blocked States
The function for handling blocked states (Figure 7) is simpler. By
definition, no process in the subnetwork is runnable in such a state,
so the only possible way to make progress is for the environment
to communicate with one of the blocked processes.

Simulate-blocked assumes the environment can and does com-
municate on every channel on which the processes are blocked. As
explained in Section 5.2, the code generated for such a state is sim-
ply an await statement that blocks on every external channel on
which processes in the subnetwork are blocked. When the environ-
ment communicates on one of these channels, the await sends to
the state that came from assuming the communication took place.

7. Experimental Results
To evaluate our code generators, we generated code for some ex-
amples three different ways and compared their sizes and execu-
tion speeds. Table 2 shows our experimental results for generated
C code running on a single Pentium 4 processor (a 2.5 GHz desk-
top running Linux). Each of these are small programs with simple
processes—highly parallel with substantial scheduling overhead.
E.g., the FIR examples are finite-impulse-response filters with a
separate process for each fork, sum, coefficient, and delay.

To measure performance, we ran a million samples through each
example and timed its execution using the Unix clock function. We
chose the number of iterations to get a total running time around a
second to minimize measurement error.

Our baseline is the code generation technique we developed ear-
lier [6] that generates a single function per process and uses switch
statements to resume them. The scheduler dispatches these func-
tions from a linked list of runnable processes. One big difference is
that the switch-based code generator does not support a process
blocking on multiple channels simultaneously and therefore has
slightly less overhead per communication operation.

The “Switch” column lists the number of bytes in the text
segment of the executable from our baseline code generator after
optimization with gcc -O2 on a Pentium 4 (compiled for a 386).

The two columns labeled Tail-Recursive list the executable sizes
and execution time speedups for tail-recursive code generated by
the procedure presented in Section 4. For most of the examples,
this code is about 50% larger but twice as fast. We suspect the size
overhead is due to the additional overhead of creating so many lit-
tle functions (nearly 600 for the FIR19 example). The two FIR ex-
amples are exceptional, however. Each is about 10% slower. We
attribute this to the switch-based code generator’s slightly lower
communication overhead (these examples are almost purely com-
munication) that in the other examples is overcome by the more
efficient tail-recursion-based context switching.

The Static (partial) columns list results for statically-scheduling
most, but not all, of the processes in each example. For these, we
statically scheduled the “core” of each example, but left the source
and sink processes independent. This is a realistic application of
static scheduling since it is easy to imagine a full system composed
of multiple cores of this form.

Most of these examples are a bit larger than their purely tail-
recursive counterparts, and only a bit faster (the speedup column
lists times relative to the baseline code generation technique). The
exceptions, again, are the FIR filters, which have substantially more
processes than the other examples. This is not surprising—the
smaller examples have much simpler communication patterns and
therefore not as much scheduling overhead. The FIR filters, by
contrast, are almost pure scheduling, and are therefore much more
amenable to speed-up through static scheduling.

The sizes of the automata we generate are modest. We attribute
this to our communication-based abstraction, which only models
the (usually periodic) communication behavior of the system, not
the complete system state. E.g., chains of buffer processes have a
state for when the buffers are empty, when the buffer contains one
data value, when it contains two, and so forth. Fortunately, this is
only linear in buffer length.

The Static (full) columns are results for statically scheduling
all the processes in each network, i.e., considering it a closed sys-
tem and analyzing it completely. The results, but size and speed,
are substantially better than any of the other approaches because
it eliminates unneeded flexibility. In the partial case, the generated
automaton must consider all possible environmental communica-
tion events. By contrast, in the full case, there is no environment to
be considered: the scheduler is free to choose a particular schedul-
ing policy and ignore all other possible behaviors.



Table 2. Experimental Results
Example Lines Processes Switch Tail-Recursive Static (partial) Static (full)

size size speedup size speedup states size speedup states
Berkeley 36 3 860 1299 2.9 1033 2.6 5 551 7.8 6
Buffer2 25 4 832 1345 2.0 1407 2.4 10 403 11 8
Buffer3 26 5 996 1579 2.1 1771 2.6 20 443 10 10
Buffer10 33 12 2128 3249 1.7 5823 4.8 174 687 12 24
Esterel1 144 5 3640 5971 1.9 8371 2.9 49 5611 5.9 56
Esterel2 127 5 4620 7303 2.0 6871 2.5 24 2539 5.2 18
FIR5 78 19 4420 6863 0.92 6819 4.8 229 1663 7 79
FIR19 190 75 17052 25967 0.90 67823 5.9 2819 7287 7.1 372

Executables and times are from gcc -O2 running on a 2.5 GHz Pentium 4
Lines = lines of SHIM source code Processes = total number of concurrent processes size = number of bytes in text segment
speedup = relative to switch-based code generation states = number of states in the automaton

Thus, the generated automaton has fewer states for most exam-
ples, especially the largest ones. This leads to smaller code size (full
static scheduling actually produces the smallest code for the largest
examples). Even more notable is the speed-up, which is consis-
tently better, especially for the smaller examples. This is because
most overhead has been scheduled away.

8. Conclusions
We presented two techniques for generating C code that runs
the concurrent SHIM model in software: one that produces tail-
recursive ANSI C code to quickly perform context switches among
concurrently-running processes, and one that statically schedules
groups of processes to combine them into a single imperative pro-
cess that is equivalent to the group.

We implemented both of these techniques in a compiler that
compiles our SHIM language, which we described in Section 3. We
plan to release this compiler open-source, although we have not
done so yet because it remains fairly immature. The compiler is
currently about 4000 lines of OCAML.

Experimental results suggest our tail-recursive code generally
operates twice as fast as code from our switch-statement-based
code generator [6]. The statically-scheduled code, however, can be
even faster; as much as twelve times on one example. Surprisingly,
the increase in speed was often accompanied by a decrease in code
size, making it superior in every respect.

Our compiler currently performs basic optimizations (e.g., dead
code removal), but does not, say, merge or remove dead variables.
Some of these basic optimizations are, of course, handled by the C
compiler, but our compiler has greater insight into the code since
it understands the concurrency and communication model. In the
future, we plan to implement many basic optimizations in our SHIM
compiler to further improve the quality of the generated code.

At least two other open questions remain in our work: how best
to choose which processes should be scheduled together and how
best to schedule processes statically. At the moment, we rely on the
user to supply the groups of processes to schedule together, but we
envision a heuristic algorithm might be able to provide hints, e.g.,
that tightly-coupled processes should be compiled together and
non-communicating ones, such as the pair of unconnected buffers
described in Section 5.2, should not be.

The scheduling policy employed in our static scheduler is es-
sentially nondeterministic (it is affected by the order in which pro-
cesses are written in the source program). While the SHIM seman-
tics guarantee the system behaves consistently under all scheduling
policies, we suspect the quality and efficiency of the generated code
can be improved dramatically by more carefully choosing the static
scheduling policy.

References
[1] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halb-

wachs, Paul Le Guernic, and Robert de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE, 91(1):64–83,
January 2003.

[2] Gérard Berry and Georges Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation. Science
of Computer Programming, 19(2):87–152, November 1992.

[3] Luca Cardelli and Rob Pike. Squeak: A language for communicating
with mice. In Proceedings of the Twelfth ACM Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH), pages
199–204, San Francisco, California, 1985.

[4] Stephen A. Edwards. Compiling concurrent languages for sequential
processors. ACM Transactions on Design Automation of Electronic
Systems, 8(2):141–187, April 2003.

[5] Stephen A. Edwards and Olivier Tardieu. SHIM: A deterministic
model for heterogeneous embedded systems. In Proceedings of the
International Conference on Embedded Software (Emsoft), Jersey
City, New Jersey, September 2005.

[6] Stephen A. Edwards and Olivier Tardieu. SHIM: A deterministic
model for heterogeneous embedded systems. IEEE Transactions on
Very Large Scale Integrated (VLSI) Systems, 2006. To appear.

[7] Robert S. French, Monica S. Lam, Jeremy R. Levitt, and Kunle
Olukotun. A general method for compiling event-driven simulations.
In Proceedings of the 32nd Design Automation Conference, pages
151–156, San Francisco, California, June 1995.

[8] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel
Pilaud. The synchronous data flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[9] Nicholas Halbwachs, Pascal Raymond, and Christophe Ratel.
Generating efficient code from data-flow programs. In Proceedings
of the Third International Symposium on Programming Language
Implementation and Logic Programming (PLILP), volume 528 of
Lecture Notes in Computer Science, Passau, Germany, August 1991.
Springer-Verlag.

[10] Gilles Kahn. The semantics of a simple language for parallel
programming. In Information Processing 74: Proceedings of IFIP
Congress 74, pages 471–475, Stockholm, Sweden, August 1974.
North-Holland.

[11] Bill Lin. Software synthesis of process-based concurrent programs.
In Proceedings of the 35th Design Automation Conference, pages
502–505, San Francisco, California, June 1998.

[12] André Costi Nácul and Tony Givargis. Code partitioning for synthesis
of embedded applications with Phantom. In Proceedings of the
IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pages 190–196, San Jose, California, November 2004.

[13] Marco Sgroi, Luciano Lavagno, Yosinori Watanabe, and Alberto
Sangiovanni-Vincentelli. Synthesis of embedded software using free-
choice Petri nets. In Proceedings of the 36th Design Automation
Conference, pages 805–810, New Orleans, Louisiana, June 1999.

[14] Xiaohan Zhu and Bill Lin. Compositional software synthesis of
communicating processes. In Proceedings of the IEEE International
Conference on Computer Design (ICCD), pages 646–651, Austin,
Texas, October 1999.


