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Abstract

Producing efficient circuits from high-level language descrip-
tions remains a problem. This paper proposes three techniques
for improving the quality of circuits generated from high-level
Esterel specifications, a synchronous, concurrent language de-
signed to specify control-dominated systems.

Together, the three techniques aim to improve the quality of
the input to logic synthesis to produce better results. The first
uses control dependence information to synthesize small, fast
circuits from control-flow graphs. The second involves solving
the state assignment problem for Esterel-derived circuits at a
much higher level than has previously been proposed, allowing
many more optimization opportunities. The third technique ex-
tracts don’t-care information from high-level representations
to improve the quality of logic synthesis.

I believe these techniques will make Esterel a compelling
alternative to existingRTL synthesis languages.

1 Introduction

I present three ideas for synthesizing circuits from Esterel [2]
programs. While resembling the problem of generating cir-
cuits from Verilog orVHDL RTL descriptions the Esterel lan-
guage differs in two main ways. First, Esterel supports implicit
state machines through apausestatement that delays for a cy-
cle. Thus, Esterel program counters hold their state between
clock cycles, and in this sense resemble behavioral descrip-
tions. Figures 1 and 2 illustrate this. Second, Esterel supports
high-level control constructs such as concurrent composition,
preemption, and exceptions. Both aspects make Esterel a more
challenging language to translate into circuitry, but also enable
aggressive optimizations because the compiler is able to gain
a better understanding of the program’s behavior. This paper
focuses on this aspect of compiling Esterel.

Berry first outlined the translation of Esterel into circuitry
in 1992 [1] and little has changed since. Analyzing and resyn-
thesizing cyclic combinational circuits, which are easy to in-
advertently write in Esterel, has been the major improvement.
Starting with Malik’s work [13], Berry et al. devised the costly
but elegant symbolic techniques used in the V5 compiler [17].
This remains the best way known for dealing with this problem
and could be applied in this work.
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always @(posedge clk)
HY = 0; FG = 0; FY = 0; HG = 0; RESTART = 0;
case (state)

0: if ( CAR && LONG ) begin
HY = 1; RESTART = 1; state = 1; end

1: if (SHORT) begin
FG = 1; RESTART = 1; state = 2; end

2: if (!CAR || LONG) begin
FY = 1; RESTART = 1; state = 3; end

3: if (SHORT) begin
HG = 1; RESTART = 1; state = 0; end

endcase

Figure 1: A fragment of register-transfer Verilog describing a
traffic light controller. All state, including control state, must
be explicitly saved in memory elements between clock cycles.

loop
emit HG ; emit RESTART; await [CAR and LONG];
emit HY ; emit RESTART; await SHORT;
emit FG ; emit RESTART; await [not CAR or LONG];
emit FY ; emit RESTART; await SHORT;

end

Figure 2: A fragment of Esterel code describing the same state
machine as Figure 1. Control is now described using primitives
such asawait rather than being coded explicitly.

More relevant is Touati, Berry, Toma, and Sentovich’s tech-
nique [20, 19, 16] for reducing the number of latches pro-
duced by Berry’s mechanical translation procedure. They rely
on computing the reachable state set implicitly using BDDs,
then resynthesizing the circuit using this knowledge to remove
sequential redundancies. They are able to improve the circuits
because the group-hot encoding used by Berry’s synthesis pro-
cedure is fairly inefficient.

Potop-Butucaru’s work [14] is more closely related to this:
it also reduces the number of latches in a circuit generated
from Esterel, but does so much more cheaply. His technique
eliminates latches that are identified as redundant by observ-
ing whether their thread can terminate independently of others
in the group, an inexpensive computation already performed
during the compilation process.

In this work, I propose three key ways to advance hard-
ware synthesis from Esterel. First, I propose a new structural
translation of Esterel based on the concept of control depen-
dence. This representation of control flow, taken from the op-
timizing compiler literature [6], is ideally suited for hardware
as it is inherently concurrent, compact, and generates wide,
short graphs from tall, thin control flow specifications. Others,
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Figure 3: (a) A short procedure. (b) Its control-flow graph. Rectangles are actions; diamonds are decisions. Dots indicate true
arcs. (c) A circuit generated from theCFG. (d) Its control dependence graph. Every successor of a region node (house-shaped)
runs if the node does. (e) The circuit generated from theCDG. (f) The number of literals in each circuit before and afterSIS

optimization with script.rugged.

notably Chapman [4], have made this observation, but iron-
ically have not applied it to a concurrent language such as
Esterel, partially because control dependence has historically
only been defined for sequential control flow.

The second advance is better state encoding. Berry’s group-
hot encoding is highly redundant (as evidenced by the success
of Touati et al.), so there is room for improvement. However,
rather than building a complicated gate-level representation
and then fixing it (the current state-of-the-art), the technique
proposed here choose states encodings at a high level, provid-
ing much greater flexibility and allowing drastically different
encodings to be chosen.

The third advance is the extraction of don’t-care information
to improve the quality of logic synthesis. While in theory this
information, which gives the logic synthesis tool more flexi-
bility in choosing an implementation, can be inferred from the
circuit, it is much less expensive to obtain from a high-level
specification.

This paper describes these three techniques.

2 Control Dependence and Hardware

The synthesis procedure generates circuits from Esterel by first
computing control dependence information, which has a natu-
ral, efficient translation into hardware. Ferrante et al. [10] in-
vented the control-dependence graph as an intermediate rep-
resentation for optimizing software compilers. It enables cer-
tain optimizations, especially those that require the reordering
of statements. It is a concurrent representation of a sequential
program represented with a control-flow graph.

A circuit generated from control dependence is smaller and
faster than one translated directly from control flow. Figure 3
illustrates this for a small example from Ferrante et al. [10].
The sequential code in (a) has the control-flow graph in (b).
Generating a circuit directly from this (using, for example,
Berry’s technique [1] produces the circuit in (c).

The circuit in Figure 3c is redundant because it contains
many order dependencies that are not logically necessary. For

example, S7 is always equal to the value of entry regardless of
the values of C1, C2, and C3. Although such redundancy can
be removed by carefully analyzing the circuit, it is much easier
to remove by calculating control dependence.

Informally, a nodeY in a control-flow graph is control de-
pendent on a nodeX if taking one of the outgoing arcs from
X guaranteesY will be executed, but that taking another arc
may meanY is not executed. For example, in Figure 3b, S6
is control-dependent on C3 and C1, but not C2. Ferrante et
al. [10] define control dependence in terms of dominance. A
nodeV in a control-flow graph is post-dominated by a nodeW
if every path fromV to the exit node of theCFGpasses through
W. With this definition, a nodeY is control dependent onX if
there is a directed path fromX to Y whose nodes are all post-
dominated byY but X is not post-dominated byY. Cytron et
al. [6] give an efficient (O(E +N2) worst-case, usually linear)
algorithm for calculating control dependence. For each node in
the control-flow graph, they compute its dominance frontier: a
set of nodes whose predecessors are dominated by the node,
but that are not themselves dominated by the node. Cytron et
al. show this definition is equivalent to Ferrante et al.’s and
give an algorithm for computing it.

Figure 3d shows control dependence relationships among
the nodes in Figure 3b summarized in a form called the con-
trol dependence graph, which is a convenient starting point
for hardware. TheCDG consists of the nodes in theCFG aug-
mented with region nodes (the house-shaped nodes in Fig-
ure 3d) such that there is a directed path from nodeX to nodeY
if Y is control dependent onX. Ferrante et al. [10] give an effi-
cient algorithm for generating such graphs from control de-
pendence (or equivalently, dominance frontier) information,
which involves looking for subset containment relationships
among control dependencies.

Generating a circuit from theCDG representation is trivial,
as shown in Figure 3e. A decision node becomes a pair ofAND

gates andOR gates collect multiple arcs incident on a node.
Region nodes simply become fanout (wires).
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Figure 4: A fragment of Esterel code and (a) the tree to be encoded. (b) Berry’s encoding. (c) The encoding used in my software
Esterel compiler [7, 8]. The children at each branch are encoded in binary and shared maximally. (d) A variant: the branches
are encoded with a one-hot code. (e) A redundant encoding: the b and d subtrees share a bit, but the c subtree has its own bits.

Figure 3f shows the literal counts for these two circuits be-
fore and afterSISoptimization. Although this data set is hardly
large enough to constitute proof, it does illustrate my hypoth-
esis:circuits generated from control dependence are a better
starting point for logic synthesis.

In theory, a logic synthesis system should produce a circuit
of equal quality from either starting point, but in practice logic
synthesis algorithms are always limited. It is unlikely that logic
synthesis would use an algorithm as specific as control depen-
dence, which relies on the control-flow-graph-like properties
of the input circuit, since logic synthesis algorithms are de-
signed to work well on general circuits. I therefore believe cir-
cuits generated from control dependence are a superior starting
point that will produce smaller circuits after optimization.

The Esterel language has a natural translation into a con-
trol dependence graph because it combines sequential and con-
current constructs. This translation is not trivial; existingCDG

computation algorithms have to be extended to accommodate
some concurrency. Although there are some technical chal-
lenges, deriving a concurrentCFG (a starting point for calcu-
lating theCDG) is inexpensive and straightforward [8].

3 State Encoding

Existing optimization techniques for Esterel-derived circuits
begin from a low-level netlist generated by Berry’s procedure.
This makes it difficult to significantly restructure the circuit.
For example, changing state encoding is problematic because
it is best done with knowledge of the circuit’s reachable states,
an expensive computation at the netlist level. This is the ap-
proach taken by Touati et al. [20, 19, 16], who remove and
share redundant latches due to Berry’s encoding. To determine
this, they compute the reachable states using a symbolic BDD-
based technique. Instead, I propose to address the state encod-
ing problem at a higher level, before generating the netlist and
without having to calculate reachable states.

Broadly, the state encoding problem in Esterel amounts to
assigning codes to leaves of a tree that make it somehow easy
to compute the path from the root to the leaf. Each sequential
thread of control has such a tree, whose leaves corresponds
to pausestatements (a single-cycle delay: a state). Preemption

statements such asabort generate the branches in the tree, and
each branch has a condition that must be checked before con-
trol can reach a leaf. Each state of a thread, therefore, describes
a path from the root to a leaf, and the circuitry for each node
in the tree needs to determine whether it is along the path from
the current state.

Figure 4 illustrates this. The top program fragment can be in
one of seven states (at any of thepausestatements), and each
of these emits a distinct signal so they must be distinguished.
Furthermore, these states are divided into three groups, each
preemptible by a different input signal (b, c, or d), and these
groups must be distinguished. The tree in Figure 4a illustrates
this structure. The generated circuit must not only distinguish
which leaf is active in each state (at most one ever is), but also
the branches along the path from the root to that leaf.

The obvious code of assigning leaves to integers, e.g., e=0,
f=1, g=2, etc. works, but generally does not produce the best
circuitry. The test at each leaf becomes a comparison: anAND

of XORs, but the test at each branch is a costly integer range
check, e.g., the test at node c would be2≤ s≤ 4.

Berry’s encoding (Figure 4b) uses seven state bits. The de-
coding at the leaves is trivial: the leaf is active if its state bit is,
but each non-leaf node mustOR together the statuses for all its
children, which can get expensive.

Figure 4c is the encoding I used in my Esterel compiler
for software [7, 8]. Each branch is encoded with alogn code,
which is easily decoded in software. It’s more costly in hard-
ware, but saves state bits. There are still many unused codes in
this approach so there are further optimization opportunities.

Figure 4d also encodes branch points, but uses a one-hot
code at each branch. Figure 4e illustrates yet another choice
in this framework. Here, subtrees b and d share state bits, but
subtree c has a separate set. Such an encoding might be de-
sirable if subtrees b and d already had a lot of shared circuitry
and subtree c required a lot of additional circuitry. By not shar-
ing bits, latches holding the state for subtree c would not have
to communicate with circuitry for subtrees b and d, possibly
eliminating a long wire that might slow the circuit.

Selecting the best choice for state encoding among these
possibilities is an open problem, but one possibility is to sim-
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Figure 5: (a) An Esterel example. (b) Its control-flow graph. (c) Its control dependence graph. (d) The circuit generated from
theCDG. (e) The circuit after simplifying the gates inside the dotted box using the observation that signals B and C are mutually
exclusive, a “don’t-care” derived from the control-flow graph. (f) Further simplification possible by observing the relationship
between B, C, and the entry signal.

ply generate implementations and compare their sizes since
the synthesis procedure will be fast. Estimating the quality of
the optimized circuit from an unoptimized circuit may be dif-
ficult, but because the circuit will be reasonably good to start
with (i.e., synthesized from control-dependence information),
I expect this technique will be reasonable.

Other possibilities include doing more complete optimiza-
tion on portions of the subtree, much like the technique of Sea-
wright and Meyer [15]. Incorporating heuristics that consider
communication dependencies like Crews and Brewer do [5] is
another obvious possibility. I expect better results than theirs
because the hierarchical state machines of Esterel are more
structured than their starting point: state transition graphs.

4 Don’t-Care Extraction

Allowing a logic synthesis system flexibility in its choice of
implementation is key to producing high-quality circuits. This
usually takes the form of “don’t care” information that de-
scribes states the circuit can never enter. A logic synthesis sys-
tem is therefore free to make the circuit’s behavior in such
a state match other, defined behavior, allowing the same cir-
cuitry to be reused.

Figure 5 illustrates how don’t care information can help to
simplify a circuit. Figure 5a shows an Esterel program frag-
ment. This is translated into the control-flow graph of Fig-
ure 5b and the control-dependence graph of Figure 5c. Fig-
ure 5d shows a straightforward circuit translation from thePDG

that can be improved by observing that signals B and C are mu-
tually exclusive by virtue of their position in the control-flow
graph (i.e., there is no directed path between emissions of B
and C). This allows the gates in the dotted box to be replaced
by a much simplerOR. Finally, the relationship between sig-
nals B, C, and entry can be exploited to further simplify the
circuit (Figure 5f).

Don’t-care information can be classified into two groups: in-
ternal don’t-cares, which arise from the structure of the circuit;

and external don’t-cares, which arise from environmental con-
straints and expectations (I take this classification from Hong
et al. [11], who also use don’t-care information to simplify
software synthesized from Esterel, but do so on programs gen-
erated from binary decision diagrams). For example, in Fig-
ure 5, the case when signals B and C are true simultaneously
is an internal don’t-care because the twoAND gates than gen-
erate them guarantee this can never happen. How the rest of
the circuit would react to this condition is irrelevant because
it can never happen. There are few possibilities for external
don’t-cares in this circuit because it has so few primary inputs,
but one might be that A is never true when entry is false.

There are two types of internal don’t-cares: controllability
and observability don’t-cares. Signals B and C never true si-
multaneously is a controllability don’t-care: the structure of
the circuit ensures that this condition can never occur for any
input pattern. That the C input to the dotted box in Figure 5d
can be shorted to 1 without affecting the circuit’s output is an
example of an observability don’t-care: internally the circuit
behaves differently, but this difference cannot be observed at
the outputs.

Deducing don’t-care information from an arbitrary circuit is
difficult and can be costly to do comprehensively, yet the op-
timization procedures of Touati et al. [20, 19, 16] demand it.
Knowing how the circuit was constructed often makes certain
properties true by construction. Furthermore, when establish-
ing a property requires some analysis, that analysis is usually
easier to carry out on the high-level representation that gener-
ated the circuit than on the circuit itself.

I propose two mechanisms for computing some don’t-care
inexpensively for these circuits. First, an overapproximation of
the reachable states is available directly from the state encod-
ing algorithms. For example, in Figure 4b, any state with two
or more 1s is not reachable by construction. This supplies ex-
ternal don’t-cares to the combinational portion of the circuit.
Calculating this information directly from the circuit is theo-



retically possible but is often very expensive, requiring, e.g.,
symbolic state reachability analysis.

The other source of don’t-care information comes directly
from the structure of theCFG, as in Figure 5. By definition,
two nodes within theCFG with no directed path between them
cannot run simultaneously. This produces internal controllabil-
ity don’t-cares. Again, this information could be derived from
the circuit, but doing so would be much more costly.

5 Conclusions

I have presented three ideas to advancing the state of the art
in synthesizing hardware from high-level Esterel descriptions.
First, I showed how control dependence information can lead
to an efficient combinational circuit starting from a control-
flow graph description. Second, I described the state encod-
ing problem for Esterel and some ways to make improvements
over existing techniques. And third, I showed how don’t-care
information can easily be derived from these high-level de-
scriptions to improve the quality of the generated circuit after
logic synthesis.

All these techniques are applicable to traditional Esterel [2],
the new Hardware Esterel dialect [3], as well as proposed hard-
ware dialects of the Esterel-derivedECL language [12]. Work
is underway on implementing these in theESUIF synchronous
language compiler framework under development at Columbia
University [9]. I am implementingESUIF in Lam et al.’sSUIF

system [21]. Smith et al.’s MachSUIF system [18] is being used
for control-flow and control-dependence analysis.
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