
Compiling Esterel into Sequential Code

Stephen A. Edwards
Advanced Technology Group, Synopsys

 East Middlefield Road
Mountain View, California –

sedwards@synopsys.com

Abstract

Embedded real-time software systems often need fine-grained par-
allelism and precise control over time, things typical real-time op-
erating systems do not provide. The Esterel language has both, but
Existing compilers produce slow code for large programs.

This paper presents the first Esterel compiler able to produce
small, fast code for large programs. It can produce code half the size
and up to a hundred times faster than code from existing compil-
ers. Esterel’s semantics allow the compiler to statically schedule con-
currency and synthesize code that efficiently and predictably simu-
lates context switches. The main contribution is an algorithm that
synthesizes an efficient sequential program from the concurrent
control-flow graph used as an intermediate representation. These
techniques could be applied to any language with fine-grained par-
allelism.

 Introduction

I propose a new compiler for the Esterel language [] called ec. In-
tended for specifying reactive real-time systems, Esterel has the con-
trol constructs of an imperative language like C, but includes con-
currency, preemption, and a synchronous model of time like that
used in synchronous digital circuits. In each clock cycle, the pro-
gram restarts, reads its inputs, and computes its reaction.

Figure  shows a simple Esterel program with two concurrent
threads. The first thread waits for the START signal and emits
REQUEST. If it receives GRANT in the same cycle, it emits the GOT sig-
nal. In alternating cycles, the other thread emits GRANT in response
to REQUEST. The threads restart when the RESET signal appears be-
cause of the abort-when RESET construct inside the outer loop.

For this or any other Esterel program, an Esterel compiler will
generate a single C function that is called each cycle to simulate the
system. Such a function saves its state in variables between calls.

Simulating concurrency is the main challenge. Pairs of threads,
such as those in Figure , may communicate bidirectionally in the
same cycle, so their execution must be interleaved. Large programs

module EXAMPLE:

input RESET, START; output GOT;

signal REQUEST, GRANT in
loop abort % RESET restarts the loop
await START;
emit REQUEST;
present GRANT then emit GOT end

|| % run concurrently
loop

present REQUEST then emit GRANT end;
pause; % wait for the next cycle
pause

end
when RESET end

end.

Figure : A simple Esterel program consisting of a single module.
Figure  shows some of the code ec generated for this.

can have thousands of threads, so the cost of switching between
threads must be kept low.

Automata-based compilers (Berry et al.’s v3 [] and the Po-
lis group’s []) exhaustively simulate the program to generate a
branching program for each state that produces side effects while
deciding the next state. Here is code for a state in Figure :

if (RESET) state = 2;
else if (START) { GOT = 1; state = 5; }
else state = 2;

Automata code is fast but often exponentially larger than the source.
The Polis compiler shares code between states after identifying it
with a binary decision diagram, but this remains exponential.

The gate-based compilers (Berry et al.’s v4 and v5 [, ]) trans-
late an Esterel program into logic gates and generate code from the
gates. This approach handles large programs, but the code is slow
because idle sections still take time. For example, here is a fragment
of the code v5 generated from Figure  (the E variables hold inter-
mediate results, the R variables hold state between cycles):

E4 = E3 && START; E5 = (E1 && RESET) || R0;
E6 = (R3 && E2) || E5; E7 = E6 && E4;
E8 = E4 && E7; if (E8) GOT = 1;

Ec generates small, fast code for a large Esterel programs by em-
ploying a natural intermediate representation (essentially C with
fork and join statements) and using a good algorithm to sequential-
ize it. The sequentializing algorithm, described in Section ., uses

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

the natural idea of saving and restoring program counters to sim-
ulate concurrency. A thread is suspended by storing a constant in
a program counter variable and resumed with a multi-way branch.
This approach avoids the capacity problems of the automata com-
pilers and most of the overhead of the gate-based compilers. The
result can be a hundred times faster than gate code.

Currently ec can only handle programs where the instructions
can run in the same order in all states. Most programs satisfy this,
but Esterel’s semantics permit data- or state-dependent orders. Dif-
ferent orders do not present a problem for the automata compilers
since they treat each state separately. A data-dependent order ap-
pears as a cycle in the netlist generated by v5. The compiler removes
such cycles by exhaustively simulating the netlist and resynthesizing
the cycles []. This technique may also be applicable to ec.

I patterned ec after Lin’s compiler []. Lin translates programs
written in a C variant into Petri nets that represent sequencing, con-
currency, and communication. These work well for the rendezvous-
style communication in Lin’s language, but are awkward for Es-
terel’s synchronous style. Lin schedules and then simulates these
Petri nets to generate very fast automata-style code. Unfortunately a
bad schedule can cause an exponential explosion in code size. Even
worse, finding a good schedule is np-complete.

Sgroi et al. [] also address scheduling concurrent software, but
their formalism is also built on Petri nets and the behavior of their
systems is not synchronous.

Bertin et al.’s Esterel compiler [] resembles a compiled event-
driven simulator. For each segment of code between pauses, it gen-
erates a small C function dispatched in response to incoming sig-
nals. Their code size/speed results are encouraging, but they cannot
handle programs that require interleaved threads such as Figure .

 Translating Esterel to Concurrent C

Ec translates a complete Esterel program into a single C function
called once per cycle. This function has no loops and restarts itself
using state variables. Ec generates this function by translating an
Esterel program into concurrent C and sequentializing it using the
algorithm described in Section .

Ec represents concurrent C code as a concurrent control-flow
graph (ccfg). A ccfg contains plain, conditional, fork, and join
nodes, each with an expression. When control reaches a node, the
node’s expression is evaluated and control flows along one or more
arcs leaving the node. A plain node has a single outgoing arc and
its expression is usually an assignment. Control leaves a conditional
node along the arc whose integer label matches the value of the ex-
pression (these become if or switch statements).

Fork and join nodes start and collect groups of parallel threads.
Control flows out all arcs leaving a fork, starting a group of threads
that will wait at a matching join node before continuing. Fork and
join nodes may nest, but control may not pass between threads.
Specifically, all paths from a particular fork meet for the first time
at a unique join.

. Resuming Threads and State Encoding

Figure  illustrates how ec translates preemption and multi-cycle
behavior in Esterel (Figure a) into C (Figure b).

When control reaches an Esterel pause statement, the thread
containing the pause stops and resumes there the next cycle. In
C, a pause writes to the thread’s state variable and branches to the
end of the thread (e.g., line ). In the next cycle, a switch state-
ment (lines –) branches to the statement immediately following
the pause (e.g., line ).

In the first cycle it runs, the abort-when construct simply runs
its body. This is done by the goto statement in line .

pause;
pause;
abort

pause;
pause;
pause;
pause;
pause

when A

 Start: goto L1;
 Resume:
 switch (s & 0x3) {
 L1: s=1; goto Join;
 case 1: s=2; goto Join;
 case 2: goto L2;
 case 3: if (!A)
 switch (s>>2 & 0x7) {
 L2: s=3 | 0<<2; goto Join;

 case 0: s=3 | 1<<2; goto Join;
 case 1: s=3 | 2<<2; goto Join;
 case 2: s=3 | 3<<2; goto Join;
 case 3: s=3 | 4<<2; goto Join;
 case 4: ;
 }
 s = 0; goto Join;
 case 0: ;
 }
 Join:

(a) (b)

Figure : (a) An Esterel thread fragment. (b) Its translation into C
(code for exception handling not shown).

In later cycles, the abort statement checks its condition (A) be-
fore resuming its body. Lines  and  do this. In the first cycle con-
trol reached the abort, line  set the lower two bits of s to , so in
the next cycle the switch in line  jumps to line . Line  checks
A. If A is absent, the body has not been preempted and line  runs.
The switch on line  checks the third through fifth bits of s and
branches to just after one of the pause statements within the body
of the abort.

. Translation Details

Although ec uses a ccfg as an intermediate representation, I de-
scribe the translation by showing how Esterel statements translate
into concurrent C statements. The mapping to the ccfg is trivial.

For brevity, I only discuss Esterel constructs with interesting se-
mantics. Ec supports the full language.

Esterel statements that do not affect time have trivial translations:

Esterel C
p ; q p; q;
emit S S = 1;
loop p end for(;;) p;
present S then p else q end if (S) p; else q;

The exit statement throws an exception that can be caught by
a surrounding trap T in ... handle T do. This only happens after
all threads in the same group are done for the cycle. To handle this,
each thread sets an exit level when it stops at the end of a cycle. This
level indicates termination (level ), pausing (level ), or an excep-
tion (levels  and higher). Exceptions take precedence over pauses,
so a group of threads responds only to the highest level.

A pause statement resumes in the next cycle. The code for it sets
its threads state to k, making the switch statement surrounding
the thread send control to the case label next cycle. Raising the exit
level to  indicates this thread has paused. The branch to Join stops
the thread for the cycle.

pause state = k;
if (level < 1) level = 1;
goto Join;

case k:

The await statement is similar to pause, but it also pauses in
later cycles until its signal is present.

await S
goto Entry;

case k:
if (!S) {
Entry:
state = k;
if (level < 1) level = 1;
goto Join;

}

Preemption statements introduce nested switch statements. In
the first cycle, abort just runs its body. It restarts its body in later
cycles only if the aborting signal is absent.

abort

body
when S

goto Entry;
case k:

if (!S)
switch (state) {

Entry: body;
}

Suspend runs its body in the first cycle and pauses in later cy-
cles when the suspending signal is absent, leaving its thread’s state
unchanged.

suspend

body
when S

goto Entry;
case k:

if (S) {
if (level < 1) level = 1;
goto Join;

}
switch (state) {
Entry: body;

}

The signal statement creates a new, absent copy of its signal.

signal S in

body
end

S = 0;
goto Entry;

case k:
S = 0;
switch (state) {
Entry: body;

}

The exit statement raises its process’s exit level to two or more
depending on the exception. Since this terminates the thread and
its process, there is no need to set the thread’s state.

exit T; if (level < 2) level = 2;
goto Join;

Parallel and trap statements are intertwined. An implicit trap
surrounds each group of parallel threads, and the body of a trap is
considered a separate thread. The trap/parallel combination resets
the exit level for the enclosed process, runs the threads within, and
handles the exit level they return. The process terminates if the level
is zero (the switch falls through), pauses at level one, and handles
exceptions at levels two and higher.

The threads have two entry points: one taken in the first cycle,
the other taken in later cycles that uses switch statements to restart
the threads. The fork statement passes control to each of its labels.
The join waits until all the threads branch to it before continuing.
A terminated thread sets its state to zero so control will go to the
case 0: labels when other threads in the process continue to run.

trap T in

bodyA

||

bodyB

handle T do

handler
end

innerLevel = 0;
fork StartA, StartB;

case k:
innerLevel = 0;
fork ResumeA, ResumeB;

ResumeA:
switch (statep) {
StartA: bodyA;
case 0: ;
}
goto InnerJoin;

ResumeB:
switch (stateq) {
StartB: bodyB;
case 0: ;
}
goto InnerJoin;

InnerJoin:
join;
switch (innerLevel) {
case 1: /* paused */

state = k;
if (level < 1) level = 1;
goto OuterJoin;

case 2: /* exited */
handler;
break;

}

. Removing Loops by Unrolling

The algorithm to remove concurrency (Section ) cannot handle
loops in the ccfg, so ec duplicates code to remove them. Esterel
prohibits infinite loops, but loops, traps, and parallel threads can
conspire to create apparent infinite loops. The problem arises when
an instruction can run twice or more in a cycle.

Ec makes a separate copy of each reincarnation using an algo-
rithm developed by Berry [] to remove cycles in the netlists gener-
ated by the v5 compiler. Figure a shows a fragment that can run an
instruction twice in a cycle; Figure b is the unrolled result.

Unrolling may appear costly but is reasonable in practice. Fig-
ure  shows even the largest examples do not double in size.

 Removing Concurrency

Ec compiles away concurrency by inserting code that suspends and
resumes threads. Code generated this way runs faster than v5’s gate
code because it is a better fit to a processor’s natural control behav-
ior. The code from v3 runs faster by avoiding this overhead, but at
the expense of extensive code duplication.

The procedure in this section produces a sequential control-flow
graph (scfg)—a ccfg without fork or join nodes. The procedure
first adds data dependency arcs to the ccfg. Next, it schedules the
nodes in this graph to identify where to suspend one thread and
resume another. Finally, it builds the scfg by copying the nodes in
the ccfg in scheduled order, suspending and resuming threads as
necessary. Suspending a thread adds nodes that save the thread’s
state in a variable. Resuming a thread adds a conditional node that
branches on the saved state of the thread.

loop
trap T in

loop
present A
then

emit B
end;
pause

end
||

pause;
exit T

end
end

if (inLaterCycles) {

if (A) then B = 1;
/* pause (level 1) */

||
/* exit T (level 2) */

}

if (A) then B = 1;
/* pause (level 1) */

||
/* pause (level 1) */

inLaterCycles = 1;

(a) (b)

Figure : (a) A fragment containing code that can run twice in a
cycle. present A runs every cycle. When exit T runs, it terminates
the trap, causing the outer loop to immediately restart the threads.
This causes present A to run again. (b) Pseudocode showing the
effects of unrolling: the present statement has been duplicated.

0%

20%

40%

60%

80%

50 100 200 500 1k 2k 5k 10k
Source Instructions

Figure : How unrolling increases program size. (Dead code re-
moval caused the one decrease.)

. Scheduling

A schedule orders all the instructions in the program so that none
runs before its data is ready. It also identifies context switches—
points where one thread must be suspended and another resumed.

A ccfg usually has many correct schedules, but some require
more context switches than others. Minimizing context switches is
desirable since each adds code, but doing this optimally appears to
be np-complete (it is as hard as the minimum feedback vertex set
problem). Fortunately, a bad schedule generates code only quadrat-
ically larger and slower than a good schedule, and context switching
overhead grows grows slowly in practice (that Figure  looks like a
scaled version of Figure  bears this out).

0%

50%

100%

150%

200%

50 100 200 500 1k 2k 5k 10k
Source Instructions

Figure : How unrolling and inserting context switching code in-
creases program size.

To ensure the schedule obeys Esterel communication semantics,
ec adds data dependence arcs from every node that emits a signal
to every node that tests it. This is conservative since certain pairs of
nodes may never execute in the same cycle.

Any topological order is a valid schedule. The compiler currently
uses a depth-first search, but many better heuristics are possible.

Unfortunately, ec rejects some valid programs because they do
not have static schedules. Esterel permits instruction order to be
data-dependent. The automata compilers handle this by allowing
each state to have a different instruction order. In the netlists gen-
erated by the v5 compiler, data-dependent orders appear as cycles.
The compiler removes these cycles by resynthesizing the cyclic por-
tions of the netlist []. Whether this sometimes costly solution can
also be used in ec is an open problem.

. Building the Graph

This section describes the most important algorithm in the com-
piler. It builds a sequential control-flow graph (scfg) that runs the
ccfg nodes in scheduled order. For blocks of code in the same
thread it simply copies the graph. Switching between threads is
more challenging.

present A then
emit B;
present C then
emit D
end

end
||
present B then
emit C

end

A

B
B

C
C

D

A

B

s=1
s=0

B

C

s

C

D

0
1

if (A) {
B=1;
s=1;

} else
s=0;

if (B)
C=1;

if (s)
if (C)

D=1;
(a) (b) (c) (d)

The Esterel fragment (a) has two threads that communicate
through signals B and C. Communication dependencies () have
been added to the ccfg (b) showing that the left thread must inter-
rupt the right. An scfg that achieves this is shown in (c). The scfg
begins with the first two nodes from the right thread, A and B

followed by two nodes s=0 and s=1 that suspend the right thread by
writing its state to a variable. The left thread’s nodes B and C

follow these, followed by s , a two-way branch that resumes the
right thread. Finally, the last two nodes in the right thread, C and

D , run. (d) shows the corresponding C code.
The algorithm synthesizes an scfg by copying each ccfg node in

scheduled order and attaching its incoming arcs. These arcs begin
at a set of scfg nodes called the potentials of the ccfg node. As it
copies ccfg nodes, the algorithm maintains each node’s potential
set and a tree of running threads to identify context switches.

Three things happen when a ccfg node is copied. First, if the
node’s thread is not running, any running thread from the same
fork is suspended and the node’s thread is resumed. Second, arcs
are added from each potential node. Finally, the new scfg node
becomes a potential of each of its immediate successors in the ccfg.

When a thread is suspended, it records what instruction it will
execute next so it can be resumed. Any ccfg node in the thread
with at least one potential could run next, so the algorithm cre-
ates a new scfg node that writes to the thread’s state variable for
each of these (e.g., s=0 and s=1). Arcs are added from each potential
of the ccfg node to this new scfg node. The potential sets of the
now-suspended ccfg nodes are emptied and the suspended nodes
recorded.

To resume a thread, the algorithm adds an scfg node that tests
the thread’s state variable (e.g., s) and runs the node that was

if (state6_0 & 1) { /* state of first thread */
if (START) {
REQUEST = 1;
tmpPC_2_0 = 31; /* suspend first thread */

} else {
exit6 < 1 ? (exit6 = 1) : 0, state6_0 = 1;
goto L20;

}
} else {
L20:

tmpPC_2_0 = 26; /* suspend first thread */
}
if (tmpPC_2_1 == 38) { /* resume second thread */

if (REQUEST) {
GRANT = 1;

}
exit6 < 1 ? (exit6 = 1) : 0, state6_1 = 1;

}
if (tmpPC_2_0 == 31) {

if (GRANT) { /* resume first thread */
GOT = 1;
state6_0 = 0;

} else {
state6_0 = 0;

}
}

Figure : Part of the code ec generated for Figure .

about to run before the thread was suspended. This new resume
node (a multi-way branch) becomes a potential of each formerly
suspended node. Arcs are added from the potentials of this thread’s
fork (created when the last thread suspended) to this new node.

 Synthesizing C

The compiler generates C code with nested if and switch state-
ments for conditional scfg nodes; other nodes become expression
statements, usually assignments.

Ec ends each conditional block at the immediate postdominator
of the conditional node that started it. This is the earliest node that
all paths from a node must pass through on the way to the sink,
which ec computes using Lengauer and Tarjan’s algorithm [].

A recursive procedure builds an abstract syntax tree from the end
of the graph backwards to make all goto statements branch for-
ward. Since the scfg is generally not in nested form, some goto
statements are inevitable.

Figure  shows a fragment of code generated from Figure . Con-
ditionals nest, gotos remain, and the code is readable.

 Results

I ran experiments to compare the outputs of ec, the automata-
based v3 compiler, the gate-based v5 compiler, and the output of
the v5 compiler after logic optimization (v5a). I compiled the C
code with Sun’s optimizing compiler in -O mode and ran it on
a  MHz UltraSPARC. To measure average cycle times I ran the
programs for a second and counted the cycles. I generated inputs
with a synthesized test bench. Measured times do not include run-
ning the testbench: I timed it separately and subtracted it out.

The example programs, listed in Table , are all real applications
and range from the very small (fifty lines) to realistic industrial ex-
amples (ten thousand lines).

Example Inst. Lines States Threads
Berry’s runner    
Combination lock    
Turbochannel bus    
Wristwatch    
Comm. protocol []  > 
Video generator    
Task sequencer []  > 
Shock absorber []   
Avionics fuel   
Avionics display []  

Table : Examples used in experiments. “Inst.” is the number of
nodes in the ccfg before unrolling (the graphs’ horizontal axes).

v3
ec
v5a
v5

1ms

100µs

10µs

1µs

0.1µs

50 100 200 500 1k 2k 5k 10k
Source Instructions

Figure : Average cycle times for random inputs

1/2
2

10

100

50 100 200 500 1k 2k 5k 10k

v3 v5a v5

Source Instructions

Figure : Relative average cycle times (ec = )

v3
ec
v5a
v5

4K

32K

256K

2M

50 100 200 500 1k 2k 5k 10k
Source Instructions

Figure : Object code sizes

The average cycle times plotted in Figure  show the code gener-
ated by ec is consistently faster than v5 with or without logic opti-
mization, and can be over one hundred times faster. Figure  shows
the same times divided by ec’s time to show relative speeds.

On small examples, the v3 compiler produces code about twice
as fast as ec’s, but it cannot compile the large examples. Ec’s code
is slower because of the overhead from context switching. Figure 
suggests context switching code increases the size of the program
by about %. Since these statements are inserted uniformly, this
should increase runtimes by the same amount. The other % may
come from the internal communication v3 is able to compile away.

Figure  also shows how the average cycle time of code from the
v5 compiler closely tracks the program size. This is an artifact of the
gate-based approach, which runs some code in each cycle for every
instruction in the program. The speed of the code from ec and v3
track each other and reflect the number of source instructions that
actually need to be executed each cycle.

Figure  plots the size of the object code generated for the ex-
ample programs. The output of v3 can be hundreds of times larger
than the others. The code from v5 is between one and two times
larger than that from ec. It may appear the code from v3 is growing
smaller for larger programs, but this is an artifact of certain exam-
ples being deliberately designed to have few states.

The wristwatch (just under  instructions) shows the least per-
formance variance because it calls more external functions than any
other example. Naturally the quality of generated code matters little
when other code is running.

Ec and v5 without logic optimization can produce C code faster
than it can be compiled. Both ec and v5 took about eleven seconds
to compile the largest example, but Sun’s C compiler worked ten
minutes on ec’s output and an hour on v5’s.

Running v5 with logic optimization can be time-consuming. I
ran it on the largest example for over  minutes before giving up.

Compilation times for v3 can range from very short to unaccept-
ably long (hours). Unfortunately, patience in running v3 is not re-
warded since long runs produce impractically large executables.

I did not run the Polis group’s compiler [] because it uses the
output of v3, and so would only have been able to compile the same
small examples as v3. I would expect its code to be about the same
speed as v3’s but smaller.

 Conclusions

This paper has presented a new way to compile the synchronous
language Esterel that preserves much of the program’s original
control structure for a code size and speed advantage. It trans-
lates Esterel’s preemption and exception constructs into conditional
branches and compiles away its concurrency by statically schedul-
ing the instructions and inserting code that saves control state in
variables and restores it with conditional branches. Ultimately, it
produces mostly structured C code that contains some gotos.

Experiments show ec produces code that can be a hundred times
faster and half the size of code from other high-capacity compilers.

Ec is currently used to generate simulation code in CoCentric tm

System Studio (described under an earlier name by Buck and Vaid-
yanathan []), an environment that allows designers to specify sys-
tems using a mixture of dataflow graphs and hierarchical finite-state
machines. To compile a simulation, System Studio translates con-
trol behavior into Esterel programs, ec compiles them into C, and
the result is linked with dataflow code generated by System Studio.

Other applications are possible, in addition to compiling Esterel,
ec could easily be adapted to compile other synchronous, concur-
rent languages, such an Lavagno and Sentovich’s ecl [].

References

[] G. Berry. Esterel on hardware. Philosophical Transactions of
the Royal Society of London. Series A, :–, .

[] G. Berry. The constructive semantics of pure Esterel. Book in
preparation, .

[] G. Berry, A. Bouali, X. Fornari, E. Ledinot, E. Nassor, and
R. De Simone. Esterel: A formal method applied to avionic
software development. Science of Computer Programming,
():–, Jan. .

[] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation.
Science of Computer Programming, ():–, Nov. .

[] V. Bertin, M. Poize, and J. Pulou. Une nouvelle méthode de
compilation pour le language ESTEREL [A new method for
compiling the Esterel language]. In Proceedings of
GRAISyHM-AAA, Lille, France, Mar. . In French.

[] J. Buck and R. Vaidyanathan. Heterogeneous modeling and
simulation of embedded systems in El Greco. In Proceedings
of the Eighth International Workshop on Hardware/Software
Codesign (CODES), San Diego, California, May .

[] M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, K. Suzuki, and A. Sangiovanni-Vincentelli. A
case study in computer-aided co-design of embedded
controllers. Design Automation for Embedded Systems,
():–, Jan. .

[] M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, H. Hsieh,
K. Suzuki, A. Sangiovanni-Vincentelli, and E. Sentovich.
Synthesis of software programs for embedded control
applications. In Proceedings of the nd Design Automation
Conference, pages –, San Francisco, California, June
.

[] F. Clouté, J.-N. Contensou, D. Esteve, P. Pampagnin, P. Pons,
and Y. Favard. Hardware/software co-design of an avionics
communication protocol interface system: an industrial case
study. In Proceedings of the Seventh International Workshop on
Hardware/Software Codesign (CODES), pages –, Rome,
Italy, May .

[] L. Lavagno and E. Sentovich. ECL: A specification
environment for system-level design. In Proceedings of the
th Design Automation Conference, pages –, New
Orleans, Louisiana, June .

[] T. Lengauer and R. E. Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on
Programming Languages and Systems, ():–, July .

[] B. Lin. Software synthesis of process-based concurrent
programs. In Proceedings of the th Design Automation
Conference, pages –, San Francisco, California, June
.

[] M. Sgroi, L. Lavagno, Y. Watanabe, and
A. Sangiovanni-Vincentelli. Synthesis of embedded software
using free-choice Petri nets. In Proceedings of the th Design
Automation Conference, pages –, New Orleans,
Louisiana, June .

[] T. R. Shiple, G. Berry, and H. Touati. Constructive analysis of
cyclic circuits. In Proceedings of the European Design and Test
Conference, pages –, Paris, France, Mar. .

Berry et al.’s Esterel site: http://www.inria.fr/meije/esterel/

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

