366 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

Design of Embedded Systems: Formal Models,
Validation, and Synthesis

Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Alberto Sangiovanni-Vincentelli

Abstract—This paper addresses the design of reactive real-time embed-
ded systems. Such systems are often heterogeneous in implementation tech-

nologies and design styles, for example by combining hardware ASICs with

controller
process

real-time

embedded software. The concurrent design process for such embedded sys- .
tems involves solving the specification, validation, and synthesis problems. ASIC microcontroller e
We review the variety of approaches to these problems that have been taken. T T System bus

DAY=
assembl
code

assembl
code

programmable programmablg
DSP DSP

Reactive real-time embedded systems are pervasive in the T T T
electronics system industry. Applications include vehicle con- t'ual-ported memfry
trol, consumer electronics, communication systems, remotf
sensing, and household appliances. In such applications, spefi2d¥a"
fications may change continuously, and time-to-market strongly
affects success. This calls for the use of software programmable Fig. 1. A typical reactive real-time embedded system architecture.
components with behavior that can be fairly easily changed.

Such systems, which use a computer to perform a specific func-

tion, but are neither used nor perceived as a computer, are geneYVe believe that the design approach should be based on the
ically known as embedded systems. More specifically, we atée of one or more formal models to describe the behavior of

interested in reactive embedded systems. Reactive systemghgesystem at a high level of abstraction, before a decision on

those that react continuously to their environment at the spdtsddecomposition into hardware and software components is

of the environment. They can be contrasted with interactive syaken. The final implementation of the system should be made

tems, which react with the environment at their own speed, a@8 much as possible using automatic synthesis from this high
transformational systems, which take a body of input data algyel of abstraction to ensure implementations that are “correct

transform it into a body of output data [1]. by construction.” Validation (through simulation or verification)

A large percentage of the world-wide market for microshouk_j be done as much as possible at the higher levels of ab-
processors is filled by micro-controllers that are the pr&traction.
grammable core of embedded systems. In addition to micro-A typical hardware architecture for an embedded system is
controllers, embedded systems may consist of ASICs andilststrated in Figure 1. This type of architecture combines cus-
field programmable gate arrays as well as other programmalsién hardware with embedded software, lending a certain mea-
computing units such as Digital Signal Processors (DSPs)ire of complexity and heterogeneity to the design. Even within
Since embedded systems interact continuously with an erifie software or hardware portions themselves, however, there
ronment that is analog in nature, there must typically be cong-often heterogeneity. In software, control-oriented processes
ponents that perform A/D and D/A conversions. A significarifight be mixed under the supervision of a multitasking real-
part of the design problem consists of deciding the software diiie kernel running on a microcontroller. In addition, hard-real-
hardware architecture for the system, as well as deciding whighe tasks may run cooperatively on one or more programmable
parts should be implemented in software running on the pfl@SPs. The design styles used for these two software subsystems
grammable components and which should be implementedaii¢ likely to be quite different from one another, and testing the
more specialized hardware. interaction between them is unlikely to be trivial.

Embedded systems often are used in life critical situations,The hardware side of the design will frequently contain one or
where reliability and safety are more important criteria than penore ASICs, perhaps designed using logic or behavioral synthe-
formance. Today, embedded systems are designed with arsigdools. On the other hand, a significant part of the hardware
hoc approach that is heavily based on earlier experience wi@sign most likely consists of interconnections of commodity
similar products and on manual design. Use of higher level lagemponents, such as processors and memories. Again, this time
guages such as C helps somewhat, but with increasing compRixthe hardware side, we find heterogeneity. The design styles
ity, it is not sufficient. Formal verification and automatic synthessed to specify and simulate the ASICs and the interconnected
sis of implementations are the surest ways to guarantee safegynmodity components are likely to be quite different. A typi-
However, both formal verification and synthesis from high lesal system, therefore, not only mixes hardware design with soft-
els of abstraction have been demonstrated only for small, sp&re design, but also mixes design styles within each of these
cialized languages with restricted semantics. This is at odeRiegories.
with the complexity and heterogeneity found in typical embed- Most often the set of tasks that the system implements are not
ded systems. specified in a rigorous and unambiguous fashion, so the design

I. INTRODUCTION

ICODE(

softwar

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 367

process requires several iterations to obtain convergence. Mo2e-A set of propertieghat the design must satisfy, given as a
over, during the design process, the level of abstraction, detail,set of relations over inputs, outputs, and states, that can be
and specificity in different parts of the design varies. To com- checked against the functional specification.
plicate matters further, the skill sets and design styles used By A set of performance indicabat evaluate the quality of the
different engineers on the project are likely to be different. The design in terms of cost, reliability, speed, size, etc., given as
net result is that during the design process, many different speca set of equations involving, among other things, inputs and
ification and modeling techniques will be used. outputs.

Managing the design complexity and heterogeneity is the kedy A set of constraint®n performance indices, specified as a
problem. We believe that the use of formal models and high- set of inequalities.
level synthesis for ensuring safe and correct designs depends oFhe functional specification fully characterizes the operation
understanding the interaction between diverse formal modei§a system, while the performance constraints bound the cost
Only then can the simplicity of modeling required by verificafin a broad sense). The set of properties is redundant, in that in
tion and synthesis be reconciled with the complexity and hetesproperly constructed design, the functional specification sat-
geneity of real-world design. isfies these properties. However, the properties are listed sepa-

The concurrent design process for mixed hardware/softwdedely because they are simpler and more abstract (and also in-
embedded systems involves solving the following sulgomplete) compared to the functional specification. A property
problems: specification, validation, and synthesis. Althoud®han assertion aboutthe behavior, rather than a description of the
these problems cannot be entirely separated, we deal with tHeghavior. It is an abstraction of the behavior along a particular

below in three successive sections. axis. For example, when designing a network protocol, we may
require that the design never deadlock (this is also callega
Il. SPECIFICATION AND MODELING nessproperty). Note that liveness does not completely specify

The desi is oft . d ¢ tthe behavior of the protocol; it is instead a property we require
€ design process IS often viewed as a sequence o SSBrc’protocol to have. For the same protocol, we may require

that transforms a set of specifications described informally int . any request will eventually be satisfied (this is also called
detailed specification that can be used for manufacturing. All t mes3. Again this does not completely specify the behavior
intermediate steps are characterized by a transformation frorgﬁhe pr.otocol but it is a required property.

more ab;tract description to a more detailed one. Given a formal model of the functional specifications and of
A designer can perform one or more steps in this process. Bk noperties, we can classify properties in three groups:

the deggner, the Input d\.esc_rlptlon |ssaeg|f|cat|omthe final Properties that aieherentin the model of computation (i.e.,

description of the design is amplementation For example, they can be shown formally to hold for all specifications de-

a software deS|gner may see a set of routines written in C aSSCI'ibEd using that model).

an implementation of her/his design even though several other Properties that can be verifisghtacticallyfor a given speci-

steps may be taken before the design is ready for manufacturingg i, (i.e., they can be shown to hold with a simple, usually
During this process, verification of the quality of the design with polynomial-,time analysis of the specification) '
respect to the demands placed on its performance and functi r."Properties that, must be verifiemanticallyfor a given
ality has to be carried out. Unfortunately, the descriptions of the specification (i.e., they can be shown to hold by executing

design at its various stage§ are oft_en mformal and not logically at least implicitly, the specification for all inputs that can oc-
connected by a set of precise relationships. cur

; .)-
We advocate a design process that is based on representg, example, consider the propertydsterminate behavior

tions with precise mathematlcql meaning so that both thg VEE., the fact that the output of a system depends only on its inputs
ification and the map from the initial description to the varioug, ot on some internal, hidden choice. Any design described
intermediate steps can be carried out with tools of guarant§ga. qataflow network (a formal model to be described later) is

performance. Such an approach is standard in certain comm .t'erminate, and hence this property need not be checked. If
ties, where languages with strong formal properties are useq@ qesign is represented by a network of FSMs, determinacy
ensure robust de§|gn. Examples include ML [2], dataflow lapz, he gssessed by inspection of the state transition function.
guages (e.g. Lucid [3], Haskell [4]) and synchronous languagessome discrete event models (for example those embodied in

(e.g. Lu;tre, Signal, Esterel [5]).) o .~ Verilog and VHDL) determinacy is difficult to prove: it must be
There is a broad range of potential formalizations of a desigithgcked by exhaustive simulation.

but most tools and designers describe the behavior of a desighy,e design process takes a model of the design at a level of
as a.relation bet.ween a set of inputs and'a set of outputs. T£B§traction andefinesit to a lower one. In doing so, the de-
relation may be informal, even expressed in natural languagegiliner must ensure that the properties at that level of abstraction
is easy to find examples where informal specifications resultgl, erified, that the constraints are satisfied, and that the perfor-
in unnecessary redesigns. In our opinioripanal model of & ance indices are satisfactory. The refinement process involves
designshould consist of the following components: also mapping constraints, performance indices and properties to
1. A functional specificationgiven as a set of explicit or im- the lower level so that they can be computed for the next level
plicit relations which involve inputs, outputs and possibly indown2 Figure 2 shows a key refinement stage in embedded sys-
ternal (state) informatiof. tem design. The more abstract specification in this case is an

1we will define later on what we mean exactly by inputs, outputs and state?The refinement process can be defined formally once the models of the de-
information. For now, consider them as sequences of values. sign are formally specified, see McMillan [6].

368 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

give precise definitions for a number of terms, but these defini-
Tcrete tions will inevitably conflict with standard usage in some com-
event munities. We have discovered that, short of abandoning the use
of most common terms, no terminology can be consistent with
standard usage in all related communities. Thus we attempt
to avoid confusion by being precise, even at the risk of being

Specification{ |imperative FSMs dataflow

Refinemen pedantic.
. logic
| . .
@p'_er] |:mhes' A.1 The Tagged-Signal Model
roces;g \rocesso - - Two of the authors (Lee and Sangiovanni-Vincentelli) have
Model pmode, pmode, m(?de, m(?de, proposed the tagged-signal model [8], a formalism for describ-

ing aspects of models of computation for embedded system
specification. It is denotational in the Scott and Strachey [7]
Fig. 2. An example of a design refinement stage, which uses hardware and SSR1S€, and it defines a semantic framework (of signals and pro-
ware synthesis to translate a functional specification into a model of hagkesses) within which models of computation can be studied and
ware. compared. Itis very abstract—describing a particular model of
computation involves imposing further constraints that make it

executable functional model that is closer to the problem lev8i°'® concrete. L . .
P 'ghe fundamental entity in the Tagged-Signal Model is an

The specification undergoes a synthesis process (which may b ¢ lueft i T ft d to denote t |
partly manual) that generates a model of an implementationeﬂﬁen —avajue/tag parr. 1ags are often used to denote tempora

hardware. That model itself may still be fairly abstract, Ca%ehavior. A set of gvents (af‘ abstract aggregation) is a signal.
turing for example only timing properties. In this example th rocesses are relations on signals, expressed as setsjpies

: <. of signals. A particular model of computation is distinguished
model is presumably used for hardware/software part|t|on|ngb thge order it?mposes on tags and thg character of prc?cesses in
While figure 2 suggests a purely top-down process, any re |

design needs more interaction between specification and imp & model.

mentation. Nonetheless, when a design is complete, the bes?"verl a set ovaluesV” and a set otags T, aneventis a

way to present and document it is top down. This is enough%ember off’ x V, i.e., an event has a tag and a valuesignal

. . sis a set of events. A signal can be viewed as a subsgtoV’ .
require that the methodology support top-down design. A functional signalis a (possibly partial) function frofi" to

V. The set of all signals is denoteétd A tuple of n signals is
denoteds, and the set of all such tuples is denofsd
A languageis a set of symbols, rules for combining them (its The different models of time that have been used to model
syntay, and rules for interpreting combinations of symbols (itémbedded systems can be translated into different order rela-
semantick Two approaches to semantics have evoldemota- tions on the set of tagg in the tagged signal model. In particu-
tional andoperational A language can have both (ideally theyar, in atimed systenT” is totally ordered, i.e., there is a binary
are consistent with one another, although in practice this canrgation< on members of such that ift, t, € T andt; # to,
difficult to achieve). Operational semantics, which dates bagken eithert; < ¢, ort, < t;. In anuntimed systent is only
to Turing machines, gives meaning of a language in terms gdrtially ordered.
actions taken by some abstract machine, and is typically closep processP with n signals is a subset of the set of altuples
to the implementation. Denotational semantics, first develop@ﬂsignmsgn for somen. A particulars € S™ is said tosatisfy
by Scott and Strachey [7], gives the meaning of the languagetfiz process it € P. An s that satisfies a process is called
terms of relations. a behaviorof the process. Thus processis a set of possible
How the abstract machine in an operational semantics daghaviorsor a relation between signals.
behave is a feature of what we call theodel of computation For many (but not all) applications, it is natural to partition
underlying the language. The kinds of relations that are posgie signals associated with a process infutsandoutputs In-
ble in a denotational semantics is also a feature of the modeta@itively, the process does not determine the values of the inputs,
computation. Other features include communication style, heawd does determine the values of the outputs.#f i + o, then
individual behavior is aggregated to make more complex corfy?, 5°) is a partition ofS™. A process withi inputs and out-
positions, and how hierarchy abstracts such compositions. puts is a subset o$* x S°. In other words, a process defines
A design (at all levels of the abstraction hierarchy from fun@ relation between input signals and output signals(iA- o)-
tional specification to final implementation) is generally repreuples € S+ is said tosatisfy P if s € P. It can be written
sented as a set of components, which can be considered asgse- (s;,s,), wheres; € S is ani-tuple ofinput signalsfor
lated monolithic blocks, interacting with each other and with girocessP ands, € S° is ano-tuple of output signalgor pro-
environment that is not part of the design. The model of compeessP. If the input signals are given by, € S¢, then the set
tation defines the behavior and interaction of these blocks. T = {(s1,s2) | s2 € S°} describes the inputs, addn P is the
In the sections that follow, we present a framework for conset of behaviors consistent with the ingut
paring elements of different models of computation, called theA processF’ is functionalwith respect to a partition if it is a
tagged-signal model, and use it to contrast different styles sihgle-valued, possibly partial, mapping frafito S°. That s,
sequential behavior, concurrency, and communication. We wifll(s1,s2) € F and(s1,s3) € F, thenss = s3. In this case,

decreasing abstraction

A. Elements of a Model of Computation

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 369

we can writesy = F(s;), whereF : S — S°is a (possibly eacht are calledcombinational while components with more

partial) function. Given the input signals, the output signals atiean one state for someare calledsequential Note however

determined (or there is unambiguously no behavior). that the term “sequential” is used in very different ways in other
Consider, as a motivating example introducing these sevetammunities.

mechanisms to denote temporal behavior, the problem of mod-

eling a time-invariant dynamical system on a computer. The3 Decidability

underlying mathematical model, a set of differential equationsCom onents with finite number of states differ sianificant
over continuous time, is not directly implementable on a digital P Wi tenu ! 'gnill y

computer, due to the double quantization of real numbers i fgm those with amnflnltenumberqf states. For certain |nf|n|'Fe-
tate models (those that are Turing-complete), many desirable

finite bit strings, and of time into clock cycles. Hence a first
translation is required, by means ofiategration rule from the properties are undecidable—they cannot be determined in a fi-

differential equations to a set difference equationghat are nite amount of time for all systems. These properties include

used to compute the values of each signal with a given tag fr(g\/hether a system will need more memory than is available,

the values of some other signals with previous and/or Currﬁv_%E]ether a system will h?'t' and how _fast a system will run.
tags. opcroft and Ullman [9] discuss these issues at length.

If it is possible to identify several strongly connected compo- Yndecidability is not an insurmountable barrier, and decid-
nents in the dependency grapthen the system isecoupledt ability is not sufflc!ent to answer all questlon§ in practice (e.g.,
becomes then possible to go from the total order of tags implipf?cauSe the required run-time may be prohlbltlve). Many suc-
in physical time to gartial orderimposed by the depth-first or- cessful s_ysterr?s h?"e #eﬁn des_|gned busmg undecidable lan-
dering of the components. This partial ordering gives us soifidages (i.e., those in whic ques_tlons about some programs are
freedom in implementing the integration rule on a computer. decidable). Although no algorithm can solve an undecidable

could, for example, play with scheduling by embedding the p roblem forall systems, algorithms exist that can solve them
tial order into the total order among clock cycles. It is ofte r mostsystems. Buck's Boolean Dataflow scheduler [10], for

convenient, for example, to evaluate a component complet ,amfple, can answer the hfif!t'gg. andT b(_)unded n:em(()jry pﬂrob—
for all tags, before evaluating components that depend on it. s for many systems specified in a Turing-complete dataflow

it is possible to spread the computation among multiple procé@gdel' although it does, necessarily, fail to reach a conclusion
sors. for some systems.

In the end, time comes back into the picture, but doe- The non-terminating nature of embedded systems opens the
ble mappingfrom total to partial order, and back to total ordepPossibility of using infinite time to solve certain undecidable
again, is essential to problems. Parks’ [11] scheduler, for example, will execute a
1. prove propertiesbout the implementation (e.g., stability ofCtentially infinite-state system forever in bounded mentiaty

the integration method, a bound on the maximum executilsaPossible to do soHowever, it does not answer the question

time, ...) of how much memory is needed or whether the program will
2. optimizethe implementation with respect to a given cogventually halt.)

function (e.g., size of the buffers required to hold intermedi- The classical von Neumann model of computatitna fa-

ate signals versus execution time, satisfaction of a constrdititiar model of sequential behavior. A memory stores the state

on the maximum execution time,), and a processor advances the state through a sequence of mem-
ory operations. Most commonly-used programming languages
A.2 State (e.g., C, C++, Lisp, PascatORTRAN) use this model of com-

Most models of computation include components with stat@,‘tation' Often, the memory is viewed as having an unbounded

where behavior is given as a sequence of state transitions.Wﬁnber_Of f|n|te_-valued words, Wh'Ch’ vyhen coupled with an
order to formalize this notion, let us consider a prodéshat is appropriate choice of processor instructions, makes the model

functional with respect to partitiofS?, $°). Let us assume for 14ring complet®. Modern computer systems make this model

the moment that’ belongs to a timed system, in which tags ar@_ractical by simulating unbounded memory with an elaborate
totally ordered. Then for any tuple of signalswe can define hierarchy (registers, cacheAm, hard disk). Few embedded
s> to be a tuple of the (possibly empty) subset of the eventsHSEMs: however, can currently afford such a scheme.
s with tags greater than
Two input signal tuples, s € S* are in relationt}”
(r',s') € Ef)if rs; = ss; implies F(r)s: = F(s)>:. This While sequential or combinational behavior is related to in-
definition intuitively means that procegs cannot distinguish dividual processes, embedded systems will typically contain
between the “histories” of ands prior to timet. Thus, if the several coordinated concurrent processes. At the very least,
inputs are identical after timg then the outputs will also be such systems interact with an environment that evolves indepen-
identical. dently, at its own speed. But it is also common to partition the
Ef is an equivalence relation, partitioning the set of inpwverall model into tasks that also evolve more or less indepen-

signal tuples into equivalence classes for eaclrollowing a dently, occasionally (or frequently) interacting with one another.
long tradition, we call these equivalence classesthtesof F.
In the hardware community, components with only one state fotlt is formalized in the abstract model called random access machine or ran-
dom access stored program [12].
3A directed graph with a node for each signal, and an edge between two sig-Turing-completeness can be obtained also with a finite number of infinite-
nals whenever the equation for the latter depends on the former. valued words.

(denoted A.4 Concurrency and Communication

370 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

Communication between processes caag@icitorimplicit. time, according to the laws of physics. The time at which an
In explicit communication, asenderprocess informs one or event in one subsystem occurs has a natural ordering relation-
morereceiverprocesses about some part of its state. In implighip with the time at which an event occurs in another subsys-
communication, two or more processes share a common notiem. Physically interleaved systems also share a natural com-
of state. mon notion of time.

Time plays a larger role in embedded systems than in classicalogical systems, on the other hand, need a mechanism to ex-
computation. In classical transformational systems, the corretititly share a notion of time. Consider two imperative pro-
result is the primary concern—when it arrives is less importagtams interleaved on a single processor under the control of
(althoughwhetherit arrives, the termination questiois,impor- time-sharing operating system. Interleaving creates a natural or-
tant). By contrast, embedded systems are usually real-time sysring between events in the two processes, but this ordering is
tems, where the time at which a computation takes place cangemerally unreliable, because it heavily depends on scheduling
more important than the computation itself. policy, system load and so on. Some synchronization mecha-

As we discussed above, different models of time become difism is required if those two programs need to cooperate.
ferent order relations on the set of tédfjSn the tagged signal More generally, in logically concurrent systems, maintaining
model. Recall that in imed systenf” is totally ordered, while a coherenglobalnotion of time as a total order on events, can be
in anuntimed syster is only partially ordered. Implicit com- extremely expensive. Hence in practice this is replaced when-
munication generally requires totally ordered tags, usually idegwver possible with aexplicit synchronizatiorin which this total
tified with physical time. order is replaced by a partial order. Returning to the example of

The tags in ametric-time systerhave the notion of a “dis- two processes running under a time-sharing operating system,
tance” between them, much like physical time. Formally, theree take precautions to ensure an ordering of two events only if
exists a partial functionl : T x T' — R mapping pairs of the ordering of these two events matters.
tags to real numbers such théft,,t2) = 0 & ¢t = to, A variety of mechanisms for managing the order of events,
d(ti,t2) = d(te,t1) andd(t1, ta) + d(ta,ts) >= d(t1,t3). and hence for communicating information between processes,

A discrete-event systeis a timed system where the tagdas arisen. Some of the most common ones are:
in each signal are order-isomorphic with the integers (for @ unsynchronized

two-sidedsystem) or the natural numbers (foome-sidedsys- |n an unsynchronized communication, a producer of infor-
tem) [8]. Intuitively, this means that any pair of ordered tags has mation and a consumer of the information are not coordi-
a finite number of intervening tags. nated. There is no guarantee that the consumer reads valid in-

Two events arsynchronousf they have the same tag. Two formation produced by the producer, and there is no guaran-
signals are synchronous if each event in one signal is syn-tee that the producer will not overwrite previously produced
chronous with an eventin the other signal and vice verssysA data before the consumer reads the data. In the tagged-signal
temis synchronoud every signal in the system is synchronous model, the repository for the data is modeled as a process,
with every other signal in the system. discrete-time systeis and the reading and writing events have no enforced ordering
a synchronous discrete-event system. relationship between their tags.

Synchronous/reactive languages (see e.g. [5]) are syRead-modify-write
chronous in exactly this sense. The set of tags in a behavior ofCommonly used for accessing shared data structures, this
the system denotes a global “clock” for the system. Every signal strategy locks a data structure between a read and write from
conceptually has an event at every tag, although in some models process, preventing any other accesses. In other words, the
this event could have a value denoting the absence of an evenctions of reading, modifying, and writing are atomic (indi-
(calledbottor). At each clock tick, each process maps inputval- visible). In the tagged-signal model, the repository for the
ues to output values. If cyclic communication is allowed, then data is modeled as a process where events associated with
some mechanism must be provided to resolve or prevent circulathis process are totally ordered (resulting in a globally par-
dependencies. One possibility is to constrain the output valuestially ordered model). The read-modify-write is modeled as
to have tags corresponding to the next tick. Another possibil- a single event.
ity (all too common) is to leave the result unspecified, resulting Unbounded FIFO buffered
in nondeterminacy (or worse, infinite computation within one This is a point-to-point communication strategy, where a pro-
tick). A third possibility is to use fixed-point semantics, where ducer generates a sequence of data tokens and consumer con-
the behavior of the system is defined as a set of events that satsumes these tokens, but only after they have been generated.
isfy all processes. In the tagged-signal model, this is a simple connection where

Concurrency in physical implementations of systems occursthe signal on the connection is constrained to have totally or-
through some combination gsarallelism having physically deredtags. The tags model the ordering imposed by the FIFO
distinct computational resources, amderleaving sharing of model. If the consumer implements blocking reads, then it
a common physical resource. Mechanisms for achieving inter-imposes a total order on events at all its input signals. This
leaving vary widely, ranging from operating systems that man- model captures essential properties of both Kahn process net-
age context switches to fully-static interleaving in which con- works and dataflow [13].
current processes are converted (compiled) into a single hanBounded FIFO buffered
concurrent process. We focus here on the mechanisms used tt this case, the data repository is modeled as a process that
manage communication between concurrent processes. imposes ordering constraints on its inputs (which come from

Parallel physical systems naturally share a common notion ofthe producer) and the outputs (which go to the consumer).

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 371

Each of the input and output signals are internally totally or-

dered. The simplest case is where the size of the buffer is
one, in which case the input and output events must be in- ¢ 1 + 1

terleaved so that each output event lies between two inputl A [—@»= B Cc A Bi—@C
events. Larger buffers impose a maximum difference (often
calledsynchronic distangebetween the number of input and (@) (b)
output events.
Note that some implementations of this communication t
mechanism may not really block the writing process when ,—‘j |]
the buffer is full, thus requiring some higher level of flow A B t +l C i+
control to ensure that this never happens, or that it does no A Bi—@~C
cause any harm.

« Rendezvous (c) (d)

In the simplest form of rendezvous, implemented for exam-
ple in Occam and Lotos, a single writing process and a Singilﬁ. 3. Simultaneous events in a discrete-event system. (a) Process A produces
reading process must simultaneously be at the point in their events with the same time stamp. Should B or C be fired next? (b) Zero-
control flow where the write and the read occur. Itis a conve- delay process B has fired. How many times should C be fired? (c) Delta-
nient communication mechanism, because it has the semangﬁ'fg’; ﬁrv‘;ﬁf’fslrsei;;rs] ‘;'gecdc;n(;u";']lcé’gso‘fjppifs output next. (d) C has fired
tics of a single assignment, in which the writer provides the
right-hand side, and the reader provides the left-hand side.
In the tagged-signal model, this is imposed by events wifinguage also has an underlying discrete-event model of com-
identical tags [8]. Lotos offers, in addition, multiple renputation.
dezvous, in which one among multiple possible communica-piscrete-event modeling can be expensive—sorting time
tions isnon-deterministicallyselected. Multiple rendeZVOUSStamps can be time-consuming_ Moreover, ironica”y, a|though
is more flexible than single rendezvous, because it allows tigcrete-event is ideally suited to modeling distributed systems,
designer to specify more easily several “expected” commiis very challenging to build a distributed discrete-event simu-
nication ports at any given time, but it is very difficult andator. The global ordering of events requires tight coordination
expensive to implement correctly. between parts of the simulation, rendering distributed execution
Of course, various combinations of the above models are pdifficult.
sible. For example, in a partially unsynchronized model, a con-Discrete-event simulation is most efficient for large systems
sumer of data may be required to wait until the first time a previth large, frequently idle or autonomously operating sections.
ducer produces data, after which the communication is unsywader discrete-event simulation, only the changes in the system
chronized. need to be processed, rather than the whole system. As the activ-
The essential features of the concurrency and communicatiynof a system increases, the discrete-event paradigm becomes
styles described above are presented in Table I. These are distiss efficient because of the overhead inherentin processing time
guished by the number of transmitters and receivers (e.g., brosi@mps.
cast versus point-to-point communication), the size of the com-Simultaneous events, especially those arising from zero-delay
munication buffer, whether the transmitting or receiving prdeedback loops, present a challenge for discrete-event models of
cess may continue after an unsuccessful communication attegrhputation. In such a situation, events may need to be ordered,
(blocking reads and writes), and whether the result of each writet are not.

can be read at most once (single reads). Consider the discrete-event system shown in Figure 3. Pro-
cess B has zero delay, meaning that its output has the same time
B. Common Models of Computation stamp as its input. If process A produces events with the same

We are now ready to use the scheme developedin the previgﬂ]e stamp on each output, there is ambiguity about whether B
. . or %: should be invoked first, as shown in Figure 3(a).
Section to classify and analyze several models of computatlor% B is invoked first h in Fi 3(b). N
that have been used to describe embedded systems. We wi UPPOse B 1S INvoked TIrst, as shown in Figure (0. ow,
Phendmg on the simulator, C might be invoked once, observing
th input events in one invocation, or it might be invoked twice,

consider issues such as ease of modeling, efficiency of anal
(simulation or formal verification), automated synthesizabilit 0)) .
optimization space versus over-specification, and so on. rocessing the events one atatime. In the latter case, ther.e is no
clear way to determine which event should be processed first.
The addition of delta delay makes such nondeterminacy eas-
ier to prevent, but does not avoid it completely. It introduces
Time is an integral part of a discrete-event model of computatwo-level model of time in which each instant of time is bro-
tion. Events usually carry a totally-ordered time stamp indicaten into (a potentially infinite number of) totally-ordered delta
ing the time at which the event occurs. A DE simulator usuallyteps. The simulated time reported to the user, however, does
maintains a global event queue that sorts events by time stampt include delta information. A “zero-delay” process in this
Digital hardware is often simulated using a discrete-event apodel actually has delta delay. For example, Process B would
proach. The Verilog language, for example, was designedtas/e delta delay, so firing A followed by B would result in the
an input language for a discrete-event simulator. The VHDdituation in Figure 3(c). The next firing of C will see the event

B.1 Discrete-Event

372 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

TABLE |
A COMPARISON OF CONCURRENCY AND COMMUNICATION SCHEMES

Transmitters| Receivers| Buffer Size | Blocking Reads| Blocking Writes | Single Reads
Unsynchronized many many one no no no
Read-Modify-Write many many one yes yes no
Unbounded FIFO one one unbounded yes no yes
Bounded FIFO one one bounded yes maybe yes
Single Rendezvous one one one yes yes yes
Multiple Rendezvoug one one one no no yes

from A only; the firing after that will see the (delay-delayed) Harel advocated the use of three major mechanisms that re-
event from B. duce the size (and hence the visual complexity) of finite au-
Other simulators, including the DE simulator in Ptolemy [14}omata for modeling practical systems [15]. The first one is hier-
attempt to statically analyze data precedences within a singlehy, in which a state can represent an enclosed state machine.
time instant. Such precedence analysis is similar to that dondimat is, being in a particular statehas the interpretation that
synchronous languages (Esterel, Lustre, and Signal) to engbeestate machine encloseddis active. Equivalently, being in
that simultaneous events are processed deterministically. It d&tea means that the machine is in one of the states enclosed by
termines a partial ordering of events with the same time stampUnder the latter interpretation, the statesuaire called “or
by examining data precedences. states.” Or states can exponentially reduce the complexity (the
Adding a feedback loop from Process C to A in Figure Bumber of states) required to represent a system. They com-
would create a problem if events circulate through the loop withactly describe the notion gireemption(a high-priority event
out any increment in time stamp. The same problem occurssispending or “killing” a lower priority task), that is fundamen-
synchronous languages, where such loops are called causé#gityn embedded control applications.
loops. No precedence analysis can resolve the ambiguity. InThe second mechanism is concurrency. Two or more state
synchronous languages, the compiler may simply fail to compiteachines are viewed as being simultaneously active. Since the
such a program. Some discrete-event simulators will execute fystem is in one state of each parallel state machine simultane-
program nondeterministically, while others support tighter conusly, these are sometimes called “and states.” They also pro-

trol over the sequencing through graph annotations. vide a potential exponential reduction in the size of the system
representation.
B.2 Communicating Finite State Machines The third mechanism is non-determinism. While often non-

Finite State Machines (FSMs) are an attractive model for e@€t€rminism is simply the result of an imprecise (maybe erro-
bedded systems. The amount of memory required by suchepus) specification, it can be an extremely powerful mecha-

model is always decidable, and is often an explicit part of ifdSm fo reduce the complexity of a system modelaytrac-
specification. Halting and performance questions are alw. . This abstraction can either be due to the fact that the exact

decidable since each state can, in theory, be examined in ﬁrﬁchtionaIity must still be defined, or that it is irrelevant to the
time. In practice, however, this may be prohibitively expensiv@.mperties currently considered of interest. E.g., during verifi-
A traditional ESM consists of- cation of a given system component, other components can be

) . mpdeled as non-deterministic entities to compactly constrain the
« a set of input symbols (the Cartesian product of the sets g : :
: ; overall behavior. A system component can also be described
values of the input signals),

X . non-deterministically to permit some optimization during the
» a set of output S|gnal_s (the Cartesian product of the sets; 01tglementation phase. Non-determinism can also provide an
values of the output signals),

- . AT I exponential reduction in complexity.
« afinite set of states with a distinguished initial state, P plexity

« an output function mapping inputs and states to outputs, a%Theiertf;r(taie rnec?fjm?trﬁs har:/(allb(%[en fh\?i\gn n [ltG]nE[(i) (I:f[)r(i)pler-
« a next-state function mapping inputs and states to (ne synergistically and orthogonally, fo provide a potential triple
states. exponential reduction in the size of the representation with re-

. o . S
The input to such a machine is a sequence of input symbols, aﬁﬁ‘ ,
arel's Statecharts model uses a synchronous concurrency

the output is a sequence of output symbols. o
- . . model (also called synchronous composition). The set of tags
Traditional FSMs are good for modeling sequential behay- u ;
. X . : is a totally ordered countable set that denotes a global “clock
ior, but are impractical for modeling concurrency or memor, : X
. . r the system. The events on signals are either produced by
because of the so-called state explosion problem. A single

. A . "W te transitions or inputs. Events at a tick of the clock can trig-
chine mimicking the concurrent execution of a group of ma-

. er state transitions in other parallel state machines at the same
chines has a number of states equal tqatteeluctof the number 9 P
of states of each machine. A memory has as mq_ny states as t‘hl%e exact claim in [16] was that “and” type non-determinism (in which all
number of values that can be stored at each loca#iized to the non-deterministic choices must be successful), rather than hierarchical states,

powerof the number of locations. The number of states aloM@s the third source of exponential reduction together with “or” type non-
: t alwavs a good indication of complexitv. but it often hasdetermlnlsm and concurrency. Hierarchical states, on the other hand, were
ISnota y g p Ys hown in that paper to be able to simulate “and” non-determinism with only

strong correlation. a polynomial increase in size.

ct to a single, flat deterministic F&M

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 373

clock. Unfortunately, Harel left open some questions about thesituations where the alignment of events in different signals
semantics of causality loops and chains of instantaneous (sasrieregular, it can be inefficient.

tick) events, triggering a flurry of activity in the community that The more general synchronous/reactive model is embodied
has resulted in at least twenty variants of Statecharts [17]. in the so-called synchronous languages [22]. Esterel [23] is

Most of these twenty variants use the synchronous concartextual imperative language with sequential and concurrent
rency model. However, for many applications, the tight coordstatements that describe hierarchically-arranged processes. Lus-
nation implied by the synchronous model is inappropriate. In rige [24] is a textual declarative language with a dataflow flavor
sponse to this, a number of more loosely coupled asynchronamsl a mechanism for multirate clocking. Signal [25] is a textual
FSM models have evolved, including behavioral FSMs [18jelational language, also with a dataflow flavor and a more pow-
SDL process networks [18], and codesign FSMs [19]. erful clocking system. Argos [26], a derivative of Harel's Stat-

A model that is closely related to FSMs is Finite Automatacharts [27], is a graphical language for describing hierarchical
FAs emphasize the acceptance or rejection of a sequence ofiimte state machines. Halbwachs [5] gives a good summary of
puts rather than the sequence of output symbols producedhis group of languages.
response to a sequence of input symbols. Most notions, suciThe synchronous/reactive languages describe systems as a set
as composition and so on, can be naturally extended from afeconcurrently-executing synchronized modules. These mod-
model to the other. ules communicate through signals that are either present or ab-

In fact, any of the concurrency models described in this pgent in each clock tick. The presence of a signal is called an
per can be usefully combined with FSMs. In the Ptolemgvent, and often carries a value, such as an integer. The modules
project [14], FSMs are hierarchically nested with dataflovare reactive in the sense that they only perform computation and
discrete-event, or synchronous/reactive models [20]. The nesteduce output events in instants with at least one input event.
ing is arbitrarily deep and can mix concurrency models at dif- Every signal in these languages is conceptually (or explicitly)
ferent levels of the hierarchy. This very flexible model is calledccompanied by a clock signal, which has meaning relative to
“*charts,” pronounced “star charts,” where the asterisk is meagther clock signals and defines the global ordering of events.
to suggest a wildcard. Thus, when comparing two signals, the associated clock sig-

Control Flow Expressions (CFEs, [21]) have been recenthals indicate which events are simultaneous and which precede
proposed to represent the control flow of a set of operatiogsfollow others. In the case of Signal and Lustre, clocks have
in a cycle-based specification language. CFEs are an algebsaimplex interrelationships, and a clock calculus allows a com-
model extending Regular Expressions [9] and can be compilsiter to reason about these ordering relationships and to detect
into FSMs that can be used in the synthesis of a control unit. inconsistencies in the definition. Esterel and Argos have simpler

) clocking schemes and focus instead on finite-state control.
B.3 Synchronous/Reactive Most of these languages are static in the sense that they cannot

In a synchronous model of computation, all events are syigquest additional storage nor create additional processes while
chronous, i.e., all signals have events with identical tags. Th#ning. This makes them well-suited for bounded and speed-
tags are totally ordered, and globally available. Simultaneotftical embedded applications, since their behavior can be ex-
events (those in the same clock tick) may be totally ordered, ptansively analyzed at compile time. This static property makes
tially ordered, or unordered, depending on the model of compu-synchronous program finite-state, greatly facilitating formal
tation. Unlike the discrete-event model, all signals have evengification.
at all clock ticks, simplifying the simulator by requiring no sort- Verifying that a synchronous program is causal (non-
ing. Simulators that exploit this simplification are called cyclesontradictory and deterministic) is a fundamental challenge with
based or cycle-driven simulators. Processing all events athase languages. Since computation in these languages is delay-
given clock tick constitutes a cycle. Within a cycle, the orddree and arbitrary interconnection of processes is possible, it is
in which events are processed may be determined by data preussible to specify a program that has either no interpretation (a
dences, which define microsteps. These precedences are nataidtradiction where there is no consistent value for some sig-
lowed to be cyclic, and typically impose a partial order (leavial) or multiple interpretations (some signal has more than one
ing some arbitrary ordering decisions to the scheduler). Cyclmnsistent value). Both situations are undesirable, and usually
based models are excellent for clocked synchronous circuitgjicate a design error. A conservative approach that checks for
and have also been applied successfully at the system leveté@usality problems structurally flags an unacceptably large num-
certain signal processing applications. ber of programs as incorrect because most will manifest them-

A cycle-based model is inefficient for modeling systemselves only in unreachable program states. The alternative, to
where events do not occur at the same rate in all signals. Whilgeck for a causality problem in any reachable state, can be ex-
conceptually such systems can be modeled (using, for examplensive since it requires an exhaustive check of the state space
special tokens to indicate the absence of an event), the cosobihe program.
processing such tokens is considerable. Fortunately, the cyclein addition to the ability to translate these languages into
based model is easily generalized to multirate systems. In tfirgte-state descriptions, it is possible to compile these languages
case, everyith event in one signal aligns with the events in ardirectly into hardware. Techniques for translating both Es-
other. terel [28] and Lustre [29] into hardware have been proposed.

A multirate cycle-based model is still somewhat limited. It i§he result is a logic network consisting of gates and flip-flops
an excellent model for synchronous signal processing systetimat can be optimized using traditional logic synthesis tools. To
where sample rates are related by constant rational multiples, &xgcute such a system in software, the resulting network is sim-

374 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

ply simulated. The technique is also the basis to perform more
efficiently causality checks, by means of implicit state space ° e e
traversal techniques [30].

B.4 Dataflow Process Networks e

In dataflow, a program is specified by a directed graph where
the nodes (calledctory represent computations and the arcs ()
represent totally ordered sequences (cafi’dam3 of events
(calledtokens. In figure 4(a), the large circles represent ac- A | B C D
tors, the small circle represents a token and the lines represent (>
streams. The graphs are often represented visually and are typi- (b)
cally hierarchical, in that an actor in a graph may represent an-
other dlr?Ct,e_d graph. ‘The nodes in the_ _graph can be either IEP.-4. (a) A dataflow process network (b) A single-processor static schedule
guage primitives or subprograms specified in another Ianguag%fOr it
such as C oFORTRAN. In the latter case, we are mixing two of
the models of computation from figure 2, where dataflow serves .
as the coordination language for subprograms written in an iM@lues to output values. Note, however, that this does not con-
perative host language. strain the process to be gtateless, since it can maintain state in a
Dataflow is a special case of Kahn process networks [1§]e,lfl-ltl)(_)p: an output that is connecteq back to one of its inputs.
[31]. In a Kahn process network, communication is by urfn initial token on this self-loop provides the initial value for
bounded FIFO buffering, and processes are constrained tolpgstate. _ _
continuous mappings from input streams to output streamsMany possibilities have been explored for precise semantics
“Continuous” in this usage is a topological property that ensur@kdataflow coordination languages, including Karp and Miller's
that the program is determinate [13]. Intuitively, it implies £0mMputation graphs [34], Lee and Messerschmitt’'s synchronous
form of causality without time; specifically, a process can ug&taflow graphs [35], Lauwereire al's cyclo-static dataflow
partial information about its input streams to produce partial if?odel [36], [37], Kaplanet al's Processing Graph Method
formation about its output streams. Adding more tokens to theGM) [38], Granular Lucid [39], and others [40], [41], [42],
input stream will never result in having to change or remove tit3]- Many of these limit expressiveness in exchange for formal
kens on the output stream that have already been produced. Bierties (e.g., provable liveness and bounded memory).
way to ensure continuity is with blocking reads, where any ac- Synchronous dataflow (SDF) and cyclo-static dataflow re-
cess to an input stream results in suspension of the procesduife processes to consume and produce a fixed number of to-
there are no tokens. One consequence of blocking reads is ¢4 for each firing. Both have the useful property that a finite
a process cannot test an input channel for the availability of d&tgtic schedule can always be found that will return the graph to
and then branch conditionally to a point where it will read a difts original state. This allows for extremely efficient implemen-
ferent input. tations [32]. For more general dataflow models, it is undecidable
In dataflow, each process is decomposed into a sequencé’/Bgther such a schedule exists [10]. _
firings, indivisible quanta of computation. Each firing consumes A looser model of dataflow is the tagged-token model, in
and produces tokens. Dividing processes into firings avoids #{Bich the partial order of tokens is explicitly carried with the
multitasking overhead of context switching in direct implemeriokens [44]. A significant advantage of this model is that while
tations of Kahn process networks. In fact, in many of the Sig_l_oglcally preserves the_FIFO semantics of the channels, it per-
nal processing environments, a major objective is to staticalRjts out-of-order execution.
(at compile time) schedule the actor firings, achieving an inter-Some examples of graphical dataflow programming environ-
leaved implementation of the concurrent model of computatigReNts intended for signal processing (including image process-
The firings are organized into a list (for one processor) or §8@) are Khoros [45], and Ptolemy [14].
of lists (for multiple processors). Figure 4(a) shows a dataflo
graph, and Figure 4(b) shows a single processor schedule&é? Other models
it. This schedule is a list of firings that can be repeated indefi-Another commonly used partially ordered concurrency model
nitely. One cycle through the schedule should return the graigtbased on rendezvous. Two or more concurrent sequential pro-
to its original state (here, state is defined as the number of tesses proceed autonomously, but at certain points in their con-
kens on each arc). This is not always possible, but when it igl flow, coordinate so that they are simultaneously at specified
considerable simplification results [32]. In many existing envpoints. Rendezvous has been developed into elaborate process
ronments, what happens within a firing can only be specifieddalculi (e.g., Hoare’s CSP [46] and Milner's CCS [47]). It has
a host language with imperative semantics, such as C or C#iso been implemented in the Occam and Lotos programming
In the Ptolemy system [14], it can also consist of a quantulanguages. Ada also uses rendezvous, although the implementa-
of computation specified with any of several models of comptien is stylistically quite different, using remote procedure calls
tation, such as FSMs, a synchronous/reactive subsystem, oataer than more elementary synchronization primitives.
discrete-event subsystem [33]. Rendezvous-based models of computation are often called
A useful formal device is to constrain the operation of a fisynchronous However, by the definition we have given, they
ing to be functional, i.e., a simple, stateless mapping from inparte not synchronous. Events are partially ordered, not totally

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 375

ordered, with rendezvous points imposing the partial orderitigns that give constraints on the behavior, but not the behavior
constraints. itself. Such abstraction provides useful simplifications that help
No discussing of concurrent models of computation would hermal verification.

complete without mentioning Petri nets [48], [49]. Petri nets
are, in their basic form, neither Turing complete nor finite statg,
They are interesting as uninterpreted model for several very dif-
ferent classes of problems, including some relevant to embeddegthe variety of models of computation that have been devel-
system design (e.g., process control, asynchronous communiggsd is only partially due to immaturity in the field. It appears
tion, scheduling, ...). Many questionbaut Petri nets can be that different models fundamentally have different strengths and
answered in finite time. Moreover, a large user community hgaknesses, and that attempts to find their common features re-
developed a large body of theoretical results and practical desigjk in models that are very low level, difficult to use. These
aids and methods based on them. In particular, partial ordgyy |evel models (such as Dijkstra’s P/V systems [52]) provide

based verification methods (e.g. [50], [51], [6]) are one possiieyood theoretical foundation, but not a good basis for design.

answer to the state explosion problem plaguing FSM-based very, <o are faced with two alternatives in designing complex,
ification techniques.

heterogeneous systems. We can either use a single unified ap-
proach and suffer the consequences, or we can mix approaches.
To use the unified approach today we could choose between
The distinction between a language and its underlying modghpL and C for a mixed hardware and software design, doing
of computation is important. The same model of computatigRe entire design in one or the other (i.e. specifying the software
can give rise to fairly different languages (e.g., the imperatiyg VHDL or the hardware in C). Or worse, we could further
Algol-like languages C, C++, Pascal, andRTRAN). Some lan- ploat the VHDL language by including a subset designed for
guages, such as VHDL and Verilog, support two or more modejsftware specification (e.g. by making Ada a subset of VHDL).
of computation. In the alternative that we advocate, we mix approaches while
The model of computation affects tlexpressivenessf a keeping them conceptually distinct, for example by using both
language — which behaviors can be described in the lapHDL andC in a mixed hardware/software design.
guage, whereas the syntax affects compactness, modularity, an'].;he key problem in the mixed approach, then, is to define

reusgblhtly. Thus, fo:_ExaCmple, object-oriented prc;pemes O;Wﬂie semantics of the interaction of fundamentally different mod-
perative languages like C++ are more a matter of syntax thagja ot computation. It is not simply a problem of interfacing

model of computation. _ _ _ languages. It is easy, for example, to provide a mechanism for
The expressiveness of a language is an important issue. Afiing ¢ procedures from VHDL. But what does it mean if two

one extreme, a language that is not expressive enough to Spegifycrrent VHDL entities call C procedures that interact? The

a particular behavior is clearly unsuitable, but the other extre ®blem is exacerbated by the lack of agreed-upon semantics for
also raises problems. A language that is too expressive ofeR.\/ypL

raises the complexity of analysis and synthesis. In fact, for very
expressive languages, many analysis and synthesis problems b
come undecidable: no algorithm will solve all problem instanc%

in finite time. . .) L S
A language in which a desired behavior cannot be represenlt'(l,gne ”_‘Ode' of comput{:mon can contain a primitive that IS In-
ternally implemented using another model of computation. The

succinctly is also problematic. The difficulty of solving analy-, . . o . . A X
y P y 9 y laect—orlented principle of information hiding is used to isolate

sis and synthesis problems is at least linear in the size of models from one another as much as possible
problem description, and can be as bad as several times e 5- P '

nential, so choosing a language in which the desired behavior of
the system is compact can be critical. I11. VALIDATION

A language may be very incomplete and/or very abstract. For
example, it may specify only the interaction between Computa_VaIidation loosely refers to the process of determining that a
tional modules, and not the computation performed by the mdigsign is correct. Simulation remains the main tool to validate a
ules. Instead, it provides an interface to a host language tA@del, but the importance of formal verification is growing, es-
specifies the computation, and is called a coordination langu&gsially for safety-critical embedded systems. Although still in
(examplesinclude Linda [41], Granular Lucid [39], and PtolemiFS infancy, it shows more promise than verification of arbitrary
domains [14]). Or the language may specify only the causal@ystems, such as generic software programs, because embedded
constraints of the interactions without detailing the interactiog¥stems are often specified in a more restricted way. For exam-
themselves nor providing an interface to a host language. RI¢. they are often finite-state.
this case, the language is used as a tool to prove properties dflany safety properties (including deadlock detection) can be
systems, as done, for example, in process calculi [46], [47] adetected in a time-independent way using existing model check-
Petri nets [48], [49]. In still more abstract modeling, compadng and language containment methods (see, e.g., Kurshan [53]
nents in the system are replaced with nondeterminate specifimad Burchet al. [54]). Unfortunately, verifying most temporal
roperties is much more difficult (Alur and Henzinger [55] pro-

"They directly support the Imperative model within a process, and the Discrg[e

Event model among processes. They can also support Extended Finite ﬁé@ee a gOOd summary). Much more research is needed before

Machines under suitable restrictions known as the “synthesizable subset”. this is practical.

Heterogeneous Models of Computation

C. Languages

g;udying the interaction semantics of mixed models of com-
tation is the main objective of the Ptolemy project [14].
ere, a hierarchical framework is used, where a specification

376 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

A. Simulation ulator for hardware and software that uses a single event queue
Simulating embedded systems is challenging because they%r}d a hlgh—lg\;elt, bkus-cycle moctijleJI[Otf) tttwedtarget CPrL]J.th tl |
heterogeneous. In particular, most contain both software an owiond[] aKes lf:ltmorgth ISt fltj €d approach tha r?osgy
hardware components that must be simulated at the same ti .‘:fha ar '\t,\tlwatrr? S|nt1u ?jordW' i asofware process, si/_nc ronlrz]-
This is the co-simulation problem. mr?i mem]:f/wr q t? sthanhart n e:ptri?lcess ct:onr:]m(g?caﬁﬂ mercb—
The basic co-simulation problem is reconciling two appafa"— sms ofiered by the host operating system. € otthe pro

e : . ems with this approach is that the relative clocks of software
ently conflicting requirements: : ; . : :
1o execute the software as fast as possible. often on a an? hardware simulation are not synchronized. This requires
* hine that be faster th tr? final ’ bedded Cg & use of handshaking protocols, which may impose an undue
machine that may be taster than the hinal embedde burden on the implementation. This may happen, for example,

ta nl? certtimlr)]/ IS dvery dlffedren';tfvrvom |t;'an(? i hroni because hardware and software would not need such handshak-
+ loKeep he hardware and software simufations Synchronizgg, ;e the hardware part runs in reality much faster than in

so that they interact just as they will in the target system. the simulation.

One app;toach, qfter1| taker;) In p()jracnce, |s\t/(|)_|;sLe a\g/;er_}eralwnson [58] describes the use of a commercial hardware sim-
purposelz S0 wared5||m1; a;]tor (aseC,PeUg., on Vi hor efn Ogﬂator. In this approach, the simulator and software compiled on
to simulate a model of the target » €xecuting the SOTWaE, 1ost processor interact via a bus-cycle emulator inside the

plrogrc’(:j\m (,)r;]th's s(ljmullcfatt)lon model. Different rgodefls can be _erﬂérdware simulator. The software and hardware simulator exe-
ployed, with a tradeoft between accuracy and performance: . g i separate processes and the two communicatenia

« Gate-level models o pipes. Thomast al.[59] take a similar approach.

These are viable onlly for_small validation pr(_)blems, where Another approach keeps track of time in software and hard-
either the processoris a simple one, or very little code ne%ﬁre independently, using various mechanisms to synchronize
to be run on it, or bqth. them periodically. For example, ten Hagenal. [60] describe
Instruction-set architecture (ISA) models augmented Williy,_jevel co-simulation environment that combines a timed
hardware mten_‘aces) and untimed level. The untimed level is used to verify time-
An ISA model is a standard processor simulator (often wrifyenendent properties of the system, such as functional cor-
ten in C) augmented with hardware interface information fQpiness. At this level, software and hardware run independent

coupling to a standard logic simulator. of each other, passing messages whenever needed. This allows
Bus-functional models the simulation to run at the maximum speed, while taking full

These are hardware models only of the processor interfaggyantage of the native debugging environments both for soft-
they cannot run any software. Instead, they are configurgde and for hardware. The timed level is used to verify time-
(programmed) to make the interface appear as if Softwajgnangent properties, requiring the definition of time in hard-
were running on the processor. A stochastic model of)&y e and software. In hardware, time can be measured either on
processor and of the program can be used to determine §ie,aqis of clock cycles (cycle-based simulation, assuming syn-

mix of bus transactions. chronous operation) for maximum performance, or on the basis

Translation-based models of estimated or extracted timing information for maximum pre-

These convert the code to be executed on a processor ljigyn |n software, on the other hand, time can be measured

code that can be executed natively on the computer doing i, er by profiling or clock cycle counting information for maxi-

simulation. Preserving timing mf_ormatlon and couph_ng theum performance, or by executing a model of the CPU for max-

translated code to a hardware simulator are the major chgly,m nrecision. The authors propose two basic mechanisms for

lenges. _ _ _ synchronizing time in hardware and software.

When more accuracy is required, and acceptable simulatign gfyare is the master and hardware is the slave. In this
performance is not achievable on standard computers, designers,ca software decides when to send a message, tagged with

sometimes resort temulation In this case, configurable hard- . -, rrent software clock cycle, to the hardware simulator.

ware emulates the behavior of the system being designed. Depending on the relation between software and hardware
Another problem is the accurate modeling of a controlled {jne the hardware simulator can either continue simulation

electromechanical system, which is generally governed by a se{, il software time or back-up the simulation to software time

of qlifferential equ:ations. _This often requires interfacing to an (this requires checkpointing capabilities, which few hardware

entirely different kind of simulator. simulators currently have).

2. Hardware is the master and software is the slave. In this case,
the hardware simulator directly calls communication proce-
In this section, we present a survey of some of the represen-dures which, in turn, call user software code.

tative co-simulation methods, summarized in Table Il. A uni- Kalavade and Lee [61] and Lee and Rabaey [63] take a similar

fied approach, where the entire system is translated into a fasipproach. The simulation and design environment Ptolemy [14]

suitable for a single simulator, is conceptually simple, but coris used to provide an interfacing mechanism between different

putationally inefficient. Making better use of computational redomains. In Ptolemy, objects described at different levels of
sources often means distributing the simulation, but synchabstraction and using different semantic models are composed
nization of the processes becomes a challenge. hierarchically. Each abstraction level, with its own semantic
The method proposed by Gumtal.[56] is typical of the uni- model, is a “domain” (e.g., dataflow, discrete-event). Atomic
fied approach to co-simulation. It relies on a single custom simbjects (called “stars”) are the primitives of the domain (e.g.,

A.1 Co-simulation Methods

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS

TABLEII

A COMPARISON OF CGSIMULATION METHODS.

Author Hardware Simulation Software Simulation Synchronization Mechanism
Gupta [56] logic custom bus-cycle custom single simulation

Rowson [57] logic commercial host-compiled handshake

Wilson [58] logic commercial host-compiled handshake

Thomas [59] logic commercial host-compiled handshake

ten Hagen (1) [60] logic commercial host-compiled handshake

ten Hagen (2) [60]
Kalavade (1) [61]
Kalavade (2) [61]
Lee [61]
Sutarwala [62]

cycle-based
logic custom
logic custom
logic custom
logic commercial

cycle-counting
host-compiled

ISA

host-compiled

ISA on HW simulation

tagged messages
single simulation
single simulation
single simulation
single simulation

dataflow operators, logic gates). They can be used eitherwhich determines decidability and complexity bounds. Two dis-
simulation mode (reacting to events by producing events) ortinct types of verification arise:
synthesis mode (producing software or a hardware descriptiom)Specification Verification: checking an abstract property of a
“Galaxies” are collections of instances of stars or other galaxies.high-level model. An example: checking whether a proto-
An instantiated galaxy can belong to a domain different than the col modeled as a network of communicating FSMs can ever
instantiating domain. Each domain includes a scheduler, whichdeadlock.
decides the order in which stars are executed, both in simuladmplementation Verification: checking if a relatively low-
tion and in synthesis. For synthesis, it must be possible to con-level model correctly implements a higher-level model or
struct the schedule statically. Whenever a galaxy instantiates ssatisfies some implementation-dependent property. For ex-
galaxy belonging to another domain (typical in co-simulation), ample: checking whether a piece of hardware correctly im-
Ptolemy provides a mechanism called a “wormhole” for the two plements a given FSM, or whether a given dataflow network
schedulers to communicate. The simplest form of communica-implementation on a given DSP completely processes an in-
tion is to pass time-stamped events across the interface betweeput sample before the next one arrives.
domains, with the appropriate data-type conversion. Implementation verification for hardware is a relatively well-
Kalavade and Lee [61] perform co-simulation at the specifica- developed area, with the first industrial-strength products be-
tion level by using a dataflow model and at the implementation ginning to appear. For example, most logic synthesis sys-
level by using an ISA processor model augmented with the in- tems have a mechanism to verify a gate-level implementation
terfaces within a hardware simulator, both built within Ptolemy. against a set of Boolean equations or an FSM, to detect bugs
Lee and Rabaey [63] simulate the specification by using con-in the synthesis softwaffe
current processes communicating via queues within a timedVhile simulation could fall under these definitions (if the
model (the Ptolemy communicating processes domain). TREPerty is “the behavior under this stimulus is as expected”),
same message exchanging mechanism is retained in the implg-term formal verification is usually reserved for checking
mentation (using a mix of microprocessor-based boards, DSPEPerties of the system that must hold for all or a broad class of
and ASICs), thus performing co-simulation of one part of tH8PUts. The properties are traditionally broken into two classes:
implementation with a simulation model of the rest. For exant- Safety properties, which state that no matter what inputs are
ple, the software running on the microprocessor can also be rur@iven, and no matter how non-deterministic choices are re-
on a host computer, while the DSP software runs on the DSpSOIved inside the system model, the system will not get into
itself. a specific undesirable configuration (e.g., deadlock, emission
Sutarwala and Paulin [62] describe an environment coupledo.f undesired OUIPUtS’ et(;.) . '
with a retargetable compiler [64] for cycle-based simulation df -VENess properties, which state that some desired configu-
a user-definable DSP architecture. The user only provides a delation will be visited ev_entually or infinitely often (e.g., ex-
scription of the DSP structure and functionality, while the envi- pected response to an input, etc.) . .
ronment generates a behavioral bus-cycle VHDL model for it, Mor(_e .Comp'ex checks, such as th? correct |mpIementa_1t|on of
which can then be used to run the code on a standard hardvx?a?@ec'f'cat'on’ can usu_aIIy be done in terms of those basic prop-
simulator. erties. For example, Dill [65] describes a method to define and
check correct implementation for asynchronous logic circuits in
an automata-theoretic framework.
In this section we only summarize the major approaches that
Formal verification is the process of mathematically checkirigave been or can be applied to embedded system verification.
that the behavior of a system, described using a formal modEhese can be roughly divided into the following classes:
satisfies a given property, also described using a formal modelTheorem proving methods provide an environment that as-
The two models may or may not be the same, but must share sists the designer in carrying out a formal proof of specifica-
Com_mon Semantlc interpretation. The ability to carry out for.malsThis shows that the need for implementation verification is not eliminated by
verification is strongly affected by the model of computatione introduction of automated synthesis techniques.

B. Formal Verification

378 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

tion or implementation correctness. The assistance can be eiof equivalence class representatives is sufficient to represent
ther in the form of checking the correctness of the proof, or in exactly the behavior of the timed automaton ([75], [74]). Mc-
performing some steps of the proof automatically (e.g., Gor- Manis and Varaiya [76] introduced the notion of suspension,
don and Melham’s HOL [66], the Boyer-Moore system [67] which extends the class of systems that can be modeled with
and PVS [68]). The main problems with this approach are variations of timed automata. It is then possible, in principle,
the undecidability of some higher order logics and the large to verify timing constraint satisfaction by using preemptive
size of the search space even for decidable logics. scheduling, which allows a low-priority process to be stopped

« Finite automata methods restrict the power of the model in or- in the middle of a computation by a high-priority one.
der to automate proofs. A Finite Automaton, in its simplest The main obstacles to the widespread application of finite
form, consists of a set of states, connected by a set of edgafomata-based methods are the inherent complexity of the
labeled with symbols from an alphabet. Various criteria castoblem, and the difficulty for designers, generally accustomed
be used to define which finite or infinite sequences of syn simulation-based models, to formally model the system or its
bols are “accepted” by the automaton. The set of accepig@perties. The synchronous composition of automata, which
sequences is generally called thaguageof the automaton. s the basis of all known automata-based methods, is inherently
The main verification methods used in this case are languagsisitive to the number of states in the component automata,
containment and model checking. since the size of the total state space is the product of the sizes

— In language containment, both the system and the propestithe component state spaces.
to be verified are described as a synchronous composition ohpstraction is the most promising technique to tackle this
automata. The proof is carried out by testing whether thgoblem, generally known as state-space explosion. Abstraction
language of one is contained in the language of the oth@places (generally requiring extensive user intervention) some
(Kurshan's approach is typical [53]). One particularly simsystem components with simpler versions, exhibiting nondeter-
ple case occurs when comparing a synchronous FSM withinistic behavior. Nondeterminism is used to reduce the size of
hardware implementation. Then both automata are on finjigs state space without losing the possibility of verifying the de-
strings, and the proof of equivalence can be performed Bited property. The basic idea is to build provably conservative
traversing the state space of their product [69]. approximations of the exact behavior of the system model, such

— Simulation relations are an efficiestifficient(i.e., conser- that the complexity of the verification is lower, but no false pos-
vative) criterion to establish language containment propsiive results are possible. I.e., the verification system may say
ties between automata, originating from the process algebrgigt the approximate model does not satisfy the property, while
community ([47], [46]). Informally, a simulation relation isthe original one did, thus requiring a better approximation, but
a relation? between the states of the two automata such thegyill never say that the approximate model satisfies the prop-
for each pair of states s’ in R, for each symbol labeling an erty, while the original one did not [75], [77], [78]. The quotient
edge froms, the pair of next states under that symbol is alsgith respect to bisimulation can also be used in place of every
in R. This relation can be computed much more quickly thasgbmponent, thus providing another mechanism (without false
the exact language containment test (that in the case of naBgative results) to fight space explosion.
deterministic automata requires an exponential determiniza-The systematic application of formal verification techniques
tion step), and hence can be used as a fast heuristic checkince the early stages of a design may lead to a new definition
!f 'Fhe same simulation relation holds in both directions (i.egf “optimal” size for a module (apart from those currently in
it is true also for each symbol labeling an edge freffy se, that are generally related to human understanding, synthe-
then it is called abisimulation Bisimulation can be used gj5 or compilation). A “good” leaf-level module must be small
as test for behavioral equivalence that directly supports coghough to admit verification, and large enough to possess in-
position and abstraction (hiding of edge labels). Moreovggresting verifiable properties. The possibility of meaningfully
self-bisimulation is an equivalence relation among states ghp|ying abstraction would also determine the appropriate size
an automaton, and hence it can be used to minimize the @Hy contents of modules at the upper levels of the hierarchy.
tomaton (the result is called the “quotient” automaton). Another interesting family of formal verification techniques,

— In model checking (see, e.g., [70], [71], [54], [6]), the SYSyseful for heterogeneous systems with multiple concurrent
tem is modeled as a synchronous or asynchronous compggfants; is based on the notion of partial ordering between com-
tion of automata, and the property is described as a formygrations in an execution of a process network. Direct use of
in some temporal logic [72], [73]. The proof is again caryyjlable concurrency information can be used during the ver-
ried out by traversing the state space of the automaton afghtion process to reduce the number of explicitly explored
marking the states that satisfy the formula. states ([6], [51], [50]). Some such methods are based on the

« Infinite automata methods can deal with infinite state spacgs cajied “Mazurkiewicz traces,” in which a “trace” is an equiv-
when some minimization to a finite form is possible. Ongience class of sequences of state transitions where concurrent
example of this class are the so-called timed automata ([74}4sitions are permuted [79], [80].

in which a set of real-valued clocks is used to measure time.\v1odel checking and language containment have been espe-

Severe resrictions are applied, in order to make this mo%%llly useful in verifying the correctness of protocols, which
decidable. Clocks can pnly be tested, started, and resetas BRY particularly well-suited to the finite automaton model due
of the edge labels _()faflnlte automaton. AI,S(_)'_ Cl,OCkS can oY their relative data independence. One may claim that these
be compare_d against !nteger_values and initialized to integef, (closely related) paradigms represent about the only solu-
values. Inthis case, itis possible to show that only afinite $gi,q 1o the specification verification problem that are currently

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 379

close to industrial applicability, thanks to: an input specification using C- or Pascal-like imperative, gener-
« The development of extremely efficieimplicit representa- ally non-concurrent, languages. These languages have a syntax
tion methods for the state space, based on Binary Decisimd semantics that is very close to that of the implementation
Diagrams ([81], [69]), that do not require to represent arf@ssembly or executable code). In some sense, they already de-
store every reachable state of the modeled system explicitberibe, at a fairly detailed level, the desiriedplementatiorof
« The good degree of automation, at least of the property stite software. We will use the term software synthesis to denote
isfaction or language containment checks themselves (onc@eoptimized translation process from a high-level specification
suitable abstraction has been found by hand). that describes thiunctionthat must be performed, rather than
» The good match between the underlying semantics (statlee way in which it must be implemented. Examples of soft-
transition objects) and the finite-state behavior of digital syg«are synthesis can be, for example, the C or assembly code
tems. generation capabilities of Digital Signal Processing graphical
The verification problem becomes much more difficult wheprogramming environments such as Ptolemy ([86]), of graphi-
one must take into account either the actual value of data &&l FSM design environments such as StateCharts ([87]), or of
the operations performed on them, or the timing properties ®fnchronous programming environments such as Esterel, Lustre
the system. The first problem can be tackled by first assuand Signal ([S]).
ing equality of arithmetic functions with the same name used atRecently, higher and higher level synthesis approaches have
different levels of modeling (e.g., specification and implementatarted to appear. One particularly promising technique for em-
tion, see Burch and Dill [82]) and then separately verifying thatzedded systems supervisory contrglpioneered by Ramadge
given piece of hardware implements correctly a given arithme#@igd Wonham ([88]). While most synthesis methods start from
function (see Bryant [83]). The timing verification problem foan explicit model ohowthe system that is being designed must
sequential systems, on the other hand, still needs to be forrhehave, supervisory control describesat it must achieve. It
lated in a way that permits the solution of practical problems incéeverly combines a classical control system view of the world
reasonable amount of space and time. One possibility, propogédh automata-theoretic techniques, to synthesize a control al-
almost simultaneously by [84] and [85], is to incrementally adgorithm that is, in some sense, optimum.
timing constraints to an initially untimed model, rather than im- Supervisory control distinguishes between the plant (an ab-
mediately building the full-blown timed automaton. This addistraction of the physical system that must be controlled) and
tion should be done iteratively, to gradually eliminate all “falsethe controller (the embedded system that must be synthesized).
violations of the desired properties due to the fact that some tifdiven a finite-automaton model of the plant (possibly includ-
ing properties of the model have been ignored. The iteration dag limitations on what a controller can do) and of the expected
be shown to converge, but the speed of convergence still depdpelsavior of the complete system (plant plus controller), it is pos-
heavily on the ingenuity of the designer in providing “hints” tsible to determine:
the verification system about the next timing information to conw if a finite-state controller satisfying that specification exists,
sider. and
As with many young technologies, optimism about verificae a “best” finite-state controller, under some cost function (e.g.,
tion techniques initially led to excessive claims about their po- minimum estimated implementation cost).
tential, particularly in the area of software verification, wherBecent papers dealing with variations on this problem are, for
the term “proving programs” was broadly touted. For many reaxample, [89], [90].
sons, including the undecidability of many verification problems
and the fact that verification can only be as good as the prdp- Mapping from Specification to Architecture

erties the designer specifies, this optimism has been misplacedhe problem of architecture selection and/or design is one of
Berry has suggested using the term “automatic bug detection’jijy key aspects of the design of embedded systems. Supporting
place of “verification” to underscore that it is too much to hopge designer in choosing the right mix of components and im-
for a conclusive proof of any nontrivial design. Instead, the goglementation technologies is essential to the success of the final
of verification should be a technology that will help designefsioduct, and hence of the methodology that was used to design
preventing problems in deployed systems. it. Generally speaking, the mapping problem takes as input a
functional specification and produces as output an architecture
and an assignment of functions to architectural units.

By “synthesis,” we mean broadly a stage in the design refine-An architecture is generally composed of:
ment where a more abstract specification is translated into a leskardware components (e.g., microprocessors, microcon-
abstract specification, as suggested in Figure 2. For embeddetfollers, memories, I/O devices, ASICs, and FPGAS),
systems, synthesis is a combination of manual and automatisoftware components (e.g., an operating system, device
processes, and is often divided into three stages: mapping to ardrivers, procedures, and concurrent programs), and
chitecture, in which the general structure of an implementatieninterconnection media (e.g., abstract channels, busses, and
is chosen; partitioning, in which the sections of a specification shared memories).
are bound to the architectural units; and hardware and softw®aatitioning determines which parts of the specification will be
synthesis, in which the details of the units are filled out. implemented on these components, while their actual imple-

We informally distinguish betweesoftware synthesiand mentation will be created by software and hardware synthesis.
software compilationaccording to the type of input specifica- The cost function optimized by the mapping process includes
tion. The term software compilation is generally associated wighmixture of time, area, component cost, and power consump-

IV. SYNTHESIS

380 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

tion, where the relative importance depends heavily on the typeamong operations), and operator closeness (the similarities,
of application. Time cost may be measured either as executiore.g., an add and a subtract are close); and
time for an algorithm, or as missed deadlines for a soft real-timeby estimating the communication overhead incurred when
systeni. Area cost may be measured as chip, board, or memoryblocks are moved across partitions. This is approximated
size. The components of the cost function may take the form of by the (static) number of data items exchanged among par-
a hard constraint or a quantity to be minimized. titions, assuming a simple memory-mapped communication
Current synthesis-based methods almost invariably imposemechanism between hardware and software.
some restrictions on the target architecture in order to makepPartitioning is done in two loops. The inner loop uses sim-
the mapping problem manageable. For example, the architefated annealing, with a quick estimation of the gain derived
ture may be limited to a library of pre-defined components disg moving an operation between hardware and software, to im-
to vendor restrictions or interfacing constraints. Few papgsgove an initial partition. The outer loop uses synthesis to refine
have been published on automating the design of, say, a mene estimates used in the inner loop.
ory hierarchy or an /O subsystem based on standard compoo|okutunet al.[98] perform performance-driven partitioning
nents. Notable exceptions to this rule are papers dealing Wi{Brking on a block-by-block basis. The specification model is
retargetable compilation (e.g., Theissingeral. [91]), or with & hardware description language. This allows them to use syn-
a very abstract formulation of partitioning for co-design (e.tthesis for hardware cost estimation, and profiling of a compiled-
Kumar et al. [92], [93], Prakash and Parker [94], and Vahi&ode simulator for software cost estimation. Partitioning is done
and Gajski [95]). The structure of the application-specific hargsgether with scheduling, since the overall goal is to minimize
ware components, on the other hand, is generally much less g@ponse time in the context of using emulation to speed up sim-
strained. ulation. An initial partition is obtained by classifying blocks ac-
Often, the communication mechanisms are also standardizedding to whether or not they are synthesizable, and whether
for a given methodology. Few choices, often closely tied to thg not the communication overhead justifies a hardware imple-
communication mechanism used at the specification level, aientation. This determines some blocks which must either go
offered to the designer. Nonetheless, some work has been digie software or hardware. Uncommitted blocks are assigned

on the design of interfaces (e.g., Cheial. [96]). to hardware or software starting from the block which has most
to gain from a specific choice. The initial partition is then im-
B. Partitioning proved by a Kernighan and Lin-like iterative swapping proce-

Partitioning is a problem with any design using more than offiire. ' N
component. It is a particularly interesting problem in embeddedkumaret al.[92], [93], on the other hand, consider partition-

systems because of the heterogeneous hardware/software N @ very general and abstract form. They use a complex,
ture. Partitioning methods can be classified, as shown in -fet-based representation of the system, its various implementa-
ble 111, according to four main characteristics: tion choices and the various costs associated with them. Cost

e attributes are determined mainly by profiling. The system being
« the specification model(s) supported, ; : . 7
the granularity designed is represented by four sets: available software func-
! tions; hardware resources; communications between the (soft-
« the cost function, and . . .
: ware and/or hardware) units; and functions to be implemented,
« the algorithm.

each of which can be assigned a set of software functions, hard-

Explored algorithm classes include greedy heuristics, clustgrs o resources and communications. This means that the given
ing methods, iterative improvement, and mathematical prografinvare runs on the given hardware and uses the given commu-
ming.) .. hications to implement the function. The partitioning process
_ So far, there seems to be no clear winner among partitiqag|lowed by a decomposition of each function into virtual in-
ing methods, partly due to the early stage of research in tQi,ciion sets, followed by design of an implementation for the
area, and partly due to the intrinsic complexity of the problerge sing the available resources, and followed again by an eval-
which seems to preclude an exact formulation with a realis{igjon phase.
cost function in the general case. . D’Ambrosioet al.[112], [99] tackle the problem of choosing

Emnstet al.[110], [111], [97] use a graph-based model, with, set of processors on which a set of cooperating tasks can be
nodes corresponding to elementary operations (statementg,JBcyted while meeting real-time constraints. They also use a
C, a C-like language extended with concurrency). The cogfathematical formulation, but provide an optimal solution pro-
is derived: cedure by using branch-and-bound. The cost of a software par-
« by profiling, aimed at discovering the bottlenecks that can lggon is estimated as a lower and an upper bound on proces-

eliminated from the initial, all-software partition by movingsor utilization. The upper bound is obtained by rate-monotonic

some operations to hardware; analysis (see Liu and Layland [113]), while the lower bound is
« by estimating the closeness between operations, includitgtained by various refinements of the sum of task computation
control |0C3.|ity (the distance in number of control nOdeﬁmeS divided by task periods_ The branch-and-bound proce-
between activations of the same operation in the conti@lre uses the bounds to prune the search space, while looking
flow graph), data locality (the number of common variablggr optimal assignments of functions to components, and satis-
9Real-time systems, and individual timing constraints within such system%ng the tlmmg ConStramtSf _Other optimization crlt_erla can be
are classified as soft 6r hard according to whether missing a deadline justI cluded beside SChedUIab”'ty' such as response times to tasks
grades the system performance or causes a catastrophic failure. with soft deadlines, hardware costs, and expandability, which

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 381

TABLE Il
A COMPARISON OF PARTITIONING METHODS

Author Model Granularity | Cost Function Algorithm

Henkel [97] CDFG (C¥) operation | profiling (SW) hand (outer)

synthesis and similarity (HW) simulated annealing (inner)
communication cost

Olokutun [98] HDL task profiling (SW) Kernighan and Lin
synthesis (HW)
Kumar [93] set-based task profiling mathematical programming
Hu [99] task list task profiling branch and bound
schedule analysis
Vahid [95] acyclic DFG operation | profiling (SW) mixed integer-linear programming

processor cost (HW)
communication cost

Barros (1) [100] | Unity (HDL) operation | similarity clustering
concurruency/sequencing
Barros (2) [101] | Occam operation | similarity clustering
hierarchy | concurrenency/sequencing
hierarchy
Kalavade [102] acyclic DFG operation | schedulability heuristic with look-ahead
Adams [103] HDL (?) task profiling (SW) hand
synthesis (HW)
Eles [104] VHDL task profiling simulated annealing
Luk [105] Ruby (HDL) operation | rate matching hand
hierarchy
Steinhausen [106] CDFG (HDL, C) | operation | profiling hand
Ben Ismail [107] | communicating | task ? hand
processes
Antoniazzi [108] | FSMs task ? hand
Chou [96] timing diagram | operation | time (SW) min-cut
area (HW)
Gupta [56], [109] | CDFG (HDL) operation | time heuristic
favors software solutions. are “states” of a hierarchical Statecharts-like finite state ma-

Barroset al. [100] use a graph-based fine-grained represeff?ine. These “states” can contain arbitrarily complex behavioral
tation, with each unit corresponding to a simple statement Y{iDL Processes, written in a high-level specification style.
the Unity specification language. They cluster units accorE-OSt functlon estimation is done at the Igaf level. Each level
ing to a variety of sometimes vague criteria: similarity betwedf assigned an estimated number of I/O pins, an estimated area
units, based on concurrency (control and data independenég§sed on performing behavioral, RTL and logic synthesis in
sequencing (control or data dependence), mutual exclusion, &itiation), and an estimated execution time (obtained by sim-
vectorization of a sequence of related assignments. They clustgfing that initial implementation, and considering communi-
the units to minimize the cost of cuts in the clustering tree, agtion delay as well). The area estimate can be changed if
then improve the clustering by considering pipelining opportif?°re leaves are mapped onto the same physical entity, due to

nities, allocations done at the previous stage, and cost saviRgintial sharing. The cost model is attached to a graph, in
due to resource sharing. which nodes represent leaves and edges represent control (ac-

tivation/deactivation) and data (communication) dependencies.
assical clustering and partitioning algorithms are then applied,
lowed by a refinement phase. During refinement, each parti-

Kalavade and Lee [102] use an acyclic dependency graph
rived from a dataflow graph to simultaneously map each no

(task) to software or h"?‘rdwa"? a_nd schedule t_he execution (_)ff s synthesized, to get better area and timing estimates, and
tasks. The approach is heuristic, and can give an approxi

Eripheral” graph nodes are moved among partitions greedil
solution to very large problem instances. To guide the sear, P grap gp g y

. both critical path inf . dth itabil reduce the overall cost. The cost of a given partition is a
process, it uses both critical path information and the suitabili mple weighted sum of area, pin, chip count, and performance
of a node to hardware or software. For example, bit manipu

. .) nstraint satisfaction measures.
tions are better suited to hardware while random accesses to a

data structure are better suited to software. Steinhauseret al. [106], [91], [115] describe a complete
Vahid, Gajskiet al.[95], [114] perform graph-based partition-co-synthesis environment in which a CDFG representation is

ing of a variable-grained specification. The specification laderived from an array of specification formats, such as Ver-

guage is SpecCharts, a hierarchical model in which the lealeg, VHDL and C. The CDFG is partitioned by hand, based

382 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

on the results of profiling, and then mapped onto an agty of applications, whereas the embedded system designer must
chitecture that can include general-purpose micro-processaverry about addition of new functionality in the future, user in-
ASIPs (application-specific instruction processor, softwarteraction, and satisfaction of a specific set of timing constraints.
programmable components designed ad hoc for an application)Note that by using an ASIP rather than a standard Appli-
and ASICs (application-specific integrated circuits). An intecation Specific Integrated Circuit (ASIC), which generally has
esting aspect of this approach is that the architecture itselivisry limited programming capabilities, the embedded system
not fixed, but synthesis is driven by a user-defined structuddsigner can couple some of the advantages of hardware and
description. ASIC synthesis is done with a commercial todpftware. For example, performance and power consumption
while software synthesis, both for general-purpose and spectan be improved with respect to a software implementation on
ized processors, is done with an existing retargetable comp#egeneral-purpose micro-controller or DSP, while flexibility can
developed by Hoogerbruggeal.[116]. be improved with respect to a hardware implementation. An-
Ben Ismailet al.[107] and Vosset al. [117] start from a sys- other method to achieve the same goal is to use reprogrammable
tem specification described in SDL ([118]). The specification leardware, such as Field Programmable Gate Arrays. FPGAs can
then translated into the Solar internal representation, based doeaeprogrammed either off-line (just like embedded software is
hierarchical interconnection of communicating processes. Pupgraded by changing a ROM), or even on-line (to speed up the
cesses can be merged and split, and the hierarchy can be chaatgetithm that is currently being executed).
by splitting, moving and clustering of subunits. The sequencingThe hardware synthesis task for ASICs used in embedded sys-
of these operations is currently done by the user. tems (whether they are implemented on FPGAS or not) is gen-
Finally, Chouet al.[96] and Walkup and Borriello [119] de- erally performed according to the classical high-level and logic
scribe a specialized, scheduling-based algorithm for interfagnthesis methods. These techniques have been worked on ex-
partitioning. The algorithm is based on a graph model derivéghsively; for example, recent books by De Micheli [123], De-
from a formalized timing diagram. Nodes represent low-levehdas, Gosh and Keutzer [124], and Camposano and Wolf [125]
events in the interface specification. Edges represent constraidscribe them in detail. Marwedel and Goossens [126] present
and can either be derived from causality links in the specifica-good overview of code generation strategies for DSPs and
tion, or be added during the partitioning process (for exampleASIPs.
represent events that occur on the same wire, and hence shoufthe software synthesis task for embedded systems, on the
be moved together). The cost function is time for software awther hand, is a relatively new problem. Traditionally, software
area for hardware. The algorithm is based on a min-cut proggmthesis has been regarded with suspicion, mainly due to ex-
dure applied to the graph, in order to reduce congestion. Ceessive claims made during its infancy. In fact, the problem
gestion in this case is defined as software being required to pgomuch more constrained for embedded systems compared to
duce events more rapidly than the target processor can do, whjeleral-purpose computing. For example, embedded software

implies the need for some hardware assistance. often cannot use virtual memory, due to physical constraints
. (e.g., the absence of a swapping device), to real-time constraints,
C. Hardware and Software Synthesis and to the need to partition the specification between software

After partitioning (and sometimes before partitioning, in or@nd hardware. This severely limits the applicability of dynamic
der to provide cost estimates) the hardware and software comig$k creation and memory allocation. For some highly critical
nents of the embedded system must be implemented. The ingiBlications even the use of a stack may be forbidden, and ev-
to the problem are a specification, a set of resources and po8&ything must be dealt with by polling and static variables. Al-
bly a mapping onto an architecture. The objective is to realig@rithms also tend to be simpler, with a clear division into coop-
the specification with the minimum cost. erating tasks, each solving one specific problem (e.qg., digital fil-

Generally speaking, the constraints and optimization critef@ing of a given input source, protocol handling over a channel,
for this step are the same as those used during partitioning. ARl S0 on). In particular, the problem of translating cooperating
and code size must be traded off against performance, whichf#tite-state machines into software has been solved in a number
ten dominates due to the real-time characteristics of many ephways.
bedded systems. Cost considerations generally suggest the uS@ftware synthesis methods proposed in the literature can be
of software running on off-the-shelf processors, whenever posgassified, as shown in Table IV, according to the following gen-
ble. This choice, among other things, allows one to separate &al lines:
software from the hardware synthesis process, relying on soméhe specification formalism,
form of pre-designed or customized interfacing mechanism. « interfacing mechanisms (at the specification and the imple-

One exception to this rule are authors who propose the simul-mentation levels),
taneous design of a computer architecture and of the progranwhen the scheduling is done, and
that must run on it (e.g., Menegt al. [120], Marwedel [121], « the scheduling method.
and Wilberget al. [115]). Since the designers of general- Almost all software synthesis methods perform some sort of
purpose CPUs face different problems than the designerssoheduling—sequencing the execution of a set of originally con-
embedded systems, we will only consider those authors wtarrent tasks. Concurrent tasks are an excellent specification
synthesize an Application-Specific Instruction Processor (ASHechanism, but cannot be implemented as such on a standard
[122]) and the micro-code that runs on it. The designer ofGPU. The scheduling problem (reviewed e.g. by Halang and
general-purpose CPU must worry about backward compatitfiitoyenko [127]) amounts to finding a linear execution order for
ity, compiler support, and optimal performance for a wide varthe elementary operations composing the tasks, so that all the

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 383

timing constraints are satisfied. Depending on how and whegrained timing constraints. The specification style chosen by
this linearization is performed, scheduling algorithms can Ilee authors uses Verilog constructs that provide structured con-

classified as: currency with watchdog-style preemption. In this style, multi-

« Static, where all scheduling decisions are made at designt# computation branches are started in parallel, and some of
compile-time. them (the watchdogs) can “kill” others upon occurrence of a

« Quasi-static, where some scheduling decisions are madgigen condition. A set of “safe recovery points” is defined for
run-time, some at compile-time. each branch, and preemption is allowed only at those points.

« Dynamic, where all decision are made at run-time. Timing constraints are specified by using modes, which repre-

Dynamic schedulers take many forms, but in particular thégnt different “states” for the computation as in SpecCharts, e.g.,
are distinguished as preemptive or non-preemptive, dependinigalization, normal operation and error recovery. Constraints
on whether a task can be interrupted at arbitrary points. Ft the minimum and maximum time separation between events
embedded systems, there are compelling motivations for (gven of the same type, to describe occurrence rates) can be de-
ing static or quasi-static scheduling, or at least for minimizirfgned either within a mode or among events in different modes.
preemptive scheduling in order to minimize scheduling ovepcheduling is performed within each mode by finding a cyclic
head and to improve reliability and predictability. There are, @der of operations which preserves 1/O rates and timing con-
course, cases in which preemption cannot be avoided, becaus#@ints. Each mode is transformed into an acyclic partial order
is the only feasible solution to the problem instance ([127]), bly unrolling, and possibly splitting (if it contains parallel loops
such cases should be carefully analyzed to limit preemption tévih harmonically unrelated repetition counts). Then the partial
minimum. order is linearized by using a longest-path algorithm to check

Many static scheduling methods have been developed. Mégasibility and assign start times to the operations.
somehow construct a precedence graph and then apply or adaphe same group describes in [132] a technique for device
classical methods. We refer the reader to Bhattachaegyadriver synthesis, targeted towards microcontrollers with special-
al. [32] and Sih and Lee [128], [129] as a starting point foized 1/O ports. It takes as input a specification of the system to
scheduling of dataflow graphs. be implemented, a description of the function and structure of

Many approaches to software synthesis for embedded sgach I/O port (a list of bits and directions), and a list of commu-
tems divide the computation into cooperating tasks that argation instructions. It can also exploit specialized functions
scheduled at run time. This scheduling can be done such as parallel/serial and serial/ parallel conversion capabili-
1. either by using classical scheduling algorithms, ties. The algorithm assigns communications in the specification
2. or by developing new techniques based on a better knot@-physical entities in the micro-controller. It first tries to use

edge of the domain. Embedded systems with fairly restrictégecial functions, then assigns I/O ports, and finally resorts to

specification paradigms are an easier target for specialiZBg@ more expensive memory-mapped /O for overflow commu-
scheduling techniques than fully general algorithms writtg#ications. It takes into account resource conflicts (e.g. among
in an arbitrary high-level language. different bits of the same port), and allocates hardware compo-

The former approach uses, for example, Rate MonotoM€Nts to support memory-mapped I/O. The output of the algo-
Analysis (RMA [113]) to perform schedulability analysis. |fithm is a netlist of hardware components, initialization routines
the pure RMA model, tasks are invoked periodically, can be p,@nd I/O driver routines that can be called by the software gen-
empted, have deadlines equal to their invocation period, and s§&ation procedure whenever a communication between software
tem overhead (context switching, interrupt response time, ances§l hardware must take place.
on) is negligible. The basic result by Liu and Layland states thatGuptaet al. [56], [109] started their work on software syn-
under these hypotheses, if a given set of tasks can be succ#msis and scheduling by analyzing various implementation
fully scheduled by a static priority algorithm, then it can be su¢echniques for embedded software. Their specification model
cessfully scheduled by sorting tasks by invocation period, with a set of threads, extracted from a Control and DataFlow
the highest priority given to the task with the shortest period. Graph (CDFG) derived from a C-like HDL called Hardware-C.

The basic RMA model must be augmented to be practicdlhreads are concurrent loop-free routines, which invoke each
Several results from the real-time scheduling literature can @er as a basic synchronization mechanism. Statements within
used to develop a scheduling environment supporting procéséread are scheduled statically, at compile-time, while threads
synchronization, interrupt service routines, context switchirgje scheduled dynamically, at run-time. By using a concurrent
time, deadlines different from the task invocation period, mod@nguage rather than C, the translation problem becomes easier,
changes (which may cause a change in the number and/or dédl the authors can concentrate on the scheduling problem, to
lines of tasks), and parallel processors. Parallel processor sgipiulate the concurrency of threads. The authors compare the
port generally consists of analyzing the schedulability of a givéhherent advantages and disadvantages of two main techniques
assignment of tasks to processors, providing the designer viRimplement threads: coroutines and a single case statement (in
feedback about potential bottlenecks and sources of deadlockéich each branch implements a thread). The coroutine-based

Chouet al.[96] advocate developing new techniques based @@proach is more flexible (coroutines can be nested, e.g. to re-
a better knowledge of the domain. The problem they considesigond to urgent interrupts), but more expensive (due to the need
to find a valid schedule of processes specified in Verilog und@rswitch context) than the case-based approach.
given timing constraints. This approach, like that of Gupta et The same group developed in [133] a scheduling method for
al. described below, and unlike classical task-based scheduliagctive real-time systems. The cost model takes into account
methods, can take into account both fine-grained and coare processor type, the memory model, and the instruction exe-

384 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

TABLE IV
A COMPARISON OF SOFTWARE SCHEDULING METHOD.SS

Author Model Interface Constraint Granularity Scheduling Algorithm
Cochran [130] task list none task RMA (runtime)
Chou [96] task list synthesized task heuristic (static)
operation
Gupta [109] CDFG ? operation heuristic with look-head (static+runtime)
Chiodo [131] task list synthesized task RMA (runtime)
Menez [120] CDFG ? operation exhaustive

cution time. The latter is derived bottom-up from the CDFG bgetable compilation for a generic processor architecture. They
assigning a processor and memory-dependent cost to eachfieetis their optimization techniques towards highly asymmetric
operation in the CDFG. Some operations have an unboungedcessors, such as commercial Digital Signal Processors (in
execution time, because they are either data-dependent loopsiuich, for example, one register may only be used for mul-
synchronization (1/0O) operations. Timing constraints are basiplication, another one only for memory addressing, and so
cally data rate constraints on externally visible Input/ Outpon). Their register assignment scheme is based on the notion
operations. Bounded-time operations within a process are lof-classes of registers, describing which type of operation can
earized by a heuristic method (the problem is known to be NBse which register. This information is used during CDFG cov-
complete). The linearization procedure selects the next opegging with processor instructions [136] to minimize the number
tion to be executed among those whose predecessors havefathoves required to save registers into temporary locations.
been scheduled, according to: whether or not their imnmediateMarwedel [121] also uses a similar CDFG covering approach.
selection for scheduling can cause some timing constraint toTige source specification can be written in VHDL or in the
missed, and a measure of “urgency” that performs some limitPdscal-like language Mimola. The purpose is micro-code gen-
timing constraint lookahead. Unbounded-time operations, eration for Very Long Instruction Word (VLIW) processors, and
the other hand, are implemented by a call to the runtime schédlthis case the instruction set has not been defined yet. Rather,
uler, which may cause a context switch in favor of another moseminimum encoding of the control word is generated for each
urgent thread. control step. Control steps are allocated using an As Soon As

Chiodoet al.[134] also propose a software synthesis methdaoossfjblf golicy (ASAP, meaning that eagh hmicrc;)—operation is g
from extended asynchronous Finite State Machines (called ¢gh€duled to occur as soon as its operands have been computed,
design Finite State Machines, CFSMs). The method takes gqmpatibly with resource utilization conflicts). The control
vantage of optimization techniques from the hardware syntﬁ’égrd contains all the bits necessary to steer the execution units
sis domain. It uses a model based on multiple asynchronouigll);he specified architecture to perform all the micro-operations
communicating CFSMs, rather than a single FSM enabling”i"ceaCh step. Register allocation is done in order to minimize the
to handle systems with widely varying data rates and respofsinoer of temporary locations in memory due to register spills.
time requirements. Tasks are organized with different priority Tiwari et al. [137] describe a software analysis (rather than
levels, and scheduled according to classical run-time algorithi¥é'thesis) method aimed at estimating the power consumption
like RMA. The software synthesis technique is based on a vé}{2 Program on a given processor. Their power consumption
simple CDFG, representing the state transition and output fuffidode! is based on the analysis of single instructions, address-
tions of the CFSM. The nodes of the CDFG can only be of tWl§9 Modes, and instruction pairs (a simple way of modeling the
types: TEST nodes, which evaluate an expression and braR8fCt of the processor state). The model is evaluated by run-
according to its result, and ASSIGN nodes, which evaluate Bif'9 Penchmark programs for each of these characteristics, and

expression and assign its result to a variable. The authors Bi&asuring the current flow to and from the power and ground

velop a mapping from a representations of the state transitidfS:
and output functions using Binary Decision Diagrams ([81]) to
the CDFG form, and can thus use a body of well-developed op- V. CONCLUSIONS

timization techniques to minimize memory occupation and/or |, this paper we outlined some important aspects of the design
execution time. The simple CDFG form permits also an eagyocess for embedded systems, including specification models

and relatively accurate prediction of software cost and perfofag janguages, simulation, formal verification, partitioning and
mance, based on cost assignment to each CDFG node ([13%3dware and software synthesis.

The cost (code and data memory occupation) and performancey, design process is iterative—a design is transformed from

(clock cycles) of each node type can be evaluated with @ goglinformal description into a detailed specification usable for

degree of accuracy, based on a handful of system-specific H%\'nufacturing. The specification problem is concerned with the

rameters (e.g., the cost of a variable assignment, of an additigly e sentation of the design at each of these steps; the validation
of a branch). These parameters can be derived by compil

. X blem is to check that the representation is consistent both
and running a few carefully designed benchmarks on the tar in a step and between steps: and the synthesis problem is to
processor, or on a cycle-accurate emulator or simulator.

transform the design between steps.
Liem et al. [64] tackle a very different problem, that of retar- We argued that formal models are necessary at each step of

EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS

a design, and that there is a distinction between the language in
which the design is specified and its underlying model of com;
putation. Many models of computation have been defined, due
not just to the immaturity of the field but also to fundament
differences: the best model is a function of the design. The h J
erogeneous nature of most embedded systems makes muliile
models of computation a necessity. Many models of comp
tation are built by combining three largely orthogonal aspec
sequential behavior, concurrency, and communication.

We presented an outline of the tagged-signal model [8],
framework developed by two of the authors to contrast differef
models of computation. The fundamental entity in the model
is an event (a value/tag pair). Tags usually denote temporal Be-
havior, and different models of time appear as structure imposed
on the set of all possible tags. Processes appear as relations be-
tween signals (sets of events). The character of such a relafn
follows from the type of process it describes. [10]

Simulation and formal verification are two key validation
techniques. Most embedded systems contain both hardware
software components, and it is a challenge to efficiently simu-
late both components simultaneously. Using separate simulators
for each is often more efficient, but synchronization become
challenge. [13]

Formal verification can be roughly divided into theorem prov-
ing methods, finite automata methods, and infinite automaia
methods. Theorem provers generally assist designers in con-
structing a proof, rather than being fully automatic, but are able
to deal with very powerful languages. Finite-automata schemes
represent (either explicitly or implicitly) all states of the systerii5]
and check properties on this representation. Infinite-automata
schemes usually build finite partitions of the state space, often
by severely restricting the input language. [16]

In this paper, synthesis refers to a step in the design refine-
ment process where the design representation is made morghg-
tailed. This can be manual and/or automated, and is often di-
vided into mapping to architecture, partitioning, and componeng
synthesis. Automated architecture mapping, where the overal?
system structure is defined, often restricts the result to make the
problem manageable. Partitioning, where sections of the des}
are bound to different parts of the system architecture, is partic-
ularly challenging for embedded systems because of the elalB8+
rate cost functions due to their heterogeneity. Assigning an ex-
ecution order to concurrent modules, and finding a sequence of
instructions implementing a functional module are the primal&il
challenges in software synthesis for embedded systems.

s

(5]

[22]
VI. ACKNOWLEDGEMENTS

Edwards and Lee participated in this study as part of ﬂ[nzeg]
Ptolemy project, which is supported by the Advanced Reseaieh
Projects Agency and the U.S. Air Force (under the RASSP pro-
gram, contract F33615-93-C-1317), the State of California Mbs)
CRO program, and the following companies: Cadence, Dolby,
Hitachi, LG Electronics, Mitsubishi, Motorola, NEC, Philips 26]
and Rockwell. Lavagno and Sangiovanni-Vincentelli were pai-
tially supported by grants from Cadence, Magneti Marelli,
Daimler-Benz, Hitachi, Consiglio Nazionale delle Ricerche, tHé7]
MICRO program, and SRC. We also thank Harry Hsieh for hi§8]
help with a first draft of this work.

385

REFERENCES

G. Berry, Information Processingvol. 89, chapter Real Time program-
ming: Special purpose or general purpose languages, pp. 11-17, North
Holland-Elsevier Science Publishers, 1989.

R. Milner, M. Tofte, and R. HarperThe definition of Standard MIMIT
Press, 1990.

W. Wadge and E.A. Ashcroft,Lucid, the dataflow programming lan-
guage Academic Press, 1985.

A. Davie, An introduction to functional programming systems using
Haskell Cambridge University Press, 1992.

N. Halbwachs,Synchronous Programming of Reactive Systethswer
Academic Publishers, 1993.

K. McMillan, Symbolic model checkinglluwer Academic, 1993.

J. E. Stoy,Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Thearifhe MIT Press, Cambridge, MA, 1977.

E. A. Lee and A. Sangiovanni-Vincentelli, “The tagged signal model - a
preliminary version of a denotational framework for comparing models
of computation,” Tech. Rep., Electronics Research Laboratory, Univer-
sity of California, Berkeley, CA 94720, May 1996.

J. E. Hopcroft and J. D. Ullimanintroduction to Automata Theory, Lan-
guages, and Computatipiddison-Wesley, 1979.

J. T. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory
Using the Token Flow Model Ph.D. thesis, University of California,
Berkeley, 1993, Dept. of EECS, Tech. Report UCB/ERL 93/69.

E'Jd T. M. Parks, Bounded Scheduling of Process Networkh.D. thesis,

University of California, Berkeley, Dec. 1995, Dept. of EECS, Tech.
Report UCB/ERL 95/105.

J.C. Shepherdson and H. E. Sturgis, “Computability of recursive func-
tions,” Journal of the ACMvol. 10, no. 2, pp. 217-255, 1963.

G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of the IFIP Congress 74974, North-Holland Publishing
Co.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
A framework for simulating and prototyping heterogeneous systems,”
Int. Journal of Computer Simulatipnvol. 4, no. 155, pp. 155-
182, Apr. 1994, Special issue on simulation software development.
http://ptolemy.eecs.berkeley.edu/papers/JEurSim.ps.Z.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot, “Statemate: A working envi-
ronment for the development of complex reactive systehi&EE Trans.

on Software Engineeringol. 16, no. 4, Apr. 1990.

D. Drusinski and D. Harel, “On the power of bounded concurrency. I.
Finite automata.,"Journal of the Association for Computing Machinery
vol. 41, no. 3, pp. 517-539, May 1994.

M. von der Beeck, “A comparison of statecharts variants,’Pinc. of
Formal Techniques in Real Time and Fault Tolerant Systeér984, vol.

863 of LNCS pp. 128-148, Springer-Verlag.

W. Takach and A. Wolf, “An automaton model for scheduling constraints
in synchronous machinesifEEE Tr. on Computetsvol. 44, no. 1, pp. 1-
12, Jan. 1995.

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “A formal methodology for hard-
ware/software codesign of embedded systedtsFE Micro, Aug. 1994.
W.-T. Chang, A. Kalavade, and E. A. Lee, “Effective heterogeneous
design and cosimulation,” INATO Advanced Study Institute Work-
shop on Hardware/Software Codesjgnake Como, Italy, June 1995,
http://ptolemy.eecs.berkeley.edu/papers/effective.

Jr C. N. Coelho and G. De Micheli, “Analysis and synthesis of concurrent
digital circuits using control-flow expressionsJEEE Trans. on CAD

vol. 15, no. 8, pp. 854-876, Aug. 1996.

A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,”Proc. of the IEEE vol. 79, no. 9, pp. 1270-1282,
1991.

F. Boussinot and R. De Simone, “The ESTEREL languagegc. of the
IEEE, vol. 79, no. 9, 1991.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTREfoc. of the IEEEvol. 79,

no. 9, pp. 1305-1319, 1991.

A. Benveniste and P. Le Guernic, “Hybrid dynamical systems theory and
the SIGNAL language,”IEEE Transactions on Automatic Contralol.

35, no. 5, pp. 525-546, May 1990.

F. Maraninchi, “The Argos language: Graphical representation of au-
tomata and description of reactive systems,Pioc. of the IEEE Work-
shop on Visual LanguageKobe, Japan, Oct. 1991.

D. Harel, “Statecharts: A visual formalism for complex systenS¢i.
Comput. Program.vol. 8, pp. 231-274, 1987.

G. Berry, “A hardware implementation of pure Esterel,”Rroc. of the

Int. Workshop on Formal Methods in VLSI Desidan. 1991.

386

[29]

(30]

[31]
(32]

(33]

[34]

[35]
[36]

[37]

(38]
(39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]
[47]
(48]

[49]
[50]

[51]

[52]
(53]
(54]

(58]

[56]

[57]
(58]

(59]

(60]

F. Rocheteau and N. Halbwachs, “Implementing reactive programs 1]
circuits: A hardware implementation of LUSTRE,” Real-Time, Theory

in Practice, REX Workshop Proceeding4ook, Netherlands, June 1992,
vol. 600 of LNCS pp. 195-208, Springer-Verlag. [62]
T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proc. of the European Design and Test Confereridar.
1996.

E. A. Lee and T. M. Parks, “Dataflow process networkBfoc. of the
IEEE, May 1995, http://ptolemy.eecs.berkeley.edu/papers/processNets.
S. S. Bhattacharyya, P. K. Murthy, and E. A. LeBpftware Synthesis [64]
from Dataflow GraphsKluwer Academic Press, Norwood, Mass, 1996.
W.-T. Chang, S.-H. Ha, and E. A. Lee, “Heterogeneous simulation - mix-
ing discrete-event models with dataflon]” on VLSI Signal Processing [65]
1996, to appear.

R. M. Karp and R. E. Miller, “Properties of a model for parallel compu-

(63]

tations: Determinacy, termination, queuein§/AM Journa) vol. 14, pp. [66]
1390-1411, Nov. 1966.

E. A. Lee and D. G. Messerschmitt, “Synchronous data floieEE
ProceedingsSept. 1987. [67]
R. Lauwereins, P. Wauters, M. &dand J. A. Peperstraete, “Geomet-

ric parallelism and cyclostatic dataflow in GRAPE-II,” Rroc. 5th Int.
Workshop on Rapid System Prototypi@enoble, France, June 1994. [68]
G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Static
scheduling of multi-rate and cyclo-static DSP applications,” Pioc.

1994 Workshop on VLSI Signal Processih§94, IEEE Press. [69]

D. J. Kaplan et al., “Processing graph method specification version 1.0,”
The Naval Research Laboratory, Washington D.C., Dec. 1987.

R. Jagannathan, “Parallel execution of GLU programs2nd Int. Work-

shop on Dataflow Computingdamilton Island, Queensland, Australia,[70]
May 1992.

W. B. Ackerman, “Data flow languagesComputer vol. 15, no. 2, 1982.

N. Carriero and D. Gelernter, “Linda in contextComm. of the ACM [71]
vol. 32, no. 4, pp. 444-458, Apr. 1989.

F. Commoner and A. W. Holt, “Marked directed graphslburnal of
Computer and System Sciencedl. 5, pp. 511-523, 1971. [72]
P. A. Suhler, J. Biswas, K. M. Korner, and J. C. Browne, “Tdfl: A task-
level dataflow language,J. on Parallel and Distributed Systemsl. 9,

no. 2, June 1990. [73]
Arvind and K. P. Gostelow, “The U-InterpreterComputer vol. 15, no.
2,1982. [74]

J. Rasure and C. S. Williams, “An integrated visual language and soft-
ware development environmentgburnal of Visual Languages and Com-
puting, vol. 2, pp. 217-246, 1991.

C. A. R. Hoare, “Communicating sequential process&sgmm. of the [75]
ACM, vol. 21, no. 8, 1978.

R. Milner, Communication and ConcurrenciPrentice-Hall, Englewood
Cliffs, NJ, 1989.

J. L. PetersonpPetri Net Theory and the Modeling of SysterRsentice-
Hall Inc., Englewood Cliffs, NJ, 1981.

W. Reisig, Petri Nets: An Introduction Springer-Verlag, 1985.

A. Valmari, “A stubborn attack on state explosiorformal Methods in [77]
System Desigrvol. 1, no. 4, pp. 297-322, 1992.

P. Godefroid, “Using partial orders to improve automatic verificatiofi78]
methods,” inProc. of the Computer Aided Verification Worksh&oM
Clarke and R.P. Kurshan, Eds., 1990, DIMACS Series in Discrete Math-

[76]

ematica and Theoretical Computer Science, 1991, pages 321-340. [79]
E. Dijkstra, “Cooperating sequential processes,Pigramming Lan-
guagesE. F. Genuys, Ed. Academic Press, New York, 1968.

R. P. Kurshan, Automata-Theoretic Verification of Coordinating Pro-
cessesPrinceton University Press, 1994. [80]

J. Burch, E. Clarke, K. McMillan, and D. Dill, “Sequential circuit verifi-
cation using symbolic model checking,” Rroc. of the Design Automa- [81]
tion Conf, 1990, pp. 46-51.

R. Alur and T.A. Henzinger, “Logics and models of real time: A survey,[82]
in Real-Time: Theory in Practice. REX Workshop Prdcw. de Bakker,

C. Huizing, W.P. de Roever, and G. Rozenberg, Eds., 1992.

R. K. Gupta, C. N. Coelho Jr., and G. De Micheli, “Synthesis and sinj83]
ulation of digital systems containing interacting hardware and software
components,” irProc. of the Design Automation Condune 1992.

J. Rowson, “Hardware/software co-simulation,” Rnoc. of the Design [84]
Automation Conf.1994, pp. 439-440.

J. Wilson, “Hardware/software selected cycle solution,’Pioc. of the

Int. Workshop on Hardware-Software Codesi894. [85]
D.E. Thomas, J.K. Adams, and H. Schmitt, “A model and methodology
for hardware-software codesign|EEE Design and Test of Computers

vol. 10, no. 3, pp. 6-15, Sept. 1993. [86]
K. ten Hagen and H. Meyr, “Timed and untimed hardware/software
cosimulation: application and efficient implementation,”Aroc. of the

Int. Workshop on Hardware-Software Codesi@rct. 1993.

PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366—-390

A. Kalavade and E. A. Lee, “Hardware/software co-design using Ptolemy
— a case study,” iProc. of the Int. Workshop on Hardware-Software
Codesign Sept. 1992.

S. Sutarwala and P. Paulin, “Flexible modeling environment for embed-
ded systems design,” IAroc. of the Int. Workshop on Hardware-Software
Codesign1994.

S. Lee and J.M. Rabaey, “A hardware-software co-simulation environ-
ment,” in Proc. of the Int. Workshop on Hardware-Software Codesign
Oct. 1993.

C. Liem, T. May, and P. Paulin, “Register assignment through resource
classification for ASIP microcode generation,” Rnoc. of the Int. Conf.

on Computer-Aided DesigiNov. 1994.

D.L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-
Independent CircuitsThe MIT Press, Cambridge, Mass., 1988, An ACM
Distinguished Dissertation 1988.

M.J.C. Gordon and T.F. Melham, Eddntroduction to HOL: a theorem
proving environment for higher order logi€ambridge University Press,
1992.

R.S. Boyer, M. Kaufmann, and J.S. Moore, “The Boyer-Moore theorem
prover and its interactive enhancemer@@mputers & Mathematics with
Applications pp. 27-62, Jan. 1995.

S. Owre, J.M. Rushby, and N. Shankar, “PVS: a prototype verifica-
tion system,” inllth Int. Conf. on Automated Deductiodune 1992,
Springer-Verlag.

O. Coudert, C. Berthet, and J. C. Madre, “Verification of Sequential Ma-
chines Using Boolean Functional Vectors,"IMEC-IFIP Int'l Workshop

on Applied Formal Methods for Correct VLSI Desigdovember 1989,

pp. 111-128.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of
finite-state concurrent systems using temporal logic specificatio@iyi
TOPLASvol. 8, no. 2, 1986.

J. P. Queille and J. Sifakis, “Specification and verification of concur-
rent systems in Cesar,” imt. Symposium on Programmingpril 1982,
LNCS 137, Springer Verlag.

A. Pnueli, “The temporal logics of programs,” Rroc. of the18t" An-
nual Symposium on Foundations of Computer Scieklesyy 1977, IEEE
Press.

Z. Manna and A. PnueliThe temporal logic of reactive and concurrent
systemsSpringer-Verlag, 1992.

R. Alur and D. Dill, “Automata for Modeling Real-Time Systems,"Ani-
tomata, Languages and Programming: 17th Annual Colloguiif90,

vol. 443 of Lecture Notes in Computer Sciengp. 322-335, Warwick
University, July 16-20.

P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in4th ACM Symp. on Principles of Programming Languages
Los Angeles, January 1977.

J. McManis and P. Varaiya, “Suspension automata: a decidable class of
hybrid automata,” inProc. of the Sixth Workshop on Computer-Aided
Verification 1994, pp. 105-117.

J. R. Burch, Automatic Symbolic Verification of Real-Time Concurrent
SystemsPh.D. thesis, Carnegie Mellon University, Aug. 1992.

E. Clarke, O. Grumberg, and D. Long, “Model checking and abstraction,”
ACM Trans. on Programming Languages and Systewis 16, no. 5, pp.
1512-1542, Sept. 1994.

A. Mazurkiewicz, “Traces, histories, graphs: Instances of a process
monoid,” in Proc. Conf. on Mathematical Foundations of Computer Sci-
ence M. P. Chytil and V. Koubek, Eds. 1984, vol. 176ldfICS Springer-
Verlag.

M. L. de Souza and R. de Simone, “Using partial orders for verifying
behavioral equivalences,” ifroc. of CONCUR '951995.

R. Bryant, “Graph-based algorithms for boolean function manipulation,”
|EEE Trans. on Computersol. C-35, no. 8, pp. 677—691, August 1986.
J.R. Burch and D.L. Dill, “Automatic verification of pipelined micro-
processor control,” ifProc. of the Sixth Workshop on Computer-Aided
Verification 1994, pp. 68—80.

R.E. Bryant and Y-A Chen, “Verification of arithmetic circuits with Bi-
nary Moment Diagrams,” ifProc. of the Design Automation Cont995,

pp. 535-541.

F. Balarin and A. Sangiovanni-Vincentelli, “A verification strategy
for timing-constrained systems,” iRroc. of the Fourth Workshop on
Computer-Aided Verificatiqri992, pp. 148-163.

R. Alur, A. Itai, R. Kurshan, and M. Yannakakis, “Timing verification by
successive approximation,” Proc. of the Computer Aided Verification
Workshop 1993, pp. 137-150.

J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt, “Ptolemy: a frame-
work for simulating and prototyping heterogeneous systeniafern-
tional Journal of Computer Simulatiowol. special issue on Simulation
Software Development, January 1990.

[87]

(88]
(89]

[90]

[91]

(92]

(93]

(94]

[95]
[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

D. Harel, H. Lachover, A. Naamad, A. Pnueli, et al., “STATEMATE: a
working environment for the development of complex reactive systems,”
IEEE Trans. on Software Engineeringpl. 16, no. 4, Apr. 1990.
P. J. Ramadge and W. M. Wonham, “The control of discrete event sys-
tems,” Proc. of the IEEEvol. 77, no. 1, January 1989.

G. Hoffmann and H. Wong-Toi, “Symbolic synthesis of supervisory corl116]

trollers,” in American Control Conference, Chicaghune 1992.

M. Di Benedetto, A. Saldanha, and A. Sangiovanni-Vincentelli, “Stronf17]

model matching for finite state machines,”Rroc. of the Third European
Control Conf, Sept. 1995.

M. Theissinger, P. Stravers, and H. Veit, “CA<E: an inteactive envi-
ronment for hardware-software co-design,’Froc. of the Int. Workshop
on Hardware-Software Codesigh994.

S. Kumar, J. H. Aylor, B. W. Johnson, and W. A. Wulf, “A framework for
hardware/software codesign,” Broc. of the Int. Workshop on Hardware-
Software Codesigrept. 1992.

S. Kumar, J. H. Aylor, B. Johnson, and W. Wulf, “Exploring hard-
ware/software abstractions and alternatives for codesign,Prat. of
the Int. Workshop on Hardware-Software CodesiQnt. 1993.

S. Prakash and A. Parker,
processor architectures,” Proc. of the Design Automation Confune
1991.

F. Vahid and D. G. Gajski, “Specification partitioning for system design[”123]

in Proc. of the Design Automation Conjune 1992.

P. Chou, E.A. Walkup, and G. Borriello, “Scheduling for reactive reaI[124]

time systems,1EEE Micro, vol. 14, no. 4, pp. 37-47, Aug. 1994.

J. Henkel, R. Emst, U. Holtmann, and T. Benner, "Adaptation of partj1 25

tioning and high-level synthesis in hardware/software co-synthesis,” in
Proc. of the Int. Conf. on Computer-Aided Desi¢fov. 1994.

K. Olokutun, R. Helaihel, J. Levitt, and R. Ramirez, “A software-
hardware cosynthesis approach to digital system simulati&EE Mi-
cro, vol. 14, no. 4, pp. 48-58, Aug. 1994.

X. Hu, J.G. D’Ambrosio, B. T. Murray, and D-L Tang, “Codesign of[128]

architectures for powertrain moduleslEEE Micro, vol. 14, no. 4, pp.
48-58, Aug. 1994.

E. Barros, W. Rosenstiel, and X. Xiong, “Hardware/software partitiorj129]

ing with UNITY,” in Proc. of the Int. Workshop on Hardware-Software
Codesign Oct. 1993.

E. Barros and A. Sampaio, “Towards provably correct hardware/softwefe30]

partitioning using OCCAM,” inProc. of the Int. Workshop on Hardware-
Software CodesigrOct. 1994.

A. Kalavade and E.A. Lee, “A global criticality/local phase driven al{131]

gorithm for the constrained hardware/software partitioning problem,” in
Proc. of the Int. Workshop on Hardware-Software Codesig®4.

J.K. Adams, H. Schmitt, and D.E. Thomas, “A model and methodol132]

ogy for hardware-software codesign,” Rroc. of the Int. Workshop on
Hardware-Software Codesig@®ct. 1993.

P. Eles, Z. Peng, and A. Doboli, “VHDL system-level specification anti33]

partitioning in a hardware/software cosynthesis environment,Prac.
of the Int. Workshop on Hardware-Software Codesigept. 1994.

W. Luk and T. Wu, “Towards a declarative framework for hardwarg134]

software codesign,” iProc. of the Int. Workshop on Hardware-Software
Codesign1994.

U. Steinhausen, R. Camposano, H Gunther, P. Ploger, M. Theissingi%S]

et al., “System-synthesis using hardware/software codesigitdo. of
the Int. Workshop on Hardware-Software CodesiQnt. 1993.

T.B. Ismail, M. Abid, and A.A. Jerraya, “COSMOS: a codesign approacﬁ%]

for communicating systems,” iAroc. of the Int. Workshop on Hardware-
Software Codesigri1994.

S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sciuto, “A methodolog)flgn

for control-dominated systems codesign,” Rroc. of the Int. Workshop

on Hardware-Software Codesigh994.

R. K. Gupta, C. N. Coelho Jr., and G. De Micheli, “Program implemen-
tation schemes for hardware-software systemdEEE Computer pp.
48-55, Jan. 1994.

R. Ernst and J. Henkel, “Hardware-software codesign of embedded con-
trollers based on hardware extraction,” Rroc. of the Int. Workshop on
Hardware-Software CodesigSept. 1992.

J. Henkel, T. Benner, and R. Ernst, “Hardware generation and partition-
ing effects in the COSYMA system,” iRroc. of the Int. Workshop on
Hardware-Software Codesig@®ct. 1993.

J.G. D’Ambrosio and X.B. Hu, “Configuration-level hardware/software
partitioning for real-time embedded systems,”Froc. of the Int. Work-
shop on Hardware-Software Codesjidr994.

C. Liu and J.W Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environmentJournal of the ACMvol. 20, no. 1, pp.
44-61, Jan. 1973.

D. D. Gajski, S. Narayan, L. Ramachandran, and F. Vahid, “System

[115]

[118]

[119]
[120]

[121]
“Synthesis of application-specific mu'fiZZ]

[126]

[127]

design methodologies: aiming at the 100 h design cydEEE Trans.

on VLS| vol. 4, no. 1, Mar. 1996.

J. Wilberg, R. Camposano, and W. Rosenstiel, “Design flow for hard-
ware/software cosynthesis of a video compression systemiran. of

the Int. Workshop on Hardware-Software Codesit@o4.

J. Hoogerbrugge and H. Corporaal, “Transport-triggering vs. operation-
triggering,” in5th Int. Conf. on Compiler Constructipépr. 1994.

M. Voss, T. Ben Ismail, A.A. Jerraya, and K-H. Kapp, “Towards a the-
ory for hardware-software codesign,” Rroc. of the Int. Workshop on
Hardware-Software Codesigi994.

S. Saracco, J. R. W. Smith, and R. Red@lecommunications Systems
Engineering Using SDLNorth-Holland - Elsevier, 1989.

E. Walkup and G. Borriello, “Automatic synthesis of device drivers
for hardware-software codesign,” iRroc. of the Int. Workshop on
Hardware-Software Codesig@ct. 1993.

G. Menez, M. Auguin, F Beri, and C. Cargte, “A partitioning algo-
rithm for system-level synthesis,” Proc. of the Int. Conf. on Computer-
Aided DesignNov. 1992.

P. Marwedel, “Tree-based mapping of algorithms to predefined struc-
tures,” inProc. of the Int. Conf. on Computer-Aided Desifjfov. 1993.

P. Paulin, “DSP design tool requirements for embedded systems: a
telecommunications industrial perspectivégurnal of VLSI Signal Pro-
cessingvol. 9, no. 1-2, pp. 22-47, Jan. 1995.

G. De Micheli, Synthesis and optimization of digital circyitslcGraw-

Hill, 1994.

S. Devadas, A. Ghosh, and K. Keutzéggic synthesis McGraw-Hill,
1994.

R. Camposano and W. Wolf, EdsHigh-level VLSI synthesisKluwer
Academic Publishers, 1991.

P. Marwedel and G. Goossens, Edode generation for embedded pro-
cessors Kluwer Academic Publishers, 1995.

W.A. Halang and A.D. Stoyenko,Constructing predictable real time
systemsKluwer Academic Publishers, 1991.

G.C.SihandE. A. Lee, “Declustering: A new multiprocessor scheduling
technique,”IEEE Trans. on Parallel and Distributed Systerasl. 4, no.

6, pp. 625-637, June 1993.

G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE Trans. on Parallel and Distributed Systemsl. 4, no. 2, Feb. 1993.

M. Cochran, “Using the rate monotonic analysis to analyze the schedula-
bility of ADARTS real-time software designs,” iRroc. of the Int. Work-
shop on Hardware-Software Codesj@ept. 1992.

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Hardware/software codesign of embedded
systems,”"IEEE Micro, vol. 14, no. 4, pp. 26—36, Aug. 1994.

P. Chou and G. Borriello, “Software scheduling in the co-synthesis of
reactive real-time systems,” iRroc. of the Design Automation Conf.
June 1994.

R.K. Gupta and G. De Micheli, “Constrained software generation for
hardware-software systems,” roc. of the Int. Workshop on Hardware-
Software Codesigri994.

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Synthesis of software programs from
CFSM specifications,” irProc. of the Design Automation Conflune
1995.

K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient software perfor-
mance estimation methods for hardware/software codesigrRrda. of

the Design Automation Confl996.

C. Liem, T. May, and P. Paulin, “Instruction set matching and selection
for DSP and ASIP code generation,” Buropean Design and Test Canf.
Feb. 1994.

V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded soft-
ware: a first step towards software power minimizatid&EE Trans. on
VLSI Systemwsol. 2, no. 4, pp. 437-445, Dec. 1994.

