
366 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

Design of Embedded Systems: Formal Models,
Validation, and Synthesis

Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Alberto Sangiovanni-Vincentelli

Abstract—This paper addresses the design of reactive real-time embed-
ded systems. Such systems are often heterogeneous in implementation tech-
nologies and design styles, for example by combining hardware ASICs with
embedded software. The concurrent design process for such embedded sys-
tems involves solving the specification, validation, and synthesis problems.
We review the variety of approaches to these problems that have been taken.

I. I NTRODUCTION

Reactive real-time embedded systems are pervasive in the
electronics system industry. Applications include vehicle con-
trol, consumer electronics, communication systems, remote
sensing, and household appliances. In such applications, speci-
fications may change continuously, and time-to-market strongly
affects success. This calls for the use of software programmable
components with behavior that can be fairly easily changed.
Such systems, which use a computer to perform a specific func-
tion, but are neither used nor perceived as a computer, are gener-
ically known as embedded systems. More specifically, we are
interested in reactive embedded systems. Reactive systems are
those that react continuously to their environment at the speed
of the environment. They can be contrasted with interactive sys-
tems, which react with the environment at their own speed, and
transformational systems, which take a body of input data and
transform it into a body of output data [1].

A large percentage of the world-wide market for micro-
processors is filled by micro-controllers that are the pro-
grammable core of embedded systems. In addition to micro-
controllers, embedded systems may consist of ASICs and/or
field programmable gate arrays as well as other programmable
computing units such as Digital Signal Processors (DSPs).
Since embedded systems interact continuously with an envi-
ronment that is analog in nature, there must typically be com-
ponents that perform A/D and D/A conversions. A significant
part of the design problem consists of deciding the software and
hardware architecture for the system, as well as deciding which
parts should be implemented in software running on the pro-
grammable components and which should be implemented in
more specialized hardware.

Embedded systems often are used in life critical situations,
where reliability and safety are more important criteria than per-
formance. Today, embedded systems are designed with an ad
hoc approach that is heavily based on earlier experience with
similar products and on manual design. Use of higher level lan-
guages such as C helps somewhat, but with increasing complex-
ity, it is not sufficient. Formal verification and automatic synthe-
sis of implementations are the surest ways to guarantee safety.
However, both formal verification and synthesis from high lev-
els of abstraction have been demonstrated only for small, spe-
cialized languages with restricted semantics. This is at odds
with the complexity and heterogeneity found in typical embed-
ded systems.

system bus

ASIC microcontroller

control panel
real-time
operating
system

controller
process

user interface
process

programmable
DSP

DSP
assembly

code
programmable

DSP

dual-ported memory

DSP
assembly

code

CODEC

hardware software

Fig. 1. A typical reactive real-time embedded system architecture.

We believe that the design approach should be based on the
use of one or more formal models to describe the behavior of
the system at a high level of abstraction, before a decision on
its decomposition into hardware and software components is
taken. The final implementation of the system should be made
as much as possible using automatic synthesis from this high
level of abstraction to ensure implementations that are “correct
by construction.” Validation (through simulation or verification)
should be done as much as possible at the higher levels of ab-
straction.

A typical hardware architecture for an embedded system is
illustrated in Figure 1. This type of architecture combines cus-
tom hardware with embedded software, lending a certain mea-
sure of complexity and heterogeneity to the design. Even within
the software or hardware portions themselves, however, there
is often heterogeneity. In software, control-oriented processes
might be mixed under the supervision of a multitasking real-
time kernel running on a microcontroller. In addition, hard-real-
time tasks may run cooperatively on one or more programmable
DSPs. The design styles used for these two software subsystems
are likely to be quite different from one another, and testing the
interaction between them is unlikely to be trivial.

The hardware side of the design will frequently contain one or
more ASICs, perhaps designed using logic or behavioral synthe-
sis tools. On the other hand, a significant part of the hardware
design most likely consists of interconnections of commodity
components, such as processors and memories. Again, this time
on the hardware side, we find heterogeneity. The design styles
used to specify and simulate the ASICs and the interconnected
commodity components are likely to be quite different. A typi-
cal system, therefore, not only mixes hardware design with soft-
ware design, but also mixes design styles within each of these
categories.

Most often the set of tasks that the system implements are not
specified in a rigorous and unambiguous fashion, so the design



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 367

process requires several iterations to obtain convergence. More-
over, during the design process, the level of abstraction, detail,
and specificity in different parts of the design varies. To com-
plicate matters further, the skill sets and design styles used by
different engineers on the project are likely to be different. The
net result is that during the design process, many different spec-
ification and modeling techniques will be used.

Managing the design complexity and heterogeneity is the key
problem. We believe that the use of formal models and high-
level synthesis for ensuring safe and correct designs depends on
understanding the interaction between diverse formal models.
Only then can the simplicity of modeling required by verifica-
tion and synthesis be reconciled with the complexity and hetero-
geneity of real-world design.

The concurrent design process for mixed hardware/software
embedded systems involves solving the following sub-
problems: specification, validation, and synthesis. Although
these problems cannot be entirely separated, we deal with them
below in three successive sections.

II. SPECIFICATION AND MODELING

The design process is often viewed as a sequence of steps
that transforms a set of specifications described informally into a
detailed specification that can be used for manufacturing. All the
intermediate steps are characterized by a transformation from a
more abstract description to a more detailed one.

A designer can perform one or more steps in this process. For
the designer, the “input” description is aspecification, the final
description of the design is animplementation. For example,
a software designer may see a set of routines written in C as
an implementation of her/his design even though several other
steps may be taken before the design is ready for manufacturing.
During this process, verification of the quality of the design with
respect to the demands placed on its performance and function-
ality has to be carried out. Unfortunately, the descriptions of the
design at its various stages are often informal and not logically
connected by a set of precise relationships.

We advocate a design process that is based on representa-
tions with precise mathematical meaning so that both the ver-
ification and the map from the initial description to the various
intermediate steps can be carried out with tools of guaranteed
performance. Such an approach is standard in certain communi-
ties, where languages with strong formal properties are used to
ensure robust design. Examples include ML [2], dataflow lan-
guages (e.g. Lucid [3], Haskell [4]) and synchronous languages
(e.g., Lustre, Signal, Esterel [5]).

There is a broad range of potential formalizations of a design,
but most tools and designers describe the behavior of a design
as a relation between a set of inputs and a set of outputs. This
relation may be informal, even expressed in natural language. It
is easy to find examples where informal specifications resulted
in unnecessary redesigns. In our opinion, aformal model of a
designshould consist of the following components:
1. A functional specification, given as a set of explicit or im-

plicit relations which involve inputs, outputs and possibly in-
ternal (state) information.1

1We will define later on what we mean exactly by inputs, outputs and state
information. For now, consider them as sequences of values.

2. A set of propertiesthat the design must satisfy, given as a
set of relations over inputs, outputs, and states, that can be
checked against the functional specification.

3. A set of performance indicesthat evaluate the quality of the
design in terms of cost, reliability, speed, size, etc., given as
a set of equations involving, among other things, inputs and
outputs.

4. A set of constraintson performance indices, specified as a
set of inequalities.
The functional specification fully characterizes the operation

of a system, while the performance constraints bound the cost
(in a broad sense). The set of properties is redundant, in that in
a properly constructed design, the functional specification sat-
isfies these properties. However, the properties are listed sepa-
rately because they are simpler and more abstract (and also in-
complete) compared to the functional specification. A property
is an assertion about the behavior, rather than a description of the
behavior. It is an abstraction of the behavior along a particular
axis. For example, when designing a network protocol, we may
require that the design never deadlock (this is also called alive-
nessproperty). Note that liveness does not completely specify
the behavior of the protocol; it is instead a property we require
our protocol to have. For the same protocol, we may require
that any request will eventually be satisfied (this is also called
fairness). Again this does not completely specify the behavior
of the protocol but it is a required property.

Given a formal model of the functional specifications and of
the properties, we can classify properties in three groups:
1. Properties that areinherentin the model of computation (i.e.,

they can be shown formally to hold for all specifications de-
scribed using that model).

2. Properties that can be verifiedsyntacticallyfor a given speci-
fication (i.e., they can be shown to hold with a simple, usually
polynomial-time, analysis of the specification).

3. Properties that must be verifiedsemanticallyfor a given
specification (i.e., they can be shown to hold by executing,
at least implicitly, the specification for all inputs that can oc-
cur).
For example, consider the property ofdeterminate behavior,

i.e., the fact that the output of a system depends only on its inputs
and not on some internal, hidden choice. Any design described
by a dataflow network (a formal model to be described later) is
determinate, and hence this property need not be checked. If
the design is represented by a network of FSMs, determinacy
can be assessed by inspection of the state transition function.
In some discrete event models (for example those embodied in
Verilog and VHDL) determinacy is difficult to prove: it must be
checked by exhaustive simulation.

The design process takes a model of the design at a level of
abstraction andrefinesit to a lower one. In doing so, the de-
signer must ensure that the properties at that level of abstraction
are verified, that the constraints are satisfied, and that the perfor-
mance indices are satisfactory. The refinement process involves
also mapping constraints, performance indices and properties to
the lower level so that they can be computed for the next level
down.2 Figure 2 shows a key refinement stage in embedded sys-
tem design. The more abstract specification in this case is an

2The refinement process can be defined formally once the models of the de-
sign are formally specified, see McMillan [6].



368 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

imperative FSMs dataflow
discrete
event

compiler
software
synthesis

behavioral
synthesis

logic
synthesis

partitioning

processor
model

processor
model

logic
model

logic
model

Specification

Refinement

Model

decreasing abstraction

Fig. 2. An example of a design refinement stage, which uses hardware and soft-
ware synthesis to translate a functional specification into a model of hard-
ware.

executable functional model that is closer to the problem level.
The specification undergoes a synthesis process (which may be
partly manual) that generates a model of an implementation in
hardware. That model itself may still be fairly abstract, cap-
turing for example only timing properties. In this example the
model is presumably used for hardware/software partitioning.

While figure 2 suggests a purely top-down process, any real
design needs more interaction between specification and imple-
mentation. Nonetheless, when a design is complete, the best
way to present and document it is top down. This is enough to
require that the methodology support top-down design.

A. Elements of a Model of Computation

A languageis a set of symbols, rules for combining them (its
syntax), and rules for interpreting combinations of symbols (its
semantics). Two approaches to semantics have evolved,denota-
tional andoperational. A language can have both (ideally they
are consistent with one another, although in practice this can be
difficult to achieve). Operational semantics, which dates back
to Turing machines, gives meaning of a language in terms of
actions taken by some abstract machine, and is typically closer
to the implementation. Denotational semantics, first developed
by Scott and Strachey [7], gives the meaning of the language in
terms of relations.

How the abstract machine in an operational semantics can
behave is a feature of what we call themodel of computation
underlying the language. The kinds of relations that are possi-
ble in a denotational semantics is also a feature of the model of
computation. Other features include communication style, how
individual behavior is aggregated to make more complex com-
positions, and how hierarchy abstracts such compositions.

A design (at all levels of the abstraction hierarchy from func-
tional specification to final implementation) is generally repre-
sented as a set of components, which can be considered as iso-
lated monolithic blocks, interacting with each other and with an
environment that is not part of the design. The model of compu-
tation defines the behavior and interaction of these blocks.

In the sections that follow, we present a framework for com-
paring elements of different models of computation, called the
tagged-signal model, and use it to contrast different styles of
sequential behavior, concurrency, and communication. We will

give precise definitions for a number of terms, but these defini-
tions will inevitably conflict with standard usage in some com-
munities. We have discovered that, short of abandoning the use
of most common terms, no terminology can be consistent with
standard usage in all related communities. Thus we attempt
to avoid confusion by being precise, even at the risk of being
pedantic.

A.1 The Tagged-Signal Model

Two of the authors (Lee and Sangiovanni-Vincentelli) have
proposed the tagged-signal model [8], a formalism for describ-
ing aspects of models of computation for embedded system
specification. It is denotational in the Scott and Strachey [7]
sense, and it defines a semantic framework (of signals and pro-
cesses) within which models of computation can be studied and
compared. It is very abstract—describing a particular model of
computation involves imposing further constraints that make it
more concrete.

The fundamental entity in the Tagged-Signal Model is an
event—a value/tag pair. Tags are often used to denote temporal
behavior. A set of events (an abstract aggregation) is a signal.
Processes are relations on signals, expressed as sets ofn-tuples
of signals. A particular model of computation is distinguished
by the order it imposes on tags and the character of processes in
the model.

Given a set ofvaluesV and a set oftagsT , an eventis a
member ofT × V , i.e., an event has a tag and a value. Asignal
s is a set of events. A signal can be viewed as a subset ofT ×V .
A functional signalis a (possibly partial) function fromT to
V . The set of all signals is denotedS. A tupleof n signals is
denoteds, and the set of all such tuples is denotedSn.

The different models of time that have been used to model
embedded systems can be translated into different order rela-
tions on the set of tagsT in the tagged signal model. In particu-
lar, in atimed systemT is totally ordered, i.e., there is a binary
relation< on members ofT such that ift1, t2 ∈ T andt1 6= t2,
then eithert1 < t2 or t2 < t1. In anuntimed system, T is only
partially ordered.

A processP with n signals is a subset of the set of alln-tuples
of signals,Sn for somen. A particulars ∈ Sn is said tosatisfy
the process ifs ∈ P . An s that satisfies a process is called
a behaviorof the process. Thus aprocessis a set of possible
behaviors, or a relation between signals.

For many (but not all) applications, it is natural to partition
the signals associated with a process intoinputsandoutputs. In-
tuitively, the process does not determine the values of the inputs,
and does determine the values of the outputs. Ifn = i + o, then
(Si, So) is a partition ofSn. A process withi inputs ando out-
puts is a subset ofSi × So. In other words, a process defines
a relation between input signals and output signals. A(i + o)-
tuples ∈ Si+o is said tosatisfyP if s ∈ P . It can be written
s = (s1, s2), wheres1 ∈ Si is an i-tuple of input signalsfor
processP ands2 ∈ So is ano-tuple ofoutput signalsfor pro-
cessP . If the input signals are given bys1 ∈ Si, then the set
I = {(s1, s2) | s2 ∈ So} describes the inputs, andI ∩ P is the
set of behaviors consistent with the inputs1.

A processF is functionalwith respect to a partition if it is a
single-valued, possibly partial, mapping fromSi to So. That is,
if (s1, s2) ∈ F and(s1, s3) ∈ F , thens2 = s3. In this case,



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 369

we can writes2 = F (s1), whereF : Si → So is a (possibly
partial) function. Given the input signals, the output signals are
determined (or there is unambiguously no behavior).

Consider, as a motivating example introducing these several
mechanisms to denote temporal behavior, the problem of mod-
eling a time-invariant dynamical system on a computer. The
underlying mathematical model, a set of differential equations
over continuous time, is not directly implementable on a digital
computer, due to the double quantization of real numbers into
finite bit strings, and of time into clock cycles. Hence a first
translation is required, by means of anintegration rule, from the
differential equations to a set ofdifference equations, that are
used to compute the values of each signal with a given tag from
the values of some other signals with previous and/or current
tags.

If it is possible to identify several strongly connected compo-
nents in the dependency graph3, then the system isdecoupled. It
becomes then possible to go from the total order of tags implicit
in physical time to apartial order imposed by the depth-first or-
dering of the components. This partial ordering gives us some
freedom in implementing the integration rule on a computer. We
could, for example, play with scheduling by embedding the par-
tial order into the total order among clock cycles. It is often
convenient, for example, to evaluate a component completely,
for all tags, before evaluating components that depend on it. Or
it is possible to spread the computation among multiple proces-
sors.

In the end, time comes back into the picture, but thedou-
ble mapping, from total to partial order, and back to total order
again, is essential to
1. prove propertiesabout the implementation (e.g., stability of

the integration method, a bound on the maximum execution
time, . . . ),

2. optimize the implementation with respect to a given cost
function (e.g., size of the buffers required to hold intermedi-
ate signals versus execution time, satisfaction of a constraint
on the maximum execution time, . . . ),

A.2 State

Most models of computation include components with state,
where behavior is given as a sequence of state transitions. In
order to formalize this notion, let us consider a processF that is
functional with respect to partition(Si, So). Let us assume for
the moment thatF belongs to a timed system, in which tags are
totally ordered. Then for any tuple of signalss, we can define
s>t to be a tuple of the (possibly empty) subset of the events in
s with tags greater thant.

Two input signal tuplesr, s ∈ Si are in relationEF
t (denoted

(ri, si) ∈ EF
t ) if r>t = s>t impliesF (r)>t = F (s)>t. This

definition intuitively means that processF cannot distinguish
between the “histories” ofr ands prior to timet. Thus, if the
inputs are identical after timet, then the outputs will also be
identical.

EF
t is an equivalence relation, partitioning the set of input

signal tuples into equivalence classes for eacht. Following a
long tradition, we call these equivalence classes thestatesof F .
In the hardware community, components with only one state for

3A directed graph with a node for each signal, and an edge between two sig-
nals whenever the equation for the latter depends on the former.

eacht are calledcombinational, while components with more
than one state for somet are calledsequential. Note however
that the term “sequential” is used in very different ways in other
communities.

A.3 Decidability

Components with afinitenumber of states differ significantly
from those with aninfinitenumber of states. For certain infinite-
state models (those that are Turing-complete), many desirable
properties are undecidable—they cannot be determined in a fi-
nite amount of time for all systems. These properties include
whether a system will need more memory than is available,
whether a system will halt, and how fast a system will run.
Hopcroft and Ullman [9] discuss these issues at length.

Undecidability is not an insurmountable barrier, and decid-
ability is not sufficient to answer all questions in practice (e.g.,
because the required run-time may be prohibitive). Many suc-
cessful systems have been designed using undecidable lan-
guages (i.e., those in which questions about some programs are
undecidable). Although no algorithm can solve an undecidable
problem forall systems, algorithms exist that can solve them
for mostsystems. Buck’s Boolean Dataflow scheduler [10], for
example, can answer the halting and bounded memory prob-
lems for many systems specified in a Turing-complete dataflow
model, although it does, necessarily, fail to reach a conclusion
for some systems.

The non-terminating nature of embedded systems opens the
possibility of using infinite time to solve certain undecidable
problems. Parks’ [11] scheduler, for example, will execute a
potentially infinite-state system forever in bounded memoryif it
is possible to do so. However, it does not answer the question
of how much memory is needed or whether the program will
eventually halt.

The classical von Neumann model of computation4 is a fa-
miliar model of sequential behavior. A memory stores the state
and a processor advances the state through a sequence of mem-
ory operations. Most commonly-used programming languages
(e.g., C, C++, Lisp, Pascal,FORTRAN) use this model of com-
putation. Often, the memory is viewed as having an unbounded
number of finite-valued words, which, when coupled with an
appropriate choice of processor instructions, makes the model
Turing complete5. Modern computer systems make this model
practical by simulating unbounded memory with an elaborate
hierarchy (registers, cache,RAM, hard disk). Few embedded
systems, however, can currently afford such a scheme.

A.4 Concurrency and Communication

While sequential or combinational behavior is related to in-
dividual processes, embedded systems will typically contain
several coordinated concurrent processes. At the very least,
such systems interact with an environment that evolves indepen-
dently, at its own speed. But it is also common to partition the
overall model into tasks that also evolve more or less indepen-
dently, occasionally (or frequently) interacting with one another.

4It is formalized in the abstract model called random access machine or ran-
dom access stored program [12].

5Turing-completeness can be obtained also with a finite number of infinite-
valued words.



370 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

Communication between processes can beexplicitor implicit.
In explicit communication, asenderprocess informs one or
morereceiverprocesses about some part of its state. In implicit
communication, two or more processes share a common notion
of state.

Time plays a larger role in embedded systems than in classical
computation. In classical transformational systems, the correct
result is the primary concern—when it arrives is less important
(althoughwhetherit arrives, the termination question,is impor-
tant). By contrast, embedded systems are usually real-time sys-
tems, where the time at which a computation takes place can be
more important than the computation itself.

As we discussed above, different models of time become dif-
ferent order relations on the set of tagsT in the tagged signal
model. Recall that in atimed systemT is totally ordered, while
in anuntimed systemT is only partially ordered. Implicit com-
munication generally requires totally ordered tags, usually iden-
tified with physical time.

The tags in ametric-time systemhave the notion of a “dis-
tance” between them, much like physical time. Formally, there
exists a partial functiond : T × T → R mapping pairs of
tags to real numbers such thatd(t1, t2) = 0 ⇔ t1 = t2,
d(t1, t2) = d(t2, t1) andd(t1, t2) + d(t2, t3) >= d(t1, t3).

A discrete-event systemis a timed system where the tags
in each signal are order-isomorphic with the integers (for a
two-sidedsystem) or the natural numbers (for aone-sidedsys-
tem) [8]. Intuitively, this means that any pair of ordered tags has
a finite number of intervening tags.

Two events aresynchronousif they have the same tag. Two
signals are synchronous if each event in one signal is syn-
chronous with an event in the other signal and vice versa. Asys-
temis synchronousif every signal in the system is synchronous
with every other signal in the system. Adiscrete-time systemis
a synchronous discrete-event system.

Synchronous/reactive languages (see e.g. [5]) are syn-
chronous in exactly this sense. The set of tags in a behavior of
the system denotes a global “clock” for the system. Every signal
conceptually has an event at every tag, although in some models
this event could have a value denoting the absence of an event
(calledbottom). At each clock tick, each process maps input val-
ues to output values. If cyclic communication is allowed, then
some mechanism must be provided to resolve or prevent circular
dependencies. One possibility is to constrain the output values
to have tags corresponding to the next tick. Another possibil-
ity (all too common) is to leave the result unspecified, resulting
in nondeterminacy (or worse, infinite computation within one
tick). A third possibility is to use fixed-point semantics, where
the behavior of the system is defined as a set of events that sat-
isfy all processes.

Concurrency in physical implementations of systems occurs
through some combination ofparallelism, having physically
distinct computational resources, andinterleaving, sharing of
a common physical resource. Mechanisms for achieving inter-
leaving vary widely, ranging from operating systems that man-
age context switches to fully-static interleaving in which con-
current processes are converted (compiled) into a single non-
concurrent process. We focus here on the mechanisms used to
manage communication between concurrent processes.

Parallel physical systems naturally share a common notion of

time, according to the laws of physics. The time at which an
event in one subsystem occurs has a natural ordering relation-
ship with the time at which an event occurs in another subsys-
tem. Physically interleaved systems also share a natural com-
mon notion of time.

Logical systems, on the other hand, need a mechanism to ex-
plicitly share a notion of time. Consider two imperative pro-
grams interleaved on a single processor under the control of
time-sharing operating system. Interleaving creates a natural or-
dering between events in the two processes, but this ordering is
generally unreliable, because it heavily depends on scheduling
policy, system load and so on. Some synchronization mecha-
nism is required if those two programs need to cooperate.

More generally, in logically concurrent systems, maintaining
a coherentglobalnotion of time as a total order on events, can be
extremely expensive. Hence in practice this is replaced when-
ever possible with anexplicit synchronization, in which this total
order is replaced by a partial order. Returning to the example of
two processes running under a time-sharing operating system,
we take precautions to ensure an ordering of two events only if
the ordering of these two events matters.

A variety of mechanisms for managing the order of events,
and hence for communicating information between processes,
has arisen. Some of the most common ones are:
• Unsynchronized

In an unsynchronized communication, a producer of infor-
mation and a consumer of the information are not coordi-
nated. There is no guarantee that the consumer reads valid in-
formation produced by the producer, and there is no guaran-
tee that the producer will not overwrite previously produced
data before the consumer reads the data. In the tagged-signal
model, the repository for the data is modeled as a process,
and the reading and writing events have no enforced ordering
relationship between their tags.

• Read-modify-write
Commonly used for accessing shared data structures, this
strategy locks a data structure between a read and write from
a process, preventing any other accesses. In other words, the
actions of reading, modifying, and writing are atomic (indi-
visible). In the tagged-signal model, the repository for the
data is modeled as a process where events associated with
this process are totally ordered (resulting in a globally par-
tially ordered model). The read-modify-write is modeled as
a single event.

• Unbounded FIFO buffered
This is a point-to-point communication strategy, where a pro-
ducer generates a sequence of data tokens and consumer con-
sumes these tokens, but only after they have been generated.
In the tagged-signal model, this is a simple connection where
the signal on the connection is constrained to have totally or-
dered tags. The tags model the ordering imposed by the FIFO
model. If the consumer implements blocking reads, then it
imposes a total order on events at all its input signals. This
model captures essential properties of both Kahn process net-
works and dataflow [13].

• Bounded FIFO buffered
In this case, the data repository is modeled as a process that
imposes ordering constraints on its inputs (which come from
the producer) and the outputs (which go to the consumer).



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 371

Each of the input and output signals are internally totally or-
dered. The simplest case is where the size of the buffer is
one, in which case the input and output events must be in-
terleaved so that each output event lies between two input
events. Larger buffers impose a maximum difference (often
calledsynchronic distance) between the number of input and
output events.
Note that some implementations of this communication
mechanism may not really block the writing process when
the buffer is full, thus requiring some higher level of flow
control to ensure that this never happens, or that it does not
cause any harm.

• Rendezvous
In the simplest form of rendezvous, implemented for exam-
ple in Occam and Lotos, a single writing process and a single
reading process must simultaneously be at the point in their
control flow where the write and the read occur. It is a conve-
nient communication mechanism, because it has the seman-
tics of a single assignment, in which the writer provides the
right-hand side, and the reader provides the left-hand side.
In the tagged-signal model, this is imposed by events with
identical tags [8]. Lotos offers, in addition, multiple ren-
dezvous, in which one among multiple possible communica-
tions isnon-deterministicallyselected. Multiple rendezvous
is more flexible than single rendezvous, because it allows the
designer to specify more easily several “expected” commu-
nication ports at any given time, but it is very difficult and
expensive to implement correctly.
Of course, various combinations of the above models are pos-

sible. For example, in a partially unsynchronized model, a con-
sumer of data may be required to wait until the first time a pro-
ducer produces data, after which the communication is unsyn-
chronized.

The essential features of the concurrency and communication
styles described above are presented in Table I. These are distin-
guished by the number of transmitters and receivers (e.g., broad-
cast versus point-to-point communication), the size of the com-
munication buffer, whether the transmitting or receiving pro-
cess may continue after an unsuccessful communication attempt
(blocking reads and writes), and whether the result of each write
can be read at most once (single reads).

B. Common Models of Computation

We are now ready to use the scheme developed in the previous
Section to classify and analyze several models of computation
that have been used to describe embedded systems. We will
consider issues such as ease of modeling, efficiency of analysis
(simulation or formal verification), automated synthesizability,
optimization space versus over-specification, and so on.

B.1 Discrete-Event

Time is an integral part of a discrete-event model of computa-
tion. Events usually carry a totally-ordered time stamp indicat-
ing the time at which the event occurs. A DE simulator usually
maintains a global event queue that sorts events by time stamp.

Digital hardware is often simulated using a discrete-event ap-
proach. The Verilog language, for example, was designed as
an input language for a discrete-event simulator. The VHDL

A B C
t

t

A B C
t

t

(a) (b)

A B C
t + ∆

t

A B C
t + ∆

(c) (d)

Fig. 3. Simultaneous events in a discrete-event system. (a) Process A produces
events with the same time stamp. Should B or C be fired next? (b) Zero-
delay process B has fired. How many times should C be fired? (c) Delta-
delay process B has fired; C will consume A’s output next. (d) C has fired
once; it will fire again to consume B’s output.

language also has an underlying discrete-event model of com-
putation.

Discrete-event modeling can be expensive—sorting time
stamps can be time-consuming. Moreover, ironically, although
discrete-event is ideally suited to modeling distributed systems,
it is very challenging to build a distributed discrete-event simu-
lator. The global ordering of events requires tight coordination
between parts of the simulation, rendering distributed execution
difficult.

Discrete-event simulation is most efficient for large systems
with large, frequently idle or autonomously operating sections.
Under discrete-event simulation, only the changes in the system
need to be processed, rather than the whole system. As the activ-
ity of a system increases, the discrete-event paradigm becomes
less efficient because of the overhead inherent in processing time
stamps.

Simultaneous events, especially those arising from zero-delay
feedback loops, present a challenge for discrete-event models of
computation. In such a situation, events may need to be ordered,
but are not.

Consider the discrete-event system shown in Figure 3. Pro-
cess B has zero delay, meaning that its output has the same time
stamp as its input. If process A produces events with the same
time stamp on each output, there is ambiguity about whether B
or C should be invoked first, as shown in Figure 3(a).

Suppose B is invoked first, as shown in Figure 3(b). Now,
depending on the simulator, C might be invoked once, observing
both input events in one invocation, or it might be invoked twice,
processing the events one at a time. In the latter case, there is no
clear way to determine which event should be processed first.

The addition of delta delay makes such nondeterminacy eas-
ier to prevent, but does not avoid it completely. It introduces
a two-level model of time in which each instant of time is bro-
ken into (a potentially infinite number of) totally-ordered delta
steps. The simulated time reported to the user, however, does
not include delta information. A “zero-delay” process in this
model actually has delta delay. For example, Process B would
have delta delay, so firing A followed by B would result in the
situation in Figure 3(c). The next firing of C will see the event



372 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

TABLE I

A COMPARISON OF CONCURRENCY AND COMMUNICATION SCHEMES.

Transmitters Receivers Buffer Size Blocking Reads Blocking Writes Single Reads
Unsynchronized many many one no no no
Read-Modify-Write many many one yes yes no
Unbounded FIFO one one unbounded yes no yes
Bounded FIFO one one bounded yes maybe yes
Single Rendezvous one one one yes yes yes
Multiple Rendezvous one one one no no yes

from A only; the firing after that will see the (delay-delayed)
event from B.

Other simulators, including the DE simulator in Ptolemy [14],
attempt to statically analyze data precedences within a single
time instant. Such precedence analysis is similar to that done in
synchronous languages (Esterel, Lustre, and Signal) to ensure
that simultaneous events are processed deterministically. It de-
termines a partial ordering of events with the same time stamp
by examining data precedences.

Adding a feedback loop from Process C to A in Figure 3
would create a problem if events circulate through the loop with-
out any increment in time stamp. The same problem occurs in
synchronous languages, where such loops are called causality
loops. No precedence analysis can resolve the ambiguity. In
synchronous languages, the compiler may simply fail to compile
such a program. Some discrete-event simulators will execute the
program nondeterministically, while others support tighter con-
trol over the sequencing through graph annotations.

B.2 Communicating Finite State Machines

Finite State Machines (FSMs) are an attractive model for em-
bedded systems. The amount of memory required by such a
model is always decidable, and is often an explicit part of its
specification. Halting and performance questions are always
decidable since each state can, in theory, be examined in finite
time. In practice, however, this may be prohibitively expensive.

A traditional FSM consists of:
• a set of input symbols (the Cartesian product of the sets of

values of the input signals),
• a set of output signals (the Cartesian product of the sets of

values of the output signals),
• a finite set of states with a distinguished initial state,
• an output function mapping inputs and states to outputs, and
• a next-state function mapping inputs and states to (next)

states.
The input to such a machine is a sequence of input symbols, and
the output is a sequence of output symbols.

Traditional FSMs are good for modeling sequential behav-
ior, but are impractical for modeling concurrency or memory
because of the so-called state explosion problem. A single ma-
chine mimicking the concurrent execution of a group of ma-
chines has a number of states equal to theproductof the number
of states of each machine. A memory has as many states as the
number of values that can be stored at each locationraised to the
powerof the number of locations. The number of states alone
is not always a good indication of complexity, but it often has a
strong correlation.

Harel advocated the use of three major mechanisms that re-
duce the size (and hence the visual complexity) of finite au-
tomata for modeling practical systems [15]. The first one is hier-
archy, in which a state can represent an enclosed state machine.
That is, being in a particular statea has the interpretation that
the state machine enclosed bya is active. Equivalently, being in
statea means that the machine is in one of the states enclosed by
a. Under the latter interpretation, the states ofa are called “or
states.” Or states can exponentially reduce the complexity (the
number of states) required to represent a system. They com-
pactly describe the notion ofpreemption(a high-priority event
suspending or “killing” a lower priority task), that is fundamen-
tal in embedded control applications.

The second mechanism is concurrency. Two or more state
machines are viewed as being simultaneously active. Since the
system is in one state of each parallel state machine simultane-
ously, these are sometimes called “and states.” They also pro-
vide a potential exponential reduction in the size of the system
representation.

The third mechanism is non-determinism. While often non-
determinism is simply the result of an imprecise (maybe erro-
neous) specification, it can be an extremely powerful mecha-
nism to reduce the complexity of a system model byabstrac-
tion. This abstraction can either be due to the fact that the exact
functionality must still be defined, or that it is irrelevant to the
properties currently considered of interest. E.g., during verifi-
cation of a given system component, other components can be
modeled as non-deterministic entities to compactly constrain the
overall behavior. A system component can also be described
non-deterministically to permit some optimization during the
implementation phase. Non-determinism can also provide an
exponential reduction in complexity.

These three mechanisms have been shown in [16] to cooper-
ate synergistically and orthogonally, to provide a potential triple
exponential reduction in the size of the representation with re-
spect to a single, flat deterministic FSM6.

Harel’s Statecharts model uses a synchronous concurrency
model (also called synchronous composition). The set of tags
is a totally ordered countable set that denotes a global “clock”
for the system. The events on signals are either produced by
state transitions or inputs. Events at a tick of the clock can trig-
ger state transitions in other parallel state machines at the same

6The exact claim in [16] was that “and” type non-determinism (in which all
non-deterministic choices must be successful), rather than hierarchical states,
was the third source of exponential reduction together with “or” type non-
determinism and concurrency. Hierarchical states, on the other hand, were
shown in that paper to be able to simulate “and” non-determinism with only
a polynomial increase in size.



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 373

clock. Unfortunately, Harel left open some questions about the
semantics of causality loops and chains of instantaneous (same
tick) events, triggering a flurry of activity in the community that
has resulted in at least twenty variants of Statecharts [17].

Most of these twenty variants use the synchronous concur-
rency model. However, for many applications, the tight coordi-
nation implied by the synchronous model is inappropriate. In re-
sponse to this, a number of more loosely coupled asynchronous
FSM models have evolved, including behavioral FSMs [18],
SDL process networks [18], and codesign FSMs [19].

A model that is closely related to FSMs is Finite Automata.
FAs emphasize the acceptance or rejection of a sequence of in-
puts rather than the sequence of output symbols produced in
response to a sequence of input symbols. Most notions, such
as composition and so on, can be naturally extended from one
model to the other.

In fact, any of the concurrency models described in this pa-
per can be usefully combined with FSMs. In the Ptolemy
project [14], FSMs are hierarchically nested with dataflow,
discrete-event, or synchronous/reactive models [20]. The nest-
ing is arbitrarily deep and can mix concurrency models at dif-
ferent levels of the hierarchy. This very flexible model is called
“*charts,” pronounced “star charts,” where the asterisk is meant
to suggest a wildcard.

Control Flow Expressions (CFEs, [21]) have been recently
proposed to represent the control flow of a set of operations
in a cycle-based specification language. CFEs are an algebraic
model extending Regular Expressions [9] and can be compiled
into FSMs that can be used in the synthesis of a control unit.

B.3 Synchronous/Reactive

In a synchronous model of computation, all events are syn-
chronous, i.e., all signals have events with identical tags. The
tags are totally ordered, and globally available. Simultaneous
events (those in the same clock tick) may be totally ordered, par-
tially ordered, or unordered, depending on the model of compu-
tation. Unlike the discrete-event model, all signals have events
at all clock ticks, simplifying the simulator by requiring no sort-
ing. Simulators that exploit this simplification are called cycle-
based or cycle-driven simulators. Processing all events at a
given clock tick constitutes a cycle. Within a cycle, the order
in which events are processed may be determined by data prece-
dences, which define microsteps. These precedences are not al-
lowed to be cyclic, and typically impose a partial order (leav-
ing some arbitrary ordering decisions to the scheduler). Cycle-
based models are excellent for clocked synchronous circuits,
and have also been applied successfully at the system level in
certain signal processing applications.

A cycle-based model is inefficient for modeling systems
where events do not occur at the same rate in all signals. While
conceptually such systems can be modeled (using, for example,
special tokens to indicate the absence of an event), the cost of
processing such tokens is considerable. Fortunately, the cycle-
based model is easily generalized to multirate systems. In this
case, everynth event in one signal aligns with the events in an-
other.

A multirate cycle-based model is still somewhat limited. It is
an excellent model for synchronous signal processing systems
where sample rates are related by constant rational multiples, but

in situations where the alignment of events in different signals
is irregular, it can be inefficient.

The more general synchronous/reactive model is embodied
in the so-called synchronous languages [22]. Esterel [23] is
a textual imperative language with sequential and concurrent
statements that describe hierarchically-arranged processes. Lus-
tre [24] is a textual declarative language with a dataflow flavor
and a mechanism for multirate clocking. Signal [25] is a textual
relational language, also with a dataflow flavor and a more pow-
erful clocking system. Argos [26], a derivative of Harel’s Stat-
echarts [27], is a graphical language for describing hierarchical
finite state machines. Halbwachs [5] gives a good summary of
this group of languages.

The synchronous/reactive languages describe systems as a set
of concurrently-executing synchronized modules. These mod-
ules communicate through signals that are either present or ab-
sent in each clock tick. The presence of a signal is called an
event, and often carries a value, such as an integer. The modules
are reactive in the sense that they only perform computation and
produce output events in instants with at least one input event.

Every signal in these languages is conceptually (or explicitly)
accompanied by a clock signal, which has meaning relative to
other clock signals and defines the global ordering of events.
Thus, when comparing two signals, the associated clock sig-
nals indicate which events are simultaneous and which precede
or follow others. In the case of Signal and Lustre, clocks have
complex interrelationships, and a clock calculus allows a com-
piler to reason about these ordering relationships and to detect
inconsistencies in the definition. Esterel and Argos have simpler
clocking schemes and focus instead on finite-state control.

Most of these languages are static in the sense that they cannot
request additional storage nor create additional processes while
running. This makes them well-suited for bounded and speed-
critical embedded applications, since their behavior can be ex-
tensively analyzed at compile time. This static property makes
a synchronous program finite-state, greatly facilitating formal
verification.

Verifying that a synchronous program is causal (non-
contradictory and deterministic) is a fundamental challenge with
these languages. Since computation in these languages is delay-
free and arbitrary interconnection of processes is possible, it is
possible to specify a program that has either no interpretation (a
contradiction where there is no consistent value for some sig-
nal) or multiple interpretations (some signal has more than one
consistent value). Both situations are undesirable, and usually
indicate a design error. A conservative approach that checks for
causality problems structurally flags an unacceptably large num-
ber of programs as incorrect because most will manifest them-
selves only in unreachable program states. The alternative, to
check for a causality problem in any reachable state, can be ex-
pensive since it requires an exhaustive check of the state space
of the program.

In addition to the ability to translate these languages into
finite-state descriptions, it is possible to compile these languages
directly into hardware. Techniques for translating both Es-
terel [28] and Lustre [29] into hardware have been proposed.
The result is a logic network consisting of gates and flip-flops
that can be optimized using traditional logic synthesis tools. To
execute such a system in software, the resulting network is sim-



374 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

ply simulated. The technique is also the basis to perform more
efficiently causality checks, by means of implicit state space
traversal techniques [30].

B.4 Dataflow Process Networks

In dataflow, a program is specified by a directed graph where
the nodes (calledactors) represent computations and the arcs
represent totally ordered sequences (calledstreams) of events
(called tokens). In figure 4(a), the large circles represent ac-
tors, the small circle represents a token and the lines represent
streams. The graphs are often represented visually and are typi-
cally hierarchical, in that an actor in a graph may represent an-
other directed graph. The nodes in the graph can be either lan-
guage primitives or subprograms specified in another language,
such as C orFORTRAN. In the latter case, we are mixing two of
the models of computation from figure 2, where dataflow serves
as the coordination language for subprograms written in an im-
perative host language.

Dataflow is a special case of Kahn process networks [13],
[31]. In a Kahn process network, communication is by un-
bounded FIFO buffering, and processes are constrained to be
continuous mappings from input streams to output streams.
“Continuous” in this usage is a topological property that ensures
that the program is determinate [13]. Intuitively, it implies a
form of causality without time; specifically, a process can use
partial information about its input streams to produce partial in-
formation about its output streams. Adding more tokens to the
input stream will never result in having to change or remove to-
kens on the output stream that have already been produced. One
way to ensure continuity is with blocking reads, where any ac-
cess to an input stream results in suspension of the process if
there are no tokens. One consequence of blocking reads is that
a process cannot test an input channel for the availability of data
and then branch conditionally to a point where it will read a dif-
ferent input.

In dataflow, each process is decomposed into a sequence of
firings, indivisible quanta of computation. Each firing consumes
and produces tokens. Dividing processes into firings avoids the
multitasking overhead of context switching in direct implemen-
tations of Kahn process networks. In fact, in many of the sig-
nal processing environments, a major objective is to statically
(at compile time) schedule the actor firings, achieving an inter-
leaved implementation of the concurrent model of computation.
The firings are organized into a list (for one processor) or set
of lists (for multiple processors). Figure 4(a) shows a dataflow
graph, and Figure 4(b) shows a single processor schedule for
it. This schedule is a list of firings that can be repeated indefi-
nitely. One cycle through the schedule should return the graph
to its original state (here, state is defined as the number of to-
kens on each arc). This is not always possible, but when it is,
considerable simplification results [32]. In many existing envi-
ronments, what happens within a firing can only be specified in
a host language with imperative semantics, such as C or C++.
In the Ptolemy system [14], it can also consist of a quantum
of computation specified with any of several models of compu-
tation, such as FSMs, a synchronous/reactive subsystem, or a
discrete-event subsystem [33].

A useful formal device is to constrain the operation of a fir-
ing to be functional, i.e., a simple, stateless mapping from input

A C

B

D

(a)

A B C D

(b)

Fig. 4. (a) A dataflow process network (b) A single-processor static schedule
for it

values to output values. Note, however, that this does not con-
strain the process to be stateless, since it can maintain state in a
self-loop: an output that is connected back to one of its inputs.
An initial token on this self-loop provides the initial value for
the state.

Many possibilities have been explored for precise semantics
of dataflow coordination languages, including Karp and Miller’s
computation graphs [34], Lee and Messerschmitt’s synchronous
dataflow graphs [35], Lauwereinset al.’s cyclo-static dataflow
model [36], [37], Kaplanet al.’s Processing Graph Method
(PGM) [38], Granular Lucid [39], and others [40], [41], [42],
[43]. Many of these limit expressiveness in exchange for formal
properties (e.g., provable liveness and bounded memory).

Synchronous dataflow (SDF) and cyclo-static dataflow re-
quire processes to consume and produce a fixed number of to-
kens for each firing. Both have the useful property that a finite
static schedule can always be found that will return the graph to
its original state. This allows for extremely efficient implemen-
tations [32]. For more general dataflow models, it is undecidable
whether such a schedule exists [10].

A looser model of dataflow is the tagged-token model, in
which the partial order of tokens is explicitly carried with the
tokens [44]. A significant advantage of this model is that while
it logically preserves the FIFO semantics of the channels, it per-
mits out-of-order execution.

Some examples of graphical dataflow programming environ-
ments intended for signal processing (including image process-
ing) are Khoros [45], and Ptolemy [14].

B.5 Other models

Another commonly used partially ordered concurrency model
is based on rendezvous. Two or more concurrent sequential pro-
cesses proceed autonomously, but at certain points in their con-
trol flow, coordinate so that they are simultaneously at specified
points. Rendezvous has been developed into elaborate process
calculi (e.g., Hoare’s CSP [46] and Milner’s CCS [47]). It has
also been implemented in the Occam and Lotos programming
languages. Ada also uses rendezvous, although the implementa-
tion is stylistically quite different, using remote procedure calls
rather than more elementary synchronization primitives.

Rendezvous-based models of computation are often called
synchronous. However, by the definition we have given, they
are not synchronous. Events are partially ordered, not totally



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 375

ordered, with rendezvous points imposing the partial ordering
constraints.

No discussing of concurrent models of computation would be
complete without mentioning Petri nets [48], [49]. Petri nets
are, in their basic form, neither Turing complete nor finite state.
They are interesting as uninterpreted model for several very dif-
ferent classes of problems, including some relevant to embedded
system design (e.g., process control, asynchronous communica-
tion, scheduling, . . . ). Many questions about Petri nets can be
answered in finite time. Moreover, a large user community has
developed a large body of theoretical results and practical design
aids and methods based on them. In particular, partial order-
based verification methods (e.g. [50], [51], [6]) are one possible
answer to the state explosion problem plaguing FSM-based ver-
ification techniques.

C. Languages

The distinction between a language and its underlying model
of computation is important. The same model of computation
can give rise to fairly different languages (e.g., the imperative
Algol-like languages C, C++, Pascal, andFORTRAN). Some lan-
guages, such as VHDL and Verilog, support two or more models
of computation7.

The model of computation affects theexpressivenessof a
language — which behaviors can be described in the lan-
guage, whereas the syntax affects compactness, modularity, and
reusability. Thus, for example, object-oriented properties of im-
perative languages like C++ are more a matter of syntax than a
model of computation.

The expressiveness of a language is an important issue. At
one extreme, a language that is not expressive enough to specify
a particular behavior is clearly unsuitable, but the other extreme
also raises problems. A language that is too expressive often
raises the complexity of analysis and synthesis. In fact, for very
expressive languages, many analysis and synthesis problems be-
come undecidable: no algorithm will solve all problem instances
in finite time.

A language in which a desired behavior cannot be represented
succinctly is also problematic. The difficulty of solving analy-
sis and synthesis problems is at least linear in the size of the
problem description, and can be as bad as several times expo-
nential, so choosing a language in which the desired behavior of
the system is compact can be critical.

A language may be very incomplete and/or very abstract. For
example, it may specify only the interaction between computa-
tional modules, and not the computation performed by the mod-
ules. Instead, it provides an interface to a host language that
specifies the computation, and is called a coordination language
(examples include Linda [41], Granular Lucid [39], and Ptolemy
domains [14]). Or the language may specify only the causality
constraints of the interactions without detailing the interactions
themselves nor providing an interface to a host language. In
this case, the language is used as a tool to prove properties of
systems, as done, for example, in process calculi [46], [47] and
Petri nets [48], [49]. In still more abstract modeling, compo-
nents in the system are replaced with nondeterminate specifica-

7They directly support the Imperative model within a process, and the Discrete
Event model among processes. They can also support Extended Finite State
Machines under suitable restrictions known as the “synthesizable subset”.

tions that give constraints on the behavior, but not the behavior
itself. Such abstraction provides useful simplifications that help
formal verification.

D. Heterogeneous Models of Computation

The variety of models of computation that have been devel-
oped is only partially due to immaturity in the field. It appears
that different models fundamentally have different strengths and
weaknesses, and that attempts to find their common features re-
sult in models that are very low level, difficult to use. These
low level models (such as Dijkstra’s P/V systems [52]) provide
a good theoretical foundation, but not a good basis for design.

Thus we are faced with two alternatives in designing complex,
heterogeneous systems. We can either use a single unified ap-
proach and suffer the consequences, or we can mix approaches.
To use the unified approach today we could choose between
VHDL and C for a mixed hardware and software design, doing
the entire design in one or the other (i.e. specifying the software
in VHDL or the hardware in C). Or worse, we could further
bloat the VHDL language by including a subset designed for
software specification (e.g. by making Ada a subset of VHDL).
In the alternative that we advocate, we mix approaches while
keeping them conceptually distinct, for example by using both
VHDL andC in a mixed hardware/software design.

The key problem in the mixed approach, then, is to define
the semantics of the interaction of fundamentally different mod-
els of computation. It is not simply a problem of interfacing
languages. It is easy, for example, to provide a mechanism for
calling C procedures from VHDL. But what does it mean if two
concurrent VHDL entities call C procedures that interact? The
problem is exacerbated by the lack of agreed-upon semantics for
C or VHDL.

Studying the interaction semantics of mixed models of com-
putation is the main objective of the Ptolemy project [14].
There, a hierarchical framework is used, where a specification
in one model of computation can contain a primitive that is in-
ternally implemented using another model of computation. The
object-oriented principle of information hiding is used to isolate
the models from one another as much as possible.

III. VALIDATION

Validation loosely refers to the process of determining that a
design is correct. Simulation remains the main tool to validate a
model, but the importance of formal verification is growing, es-
pecially for safety-critical embedded systems. Although still in
its infancy, it shows more promise than verification of arbitrary
systems, such as generic software programs, because embedded
systems are often specified in a more restricted way. For exam-
ple, they are often finite-state.

Many safety properties (including deadlock detection) can be
detected in a time-independent way using existing model check-
ing and language containment methods (see, e.g., Kurshan [53]
and Burchet al. [54]). Unfortunately, verifying most temporal
properties is much more difficult (Alur and Henzinger [55] pro-
vide a good summary). Much more research is needed before
this is practical.



376 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

A. Simulation

Simulating embedded systems is challenging because they are
heterogeneous. In particular, most contain both software and
hardware components that must be simulated at the same time.
This is the co-simulation problem.

The basic co-simulation problem is reconciling two appar-
ently conflicting requirements:
• to execute the software as fast as possible, often on a host

machine that may be faster than the final embedded CPU,
and certainly is very different from it; and

• to keep the hardware and software simulations synchronized,
so that they interact just as they will in the target system.
One approach, often taken in practice, is to use a general-

purpose software simulator (based, e.g., on VHDL or Verilog)
to simulate a model of the target CPU, executing the software
program on this simulation model. Different models can be em-
ployed, with a tradeoff between accuracy and performance:
• Gate-level models

These are viable only for small validation problems, where
either the processor is a simple one, or very little code needs
to be run on it, or both.

• Instruction-set architecture (ISA) models augmented with
hardware interfaces
An ISA model is a standard processor simulator (often writ-
ten in C) augmented with hardware interface information for
coupling to a standard logic simulator.

• Bus-functional models
These are hardware models only of the processor interface;
they cannot run any software. Instead, they are configured
(programmed) to make the interface appear as if software
were running on the processor. A stochastic model of the
processor and of the program can be used to determine the
mix of bus transactions.

• Translation-based models
These convert the code to be executed on a processor into
code that can be executed natively on the computer doing the
simulation. Preserving timing information and coupling the
translated code to a hardware simulator are the major chal-
lenges.
When more accuracy is required, and acceptable simulation

performance is not achievable on standard computers, designers
sometimes resort toemulation. In this case, configurable hard-
ware emulates the behavior of the system being designed.

Another problem is the accurate modeling of a controlled
electromechanical system, which is generally governed by a set
of differential equations. This often requires interfacing to an
entirely different kind of simulator.

A.1 Co-simulation Methods

In this section, we present a survey of some of the represen-
tative co-simulation methods, summarized in Table II. A uni-
fied approach, where the entire system is translated into a form
suitable for a single simulator, is conceptually simple, but com-
putationally inefficient. Making better use of computational re-
sources often means distributing the simulation, but synchro-
nization of the processes becomes a challenge.

The method proposed by Guptaet al.[56] is typical of the uni-
fied approach to co-simulation. It relies on a single custom sim-

ulator for hardware and software that uses a single event queue
and a high-level, bus-cycle model of the target CPU.

Rowson [57] takes a more distributed approach that loosely
links a hardware simulator with a software process, synchroniz-
ing them with the standard interprocess communication mech-
anisms offered by the host operating system. One of the prob-
lems with this approach is that the relative clocks of software
and hardware simulation are not synchronized. This requires
the use of handshaking protocols, which may impose an undue
burden on the implementation. This may happen, for example,
because hardware and software would not need such handshak-
ing since the hardware part runs in reality much faster than in
the simulation.

Wilson [58] describes the use of a commercial hardware sim-
ulator. In this approach, the simulator and software compiled on
the host processor interact via a bus-cycle emulator inside the
hardware simulator. The software and hardware simulator exe-
cute in separate processes and the two communicate viaUNIX

pipes. Thomaset al. [59] take a similar approach.
Another approach keeps track of time in software and hard-

ware independently, using various mechanisms to synchronize
them periodically. For example, ten Hagenet al. [60] describe
a two-level co-simulation environment that combines a timed
and untimed level. The untimed level is used to verify time-
independent properties of the system, such as functional cor-
rectness. At this level, software and hardware run independent
of each other, passing messages whenever needed. This allows
the simulation to run at the maximum speed, while taking full
advantage of the native debugging environments both for soft-
ware and for hardware. The timed level is used to verify time-
dependent properties, requiring the definition of time in hard-
ware and software. In hardware, time can be measured either on
the basis of clock cycles (cycle-based simulation, assuming syn-
chronous operation) for maximum performance, or on the basis
of estimated or extracted timing information for maximum pre-
cision. In software, on the other hand, time can be measured
either by profiling or clock cycle counting information for maxi-
mum performance, or by executing a model of the CPU for max-
imum precision. The authors propose two basic mechanisms for
synchronizing time in hardware and software.
1. Software is the master and hardware is the slave. In this

case, software decides when to send a message, tagged with
the current software clock cycle, to the hardware simulator.
Depending on the relation between software and hardware
time, the hardware simulator can either continue simulation
until software time or back-up the simulation to software time
(this requires checkpointing capabilities, which few hardware
simulators currently have).

2. Hardware is the master and software is the slave. In this case,
the hardware simulator directly calls communication proce-
dures which, in turn, call user software code.
Kalavade and Lee [61] and Lee and Rabaey [63] take a similar

approach. The simulation and design environment Ptolemy [14]
is used to provide an interfacing mechanism between different
domains. In Ptolemy, objects described at different levels of
abstraction and using different semantic models are composed
hierarchically. Each abstraction level, with its own semantic
model, is a “domain” (e.g., dataflow, discrete-event). Atomic
objects (called “stars”) are the primitives of the domain (e.g.,



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 377

TABLE II

A COMPARISON OF CO-SIMULATION METHODS.

Author Hardware Simulation Software Simulation Synchronization Mechanism
Gupta [56] logic custom bus-cycle custom single simulation
Rowson [57] logic commercial host-compiled handshake
Wilson [58] logic commercial host-compiled handshake
Thomas [59] logic commercial host-compiled handshake
ten Hagen (1) [60] logic commercial host-compiled handshake
ten Hagen (2) [60] cycle-based cycle-counting tagged messages
Kalavade (1) [61] logic custom host-compiled single simulation
Kalavade (2) [61] logic custom ISA single simulation
Lee [61] logic custom host-compiled single simulation
Sutarwala [62] logic commercial ISA on HW simulation single simulation

dataflow operators, logic gates). They can be used either in
simulation mode (reacting to events by producing events) or in
synthesis mode (producing software or a hardware description).
“Galaxies” are collections of instances of stars or other galaxies.
An instantiated galaxy can belong to a domain different than the
instantiating domain. Each domain includes a scheduler, which
decides the order in which stars are executed, both in simula-
tion and in synthesis. For synthesis, it must be possible to con-
struct the schedule statically. Whenever a galaxy instantiates a
galaxy belonging to another domain (typical in co-simulation),
Ptolemy provides a mechanism called a “wormhole” for the two
schedulers to communicate. The simplest form of communica-
tion is to pass time-stamped events across the interface between
domains, with the appropriate data-type conversion.

Kalavade and Lee [61] perform co-simulation at the specifica-
tion level by using a dataflow model and at the implementation
level by using an ISA processor model augmented with the in-
terfaces within a hardware simulator, both built within Ptolemy.

Lee and Rabaey [63] simulate the specification by using con-
current processes communicating via queues within a timed
model (the Ptolemy communicating processes domain). The
same message exchanging mechanism is retained in the imple-
mentation (using a mix of microprocessor-based boards, DSPs,
and ASICs), thus performing co-simulation of one part of the
implementation with a simulation model of the rest. For exam-
ple, the software running on the microprocessor can also be run
on a host computer, while the DSP software runs on the DSP
itself.

Sutarwala and Paulin [62] describe an environment coupled
with a retargetable compiler [64] for cycle-based simulation of
a user-definable DSP architecture. The user only provides a de-
scription of the DSP structure and functionality, while the envi-
ronment generates a behavioral bus-cycle VHDL model for it,
which can then be used to run the code on a standard hardware
simulator.

B. Formal Verification

Formal verification is the process of mathematically checking
that the behavior of a system, described using a formal model,
satisfies a given property, also described using a formal model.
The two models may or may not be the same, but must share a
common semantic interpretation. The ability to carry out formal
verification is strongly affected by the model of computation,

which determines decidability and complexity bounds. Two dis-
tinct types of verification arise:
• Specification Verification: checking an abstract property of a

high-level model. An example: checking whether a proto-
col modeled as a network of communicating FSMs can ever
deadlock.

• Implementation Verification: checking if a relatively low-
level model correctly implements a higher-level model or
satisfies some implementation-dependent property. For ex-
ample: checking whether a piece of hardware correctly im-
plements a given FSM, or whether a given dataflow network
implementation on a given DSP completely processes an in-
put sample before the next one arrives.
Implementation verification for hardware is a relatively well-
developed area, with the first industrial-strength products be-
ginning to appear. For example, most logic synthesis sys-
tems have a mechanism to verify a gate-level implementation
against a set of Boolean equations or an FSM, to detect bugs
in the synthesis software8.
While simulation could fall under these definitions (if the

property is “the behavior under this stimulus is as expected”),
the term formal verification is usually reserved for checking
properties of the system that must hold for all or a broad class of
inputs. The properties are traditionally broken into two classes:
• Safety properties, which state that no matter what inputs are

given, and no matter how non-deterministic choices are re-
solved inside the system model, the system will not get into
a specific undesirable configuration (e.g., deadlock, emission
of undesired outputs, etc.)

• Liveness properties, which state that some desired configu-
ration will be visited eventually or infinitely often (e.g., ex-
pected response to an input, etc.)
More complex checks, such as the correct implementation of

a specification, can usually be done in terms of those basic prop-
erties. For example, Dill [65] describes a method to define and
check correct implementation for asynchronous logic circuits in
an automata-theoretic framework.

In this section we only summarize the major approaches that
have been or can be applied to embedded system verification.
These can be roughly divided into the following classes:
• Theorem proving methods provide an environment that as-

sists the designer in carrying out a formal proof of specifica-
8This shows that the need for implementation verification is not eliminated by

the introduction of automated synthesis techniques.



378 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

tion or implementation correctness. The assistance can be ei-
ther in the form of checking the correctness of the proof, or in
performing some steps of the proof automatically (e.g., Gor-
don and Melham’s HOL [66], the Boyer-Moore system [67]
and PVS [68]). The main problems with this approach are
the undecidability of some higher order logics and the large
size of the search space even for decidable logics.

• Finite automata methods restrict the power of the model in or-
der to automate proofs. A Finite Automaton, in its simplest
form, consists of a set of states, connected by a set of edges
labeled with symbols from an alphabet. Various criteria can
be used to define which finite or infinite sequences of sym-
bols are “accepted” by the automaton. The set of accepted
sequences is generally called thelanguageof the automaton.
The main verification methods used in this case are language
containment and model checking.

– In language containment, both the system and the property
to be verified are described as a synchronous composition of
automata. The proof is carried out by testing whether the
language of one is contained in the language of the other
(Kurshan’s approach is typical [53]). One particularly sim-
ple case occurs when comparing a synchronous FSM with its
hardware implementation. Then both automata are on finite
strings, and the proof of equivalence can be performed by
traversing the state space of their product [69].

– Simulation relations are an efficientsufficient(i.e., conser-
vative) criterion to establish language containment proper-
ties between automata, originating from the process algebraic
community ([47], [46]). Informally, a simulation relation is
a relationR between the states of the two automata such that
for each pair of statess, s′ in R, for each symbol labeling an
edge froms, the pair of next states under that symbol is also
in R. This relation can be computed much more quickly than
the exact language containment test (that in the case of non-
deterministic automata requires an exponential determiniza-
tion step), and hence can be used as a fast heuristic check.
If the same simulation relation holds in both directions (i.e.,
it is true also for each symbol labeling an edge froms′),
then it is called abisimulation. Bisimulation can be used
as test for behavioral equivalence that directly supports com-
position and abstraction (hiding of edge labels). Moreover,
self-bisimulation is an equivalence relation among states of
an automaton, and hence it can be used to minimize the au-
tomaton (the result is called the “quotient” automaton).

– In model checking (see, e.g., [70], [71], [54], [6]), the sys-
tem is modeled as a synchronous or asynchronous composi-
tion of automata, and the property is described as a formula
in some temporal logic [72], [73]. The proof is again car-
ried out by traversing the state space of the automaton and
marking the states that satisfy the formula.

• Infinite automata methods can deal with infinite state spaces
when some minimization to a finite form is possible. One
example of this class are the so-called timed automata ([74]),
in which a set of real-valued clocks is used to measure time.
Severe restrictions are applied, in order to make this model
decidable. Clocks can only be tested, started, and reset as part
of the edge labels of a finite automaton. Also, clocks can only
be compared against integer values and initialized to integer
values. In this case, it is possible to show that only a finite set

of equivalence class representatives is sufficient to represent
exactly the behavior of the timed automaton ([75], [74]). Mc-
Manis and Varaiya [76] introduced the notion of suspension,
which extends the class of systems that can be modeled with
variations of timed automata. It is then possible, in principle,
to verify timing constraint satisfaction by using preemptive
scheduling, which allows a low-priority process to be stopped
in the middle of a computation by a high-priority one.
The main obstacles to the widespread application of finite

automata-based methods are the inherent complexity of the
problem, and the difficulty for designers, generally accustomed
to simulation-based models, to formally model the system or its
properties. The synchronous composition of automata, which
is the basis of all known automata-based methods, is inherently
sensitive to the number of states in the component automata,
since the size of the total state space is the product of the sizes
of the component state spaces.

Abstraction is the most promising technique to tackle this
problem, generally known as state-space explosion. Abstraction
replaces (generally requiring extensive user intervention) some
system components with simpler versions, exhibiting nondeter-
ministic behavior. Nondeterminism is used to reduce the size of
the state space without losing the possibility of verifying the de-
sired property. The basic idea is to build provably conservative
approximations of the exact behavior of the system model, such
that the complexity of the verification is lower, but no false pos-
itive results are possible. I.e., the verification system may say
that the approximate model does not satisfy the property, while
the original one did, thus requiring a better approximation, but
it will never say that the approximate model satisfies the prop-
erty, while the original one did not [75], [77], [78]. The quotient
with respect to bisimulation can also be used in place of every
component, thus providing another mechanism (without false
negative results) to fight space explosion.

The systematic application of formal verification techniques
since the early stages of a design may lead to a new definition
of “optimal” size for a module (apart from those currently in
use, that are generally related to human understanding, synthe-
sis or compilation). A “good” leaf-level module must be small
enough to admit verification, and large enough to possess in-
teresting verifiable properties. The possibility of meaningfully
applying abstraction would also determine the appropriate size
and contents of modules at the upper levels of the hierarchy.

Another interesting family of formal verification techniques,
useful for heterogeneous systems with multiple concurrent
agents, is based on the notion of partial ordering between com-
putations in an execution of a process network. Direct use of
available concurrency information can be used during the ver-
ification process to reduce the number of explicitly explored
states ([6], [51], [50]). Some such methods are based on the
so-called “Mazurkiewicz traces,” in which a “trace” is an equiv-
alence class of sequences of state transitions where concurrent
transitions are permuted [79], [80].

Model checking and language containment have been espe-
cially useful in verifying the correctness of protocols, which
are particularly well-suited to the finite automaton model due
to their relative data independence. One may claim that these
two (closely related) paradigms represent about the only solu-
tions to the specification verification problem that are currently



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 379

close to industrial applicability, thanks to:
• The development of extremely efficientimplicit representa-

tion methods for the state space, based on Binary Decision
Diagrams ([81], [69]), that do not require to represent and
store every reachable state of the modeled system explicitly.

• The good degree of automation, at least of the property sat-
isfaction or language containment checks themselves (once a
suitable abstraction has been found by hand).

• The good match between the underlying semantics (state-
transition objects) and the finite-state behavior of digital sys-
tems.
The verification problem becomes much more difficult when

one must take into account either the actual value of data and
the operations performed on them, or the timing properties of
the system. The first problem can be tackled by first assum-
ing equality of arithmetic functions with the same name used at
different levels of modeling (e.g., specification and implementa-
tion, see Burch and Dill [82]) and then separately verifying that a
given piece of hardware implements correctly a given arithmetic
function (see Bryant [83]). The timing verification problem for
sequential systems, on the other hand, still needs to be formu-
lated in a way that permits the solution of practical problems in a
reasonable amount of space and time. One possibility, proposed
almost simultaneously by [84] and [85], is to incrementally add
timing constraints to an initially untimed model, rather than im-
mediately building the full-blown timed automaton. This addi-
tion should be done iteratively, to gradually eliminate all “false”
violations of the desired properties due to the fact that some tim-
ing properties of the model have been ignored. The iteration can
be shown to converge, but the speed of convergencestill depends
heavily on the ingenuity of the designer in providing “hints” to
the verification system about the next timing information to con-
sider.

As with many young technologies, optimism about verifica-
tion techniques initially led to excessive claims about their po-
tential, particularly in the area of software verification, where
the term “proving programs” was broadly touted. For many rea-
sons, including the undecidability of many verification problems
and the fact that verification can only be as good as the prop-
erties the designer specifies, this optimism has been misplaced.
Berry has suggested using the term “automatic bug detection” in
place of “verification” to underscore that it is too much to hope
for a conclusive proof of any nontrivial design. Instead, the goal
of verification should be a technology that will help designers
preventing problems in deployed systems.

IV. SYNTHESIS

By “synthesis,” we mean broadly a stage in the design refine-
ment where a more abstract specification is translated into a less
abstract specification, as suggested in Figure 2. For embedded
systems, synthesis is a combination of manual and automatic
processes, and is often divided into three stages: mapping to ar-
chitecture, in which the general structure of an implementation
is chosen; partitioning, in which the sections of a specification
are bound to the architectural units; and hardware and software
synthesis, in which the details of the units are filled out.

We informally distinguish betweensoftware synthesisand
software compilation, according to the type of input specifica-
tion. The term software compilation is generally associated with

an input specification using C- or Pascal-like imperative, gener-
ally non-concurrent, languages. These languages have a syntax
and semantics that is very close to that of the implementation
(assembly or executable code). In some sense, they already de-
scribe, at a fairly detailed level, the desiredimplementationof
the software. We will use the term software synthesis to denote
an optimized translation process from a high-level specification
that describes thefunctionthat must be performed, rather than
the way in which it must be implemented. Examples of soft-
ware synthesis can be, for example, the C or assembly code
generation capabilities of Digital Signal Processing graphical
programming environments such as Ptolemy ([86]), of graphi-
cal FSM design environments such as StateCharts ([87]), or of
synchronous programming environments such as Esterel, Lustre
and Signal ([5]).

Recently, higher and higher level synthesis approaches have
started to appear. One particularly promising technique for em-
bedded systems issupervisory control, pioneered by Ramadge
and Wonham ([88]). While most synthesis methods start from
an explicit model ofhowthe system that is being designed must
behave, supervisory control describeswhat it must achieve. It
cleverly combines a classical control system view of the world
with automata-theoretic techniques, to synthesize a control al-
gorithm that is, in some sense, optimum.

Supervisory control distinguishes between the plant (an ab-
straction of the physical system that must be controlled) and
the controller (the embedded system that must be synthesized).
Given a finite-automaton model of the plant (possibly includ-
ing limitations on what a controller can do) and of the expected
behavior of the complete system (plant plus controller), it is pos-
sible to determine:
• if a finite-state controller satisfying that specification exists,

and
• a “best” finite-state controller, under some cost function (e.g.,

minimum estimated implementation cost).
Recent papers dealing with variations on this problem are, for
example, [89], [90].

A. Mapping from Specification to Architecture

The problem of architecture selection and/or design is one of
the key aspects of the design of embedded systems. Supporting
the designer in choosing the right mix of components and im-
plementation technologies is essential to the success of the final
product, and hence of the methodology that was used to design
it. Generally speaking, the mapping problem takes as input a
functional specification and produces as output an architecture
and an assignment of functions to architectural units.

An architecture is generally composed of:
• hardware components (e.g., microprocessors, microcon-

trollers, memories, I/O devices, ASICs, and FPGAs),
• software components (e.g., an operating system, device

drivers, procedures, and concurrent programs), and
• interconnection media (e.g., abstract channels, busses, and

shared memories).
Partitioning determines which parts of the specification will be
implemented on these components, while their actual imple-
mentation will be created by software and hardware synthesis.

The cost function optimized by the mapping process includes
a mixture of time, area, component cost, and power consump-



380 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

tion, where the relative importance depends heavily on the type
of application. Time cost may be measured either as execution
time for an algorithm, or as missed deadlines for a soft real-time
system9. Area cost may be measured as chip, board, or memory
size. The components of the cost function may take the form of
a hard constraint or a quantity to be minimized.

Current synthesis-based methods almost invariably impose
some restrictions on the target architecture in order to make
the mapping problem manageable. For example, the architec-
ture may be limited to a library of pre-defined components due
to vendor restrictions or interfacing constraints. Few papers
have been published on automating the design of, say, a mem-
ory hierarchy or an I/O subsystem based on standard compo-
nents. Notable exceptions to this rule are papers dealing with
retargetable compilation (e.g., Theissingeret al. [91]), or with
a very abstract formulation of partitioning for co-design (e.g.,
Kumar et al. [92], [93], Prakash and Parker [94], and Vahid
and Gajski [95]). The structure of the application-specific hard-
ware components, on the other hand, is generally much less con-
strained.

Often, the communication mechanisms are also standardized
for a given methodology. Few choices, often closely tied to the
communication mechanism used at the specification level, are
offered to the designer. Nonetheless, some work has been done
on the design of interfaces (e.g., Chouet al. [96]).

B. Partitioning

Partitioning is a problem with any design using more than one
component. It is a particularly interesting problem in embedded
systems because of the heterogeneous hardware/software mix-
ture. Partitioning methods can be classified, as shown in Ta-
ble III, according to four main characteristics:
• the specification model(s) supported,
• the granularity,
• the cost function, and
• the algorithm.

Explored algorithm classes include greedy heuristics, cluster-
ing methods, iterative improvement, and mathematical program-
ming.

So far, there seems to be no clear winner among partition-
ing methods, partly due to the early stage of research in this
area, and partly due to the intrinsic complexity of the problem,
which seems to preclude an exact formulation with a realistic
cost function in the general case.

Ernstet al. [110], [111], [97] use a graph-based model, with
nodes corresponding to elementary operations (statements in
C*, a C-like language extended with concurrency). The cost
is derived:
• by profiling, aimed at discovering the bottlenecks that can be

eliminated from the initial, all-software partition by moving
some operations to hardware;

• by estimating the closeness between operations, including
control locality (the distance in number of control nodes
between activations of the same operation in the control
flow graph), data locality (the number of common variables

9Real-time systems, and individual timing constraints within such systems,
are classified as soft or hard according to whether missing a deadline just de-
grades the system performance or causes a catastrophic failure.

among operations), and operator closeness (the similarities,
e.g., an add and a subtract are close); and

• by estimating the communication overhead incurred when
blocks are moved across partitions. This is approximated
by the (static) number of data items exchanged among par-
titions, assuming a simple memory-mapped communication
mechanism between hardware and software.
Partitioning is done in two loops. The inner loop uses sim-

ulated annealing, with a quick estimation of the gain derived
by moving an operation between hardware and software, to im-
prove an initial partition. The outer loop uses synthesis to refine
the estimates used in the inner loop.

Olokutunet al. [98] perform performance-driven partitioning
working on a block-by-block basis. The specification model is
a hardware description language. This allows them to use syn-
thesis for hardware cost estimation, and profiling of a compiled-
code simulator for software cost estimation. Partitioning is done
together with scheduling, since the overall goal is to minimize
response time in the context of using emulation to speed up sim-
ulation. An initial partition is obtained by classifying blocks ac-
cording to whether or not they are synthesizable, and whether
or not the communication overhead justifies a hardware imple-
mentation. This determines some blocks which must either go
into software or hardware. Uncommitted blocks are assigned
to hardware or software starting from the block which has most
to gain from a specific choice. The initial partition is then im-
proved by a Kernighan and Lin-like iterative swapping proce-
dure.

Kumaret al. [92], [93], on the other hand, consider partition-
ing in a very general and abstract form. They use a complex,
set-based representation of the system, its various implementa-
tion choices and the various costs associated with them. Cost
attributes are determined mainly by profiling. The system being
designed is represented by four sets: available software func-
tions; hardware resources; communications between the (soft-
ware and/or hardware) units; and functions to be implemented,
each of which can be assigned a set of software functions, hard-
ware resources and communications. This means that the given
software runs on the given hardware and uses the given commu-
nications to implement the function. The partitioning process
is followed by a decomposition of each function into virtual in-
struction sets, followed by design of an implementation for the
set using the available resources, and followed again by an eval-
uation phase.

D’Ambrosioet al. [112], [99] tackle the problem of choosing
a set of processors on which a set of cooperating tasks can be
executed while meeting real-time constraints. They also use a
mathematical formulation, but provide an optimal solution pro-
cedure by using branch-and-bound. The cost of a software par-
tition is estimated as a lower and an upper bound on proces-
sor utilization. The upper bound is obtained by rate-monotonic
analysis (see Liu and Layland [113]), while the lower bound is
obtained by various refinements of the sum of task computation
times divided by task periods. The branch-and-bound proce-
dure uses the bounds to prune the search space, while looking
for optimal assignments of functions to components, and satis-
fying the timing constraints. Other optimization criteria can be
included beside schedulability, such as response times to tasks
with soft deadlines, hardware costs, and expandability, which



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 381

TABLE III

A COMPARISON OF PARTITIONING METHODS.

Author Model Granularity Cost Function Algorithm
Henkel [97] CDFG (C*) operation profiling (SW) hand (outer)

synthesis and similarity (HW) simulated annealing (inner)
communication cost

Olokutun [98] HDL task profiling (SW) Kernighan and Lin
synthesis (HW)

Kumar [93] set-based task profiling mathematical programming
Hu [99] task list task profiling branch and bound

schedule analysis
Vahid [95] acyclic DFG operation profiling (SW) mixed integer-linear programming

processor cost (HW)
communication cost

Barros (1) [100] Unity (HDL) operation similarity clustering
concurruency/sequencing

Barros (2) [101] Occam operation similarity clustering
hierarchy concurrenency/sequencing

hierarchy
Kalavade [102] acyclic DFG operation schedulability heuristic with look-ahead
Adams [103] HDL (?) task profiling (SW) hand

synthesis (HW)
Eles [104] VHDL task profiling simulated annealing
Luk [105] Ruby (HDL) operation rate matching hand

hierarchy
Steinhausen [106] CDFG (HDL, C) operation profiling hand
Ben Ismail [107] communicating task ? hand

processes
Antoniazzi [108] FSMs task ? hand
Chou [96] timing diagram operation time (SW) min-cut

area (HW)
Gupta [56], [109] CDFG (HDL) operation time heuristic

favors software solutions.

Barroset al. [100] use a graph-based fine-grained represen-
tation, with each unit corresponding to a simple statement in
the Unity specification language. They cluster units accord-
ing to a variety of sometimes vague criteria: similarity between
units, based on concurrency (control and data independence),
sequencing (control or data dependence), mutual exclusion, and
vectorization of a sequence of related assignments. They cluster
the units to minimize the cost of cuts in the clustering tree, and
then improve the clustering by considering pipelining opportu-
nities, allocations done at the previous stage, and cost savings
due to resource sharing.

Kalavade and Lee [102] use an acyclic dependency graph de-
rived from a dataflow graph to simultaneously map each node
(task) to software or hardware and schedule the execution of the
tasks. The approach is heuristic, and can give an approximate
solution to very large problem instances. To guide the search
process, it uses both critical path information and the suitability
of a node to hardware or software. For example, bit manipula-
tions are better suited to hardware while random accesses to a
data structure are better suited to software.

Vahid, Gajskiet al.[95], [114] perform graph-based partition-
ing of a variable-grained specification. The specification lan-
guage is SpecCharts, a hierarchical model in which the leaves

are “states” of a hierarchical Statecharts-like finite state ma-
chine. These “states” can contain arbitrarily complex behavioral
VHDL processes, written in a high-level specification style.
Cost function estimation is done at the leaf level. Each level
is assigned an estimated number of I/O pins, an estimated area
(based on performing behavioral, RTL and logic synthesis in
isolation), and an estimated execution time (obtained by sim-
ulating that initial implementation, and considering communi-
cation delay as well). The area estimate can be changed if
more leaves are mapped onto the same physical entity, due to
potential sharing. The cost model is attached to a graph, in
which nodes represent leaves and edges represent control (ac-
tivation/deactivation) and data (communication) dependencies.
Classical clustering and partitioning algorithms are then applied,
followed by a refinement phase. During refinement, each parti-
tion is synthesized, to get better area and timing estimates, and
“peripheral” graph nodes are moved among partitions greedily
to reduce the overall cost. The cost of a given partition is a
simple weighted sum of area, pin, chip count, and performance
constraint satisfaction measures.

Steinhausenet al. [106], [91], [115] describe a complete
co-synthesis environment in which a CDFG representation is
derived from an array of specification formats, such as Ver-
ilog, VHDL and C. The CDFG is partitioned by hand, based



382 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

on the results of profiling, and then mapped onto an ar-
chitecture that can include general-purpose micro-processors,
ASIPs (application-specific instruction processor, software-
programmable components designed ad hoc for an application),
and ASICs (application-specific integrated circuits). An inter-
esting aspect of this approach is that the architecture itself is
not fixed, but synthesis is driven by a user-defined structural
description. ASIC synthesis is done with a commercial tool,
while software synthesis, both for general-purpose and special-
ized processors, is done with an existing retargetable compiler
developed by Hoogerbruggeet al. [116].

Ben Ismailet al. [107] and Vosset al. [117] start from a sys-
tem specification described in SDL ([118]). The specification is
then translated into the Solar internal representation, based on a
hierarchical interconnection of communicating processes. Pro-
cesses can be merged and split, and the hierarchy can be changed
by splitting, moving and clustering of subunits. The sequencing
of these operations is currently done by the user.

Finally, Chouet al. [96] and Walkup and Borriello [119] de-
scribe a specialized, scheduling-based algorithm for interface
partitioning. The algorithm is based on a graph model derived
from a formalized timing diagram. Nodes represent low-level
events in the interface specification. Edges represent constraints,
and can either be derived from causality links in the specifica-
tion, or be added during the partitioning process (for example to
represent events that occur on the same wire, and hence should
be moved together). The cost function is time for software and
area for hardware. The algorithm is based on a min-cut proce-
dure applied to the graph, in order to reduce congestion. Con-
gestion in this case is defined as software being required to pro-
duce events more rapidly than the target processor can do, which
implies the need for some hardware assistance.

C. Hardware and Software Synthesis

After partitioning (and sometimes before partitioning, in or-
der to provide cost estimates) the hardware and software compo-
nents of the embedded system must be implemented. The inputs
to the problem are a specification, a set of resources and possi-
bly a mapping onto an architecture. The objective is to realize
the specification with the minimum cost.

Generally speaking, the constraints and optimization criteria
for this step are the same as those used during partitioning. Area
and code size must be traded off against performance, which of-
ten dominates due to the real-time characteristics of many em-
bedded systems. Cost considerations generally suggest the use
of software running on off-the-shelf processors, whenever possi-
ble. This choice, among other things, allows one to separate the
software from the hardware synthesis process, relying on some
form of pre-designed or customized interfacing mechanism.

One exception to this rule are authors who propose the simul-
taneous design of a computer architecture and of the program
that must run on it (e.g., Menezet al. [120], Marwedel [121],
and Wilberg et al. [115]). Since the designers of general-
purpose CPUs face different problems than the designers of
embedded systems, we will only consider those authors who
synthesize an Application-Specific Instruction Processor (ASIP,
[122]) and the micro-code that runs on it. The designer of a
general-purpose CPU must worry about backward compatibil-
ity, compiler support, and optimal performance for a wide vari-

ety of applications, whereas the embedded system designer must
worry about addition of new functionality in the future, user in-
teraction, and satisfaction of a specific set of timing constraints.

Note that by using an ASIP rather than a standard Appli-
cation Specific Integrated Circuit (ASIC), which generally has
very limited programming capabilities, the embedded system
designer can couple some of the advantages of hardware and
software. For example, performance and power consumption
can be improved with respect to a software implementation on
a general-purpose micro-controller or DSP, while flexibility can
be improved with respect to a hardware implementation. An-
other method to achieve the same goal is to use reprogrammable
hardware, such as Field Programmable Gate Arrays. FPGAs can
be reprogrammed either off-line (just like embedded software is
upgraded by changing a ROM), or even on-line (to speed up the
algorithm that is currently being executed).

The hardware synthesis task for ASICs used in embedded sys-
tems (whether they are implemented on FPGAs or not) is gen-
erally performed according to the classical high-level and logic
synthesis methods. These techniques have been worked on ex-
tensively; for example, recent books by De Micheli [123], De-
vadas, Gosh and Keutzer [124], and Camposano and Wolf [125]
describe them in detail. Marwedel and Goossens [126] present
a good overview of code generation strategies for DSPs and
ASIPs.

The software synthesis task for embedded systems, on the
other hand, is a relatively new problem. Traditionally, software
synthesis has been regarded with suspicion, mainly due to ex-
cessive claims made during its infancy. In fact, the problem
is much more constrained for embedded systems compared to
general-purpose computing. For example, embedded software
often cannot use virtual memory, due to physical constraints
(e.g., the absence of a swapping device), to real-time constraints,
and to the need to partition the specification between software
and hardware. This severely limits the applicability of dynamic
task creation and memory allocation. For some highly critical
applications even the use of a stack may be forbidden, and ev-
erything must be dealt with by polling and static variables. Al-
gorithms also tend to be simpler, with a clear division into coop-
erating tasks, each solving one specific problem (e.g., digital fil-
tering of a given input source, protocol handling over a channel,
and so on). In particular, the problem of translating cooperating
finite-state machines into software has been solved in a number
of ways.

Software synthesis methods proposed in the literature can be
classified, as shown in Table IV, according to the following gen-
eral lines:
• the specification formalism,
• interfacing mechanisms (at the specification and the imple-

mentation levels),
• when the scheduling is done, and
• the scheduling method.

Almost all software synthesis methods perform some sort of
scheduling—sequencing the execution of a set of originally con-
current tasks. Concurrent tasks are an excellent specification
mechanism, but cannot be implemented as such on a standard
CPU. The scheduling problem (reviewed e.g. by Halang and
Stoyenko [127]) amounts to finding a linear execution order for
the elementary operations composing the tasks, so that all the



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 383

timing constraints are satisfied. Depending on how and when
this linearization is performed, scheduling algorithms can be
classified as:
• Static, where all scheduling decisions are made at design- or

compile-time.
• Quasi-static, where some scheduling decisions are made at

run-time, some at compile-time.
• Dynamic, where all decision are made at run-time.

Dynamic schedulers take many forms, but in particular they
are distinguished as preemptive or non-preemptive, depending
on whether a task can be interrupted at arbitrary points. For
embedded systems, there are compelling motivations for us-
ing static or quasi-static scheduling, or at least for minimizing
preemptive scheduling in order to minimize scheduling over-
head and to improve reliability and predictability. There are, of
course, cases in which preemption cannot be avoided, because it
is the only feasible solution to the problem instance ([127]), but
such cases should be carefully analyzed to limit preemption to a
minimum.

Many static scheduling methods have been developed. Most
somehow construct a precedence graph and then apply or adapt
classical methods. We refer the reader to Bhattacharyyaet
al. [32] and Sih and Lee [128], [129] as a starting point for
scheduling of dataflow graphs.

Many approaches to software synthesis for embedded sys-
tems divide the computation into cooperating tasks that are
scheduled at run time. This scheduling can be done
1. either by using classical scheduling algorithms,
2. or by developing new techniques based on a better knowl-

edge of the domain. Embedded systems with fairly restricted
specification paradigms are an easier target for specialized
scheduling techniques than fully general algorithms written
in an arbitrary high-level language.
The former approach uses, for example, Rate Monotonic

Analysis (RMA [113]) to perform schedulability analysis. In
the pure RMA model, tasks are invoked periodically, can be pre-
empted, have deadlines equal to their invocation period, and sys-
tem overhead (context switching, interrupt response time, and so
on) is negligible. The basic result by Liu and Layland states that
under these hypotheses, if a given set of tasks can be success-
fully scheduled by a static priority algorithm, then it can be suc-
cessfully scheduled by sorting tasks by invocation period, with
the highest priority given to the task with the shortest period.

The basic RMA model must be augmented to be practical.
Several results from the real-time scheduling literature can be
used to develop a scheduling environment supporting process
synchronization, interrupt service routines, context switching
time, deadlines different from the task invocation period, mode
changes (which may cause a change in the number and/or dead-
lines of tasks), and parallel processors. Parallel processor sup-
port generally consists of analyzing the schedulability of a given
assignment of tasks to processors, providing the designer with
feedback about potential bottlenecks and sources of deadlocks.

Chouet al.[96] advocate developing new techniques based on
a better knowledge of the domain. The problem they consider is
to find a valid schedule of processes specified in Verilog under
given timing constraints. This approach, like that of Gupta et
al. described below, and unlike classical task-based scheduling
methods, can take into account both fine-grained and coarse-

grained timing constraints. The specification style chosen by
the authors uses Verilog constructs that provide structured con-
currency with watchdog-style preemption. In this style, multi-
ple computation branches are started in parallel, and some of
them (the watchdogs) can “kill” others upon occurrence of a
given condition. A set of “safe recovery points” is defined for
each branch, and preemption is allowed only at those points.
Timing constraints are specified by using modes, which repre-
sent different “states” for the computation as in SpecCharts, e.g.,
initialization, normal operation and error recovery. Constraints
on the minimum and maximum time separation between events
(even of the same type, to describe occurrence rates) can be de-
fined either within a mode or among events in different modes.
Scheduling is performed within each mode by finding a cyclic
order of operations which preserves I/O rates and timing con-
straints. Each mode is transformed into an acyclic partial order
by unrolling, and possibly splitting (if it contains parallel loops
with harmonically unrelated repetition counts). Then the partial
order is linearized by using a longest-path algorithm to check
feasibility and assign start times to the operations.

The same group describes in [132] a technique for device
driver synthesis, targeted towards microcontrollers with special-
ized I/O ports. It takes as input a specification of the system to
be implemented, a description of the function and structure of
each I/O port (a list of bits and directions), and a list of commu-
nication instructions. It can also exploit specialized functions
such as parallel/serial and serial/ parallel conversion capabili-
ties. The algorithm assigns communications in the specification
to physical entities in the micro-controller. It first tries to use
special functions, then assigns I/O ports, and finally resorts to
the more expensive memory-mapped I/O for overflow commu-
nications. It takes into account resource conflicts (e.g. among
different bits of the same port), and allocates hardware compo-
nents to support memory-mapped I/O. The output of the algo-
rithm is a netlist of hardware components, initialization routines
and I/O driver routines that can be called by the software gen-
eration procedure whenever a communication between software
and hardware must take place.

Guptaet al. [56], [109] started their work on software syn-
thesis and scheduling by analyzing various implementation
techniques for embedded software. Their specification model
is a set of threads, extracted from a Control and DataFlow
Graph (CDFG) derived from a C-like HDL called Hardware-C.
Threads are concurrent loop-free routines, which invoke each
other as a basic synchronization mechanism. Statements within
a thread are scheduled statically, at compile-time, while threads
are scheduled dynamically, at run-time. By using a concurrent
language rather than C, the translation problem becomes easier,
and the authors can concentrate on the scheduling problem, to
simulate the concurrency of threads. The authors compare the
inherent advantages and disadvantages of two main techniques
to implement threads: coroutines and a single case statement (in
which each branch implements a thread). The coroutine-based
approach is more flexible (coroutines can be nested, e.g. to re-
spond to urgent interrupts), but more expensive (due to the need
to switch context) than the case-based approach.

The same group developed in [133] a scheduling method for
reactive real-time systems. The cost model takes into account
the processor type, the memory model, and the instruction exe-



384 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

TABLE IV

A COMPARISON OF SOFTWARE SCHEDULING METHODS.

Author Model Interface Constraint Granularity Scheduling Algorithm
Cochran [130] task list none task RMA (runtime)
Chou [96] task list synthesized task heuristic (static)

operation
Gupta [109] CDFG ? operation heuristic with look-head (static+runtime)
Chiodo [131] task list synthesized task RMA (runtime)
Menez [120] CDFG ? operation exhaustive

cution time. The latter is derived bottom-up from the CDFG by
assigning a processor and memory-dependent cost to each leaf
operation in the CDFG. Some operations have an unbounded
execution time, because they are either data-dependent loops or
synchronization (I/O) operations. Timing constraints are basi-
cally data rate constraints on externally visible Input/ Output
operations. Bounded-time operations within a process are lin-
earized by a heuristic method (the problem is known to be NP-
complete). The linearization procedure selects the next opera-
tion to be executed among those whose predecessors have all
been scheduled, according to: whether or not their immediate
selection for scheduling can cause some timing constraint to be
missed, and a measure of “urgency” that performs some limited
timing constraint lookahead. Unbounded-time operations, on
the other hand, are implemented by a call to the runtime sched-
uler, which may cause a context switch in favor of another more
urgent thread.

Chiodoet al. [134] also propose a software synthesis method
from extended asynchronous Finite State Machines (called Co-
design Finite State Machines, CFSMs). The method takes ad-
vantage of optimization techniques from the hardware synthe-
sis domain. It uses a model based on multiple asynchronously
communicating CFSMs, rather than a single FSM, enabling it
to handle systems with widely varying data rates and response
time requirements. Tasks are organized with different priority
levels, and scheduled according to classical run-time algorithms
like RMA. The software synthesis technique is based on a very
simple CDFG, representing the state transition and output func-
tions of the CFSM. The nodes of the CDFG can only be of two
types: TEST nodes, which evaluate an expression and branch
according to its result, and ASSIGN nodes, which evaluate an
expression and assign its result to a variable. The authors de-
velop a mapping from a representations of the state transition
and output functions using Binary Decision Diagrams ([81]) to
the CDFG form, and can thus use a body of well-developed op-
timization techniques to minimize memory occupation and/or
execution time. The simple CDFG form permits also an easy
and relatively accurate prediction of software cost and perfor-
mance, based on cost assignment to each CDFG node ([135]).
The cost (code and data memory occupation) and performance
(clock cycles) of each node type can be evaluated with a good
degree of accuracy, based on a handful of system-specific pa-
rameters (e.g., the cost of a variable assignment, of an addition,
of a branch). These parameters can be derived by compiling
and running a few carefully designed benchmarks on the target
processor, or on a cycle-accurate emulator or simulator.

Liem et al. [64] tackle a very different problem, that of retar-

getable compilation for a generic processor architecture. They
focus their optimization techniques towards highly asymmetric
processors, such as commercial Digital Signal Processors (in
which, for example, one register may only be used for mul-
tiplication, another one only for memory addressing, and so
on). Their register assignment scheme is based on the notion
of classes of registers, describing which type of operation can
use which register. This information is used during CDFG cov-
ering with processor instructions [136] to minimize the number
of moves required to save registers into temporary locations.

Marwedel [121] also uses a similar CDFG covering approach.
The source specification can be written in VHDL or in the
Pascal-like language Mimola. The purpose is micro-code gen-
eration for Very Long Instruction Word (VLIW) processors, and
in this case the instruction set has not been defined yet. Rather,
a minimum encoding of the control word is generated for each
control step. Control steps are allocated using an As Soon As
Possible policy (ASAP, meaning that each micro-operation is
scheduled to occur as soon as its operands have been computed,
compatibly with resource utilization conflicts). The control
word contains all the bits necessary to steer the execution units
in the specified architecture to perform all the micro-operations
in each step. Register allocation is done in order to minimize the
number of temporary locations in memory due to register spills.

Tiwari et al. [137] describe a software analysis (rather than
synthesis) method aimed at estimating the power consumption
of a program on a given processor. Their power consumption
model is based on the analysis of single instructions, address-
ing modes, and instruction pairs (a simple way of modeling the
effect of the processor state). The model is evaluated by run-
ning benchmark programs for each of these characteristics, and
measuring the current flow to and from the power and ground
pins.

V. CONCLUSIONS

In this paper we outlined some important aspects of the design
process for embedded systems, including specification models
and languages, simulation, formal verification, partitioning and
hardware and software synthesis.

The design process is iterative—a design is transformed from
an informal description into a detailed specification usable for
manufacturing. The specification problem is concerned with the
representation of the design at each of these steps; the validation
problem is to check that the representation is consistent both
within a step and between steps; and the synthesis problem is to
transform the design between steps.

We argued that formal models are necessary at each step of



EDWARDS ET AL. DESIGN OF EMBEDDED SYSTEMS: FORMAL MODELS, VALIDATION, AND SYNTHESIS 385

a design, and that there is a distinction between the language in
which the design is specified and its underlying model of com-
putation. Many models of computation have been defined, due
not just to the immaturity of the field but also to fundamental
differences: the best model is a function of the design. The het-
erogeneous nature of most embedded systems makes multiple
models of computation a necessity. Many models of compu-
tation are built by combining three largely orthogonal aspects:
sequential behavior, concurrency, and communication.

We presented an outline of the tagged-signal model [8], a
framework developed by two of the authors to contrast different
models of computation. The fundamental entity in the model
is an event (a value/tag pair). Tags usually denote temporal be-
havior, and different models of time appear as structure imposed
on the set of all possible tags. Processes appear as relations be-
tween signals (sets of events). The character of such a relation
follows from the type of process it describes.

Simulation and formal verification are two key validation
techniques. Most embedded systems contain both hardware and
software components, and it is a challenge to efficiently simu-
late both components simultaneously. Using separate simulators
for each is often more efficient, but synchronization becomes a
challenge.

Formal verification can be roughly divided into theorem prov-
ing methods, finite automata methods, and infinite automata
methods. Theorem provers generally assist designers in con-
structing a proof, rather than being fully automatic, but are able
to deal with very powerful languages. Finite-automata schemes
represent (either explicitly or implicitly) all states of the system
and check properties on this representation. Infinite-automata
schemes usually build finite partitions of the state space, often
by severely restricting the input language.

In this paper, synthesis refers to a step in the design refine-
ment process where the design representation is made more de-
tailed. This can be manual and/or automated, and is often di-
vided into mapping to architecture, partitioning, and component
synthesis. Automated architecture mapping, where the overall
system structure is defined, often restricts the result to make the
problem manageable. Partitioning, where sections of the design
are bound to different parts of the system architecture, is partic-
ularly challenging for embedded systems because of the elabo-
rate cost functions due to their heterogeneity. Assigning an ex-
ecution order to concurrent modules, and finding a sequence of
instructions implementing a functional module are the primary
challenges in software synthesis for embedded systems.

VI. A CKNOWLEDGEMENTS

Edwards and Lee participated in this study as part of the
Ptolemy project, which is supported by the Advanced Research
Projects Agency and the U.S. Air Force (under the RASSP pro-
gram, contract F33615-93-C-1317), the State of California MI-
CRO program, and the following companies: Cadence, Dolby,
Hitachi, LG Electronics, Mitsubishi, Motorola, NEC, Philips,
and Rockwell. Lavagno and Sangiovanni-Vincentelli were par-
tially supported by grants from Cadence, Magneti Marelli,
Daimler-Benz, Hitachi, Consiglio Nazionale delle Ricerche, the
MICRO program, and SRC. We also thank Harry Hsieh for his
help with a first draft of this work.

REFERENCES

[1] G. Berry, Information Processing, vol. 89, chapter Real Time program-
ming: Special purpose or general purpose languages, pp. 11–17, North
Holland-Elsevier Science Publishers, 1989.

[2] R. Milner, M. Tofte, and R. Harper,The definition of Standard ML, MIT
Press, 1990.

[3] W. Wadge and E.A. Ashcroft,Lucid, the dataflow programming lan-
guage, Academic Press, 1985.

[4] A. Davie, An introduction to functional programming systems using
Haskell, Cambridge University Press, 1992.

[5] N. Halbwachs,Synchronous Programming of Reactive Systems, Kluwer
Academic Publishers, 1993.

[6] K. McMillan, Symbolic model checking, Kluwer Academic, 1993.
[7] J. E. Stoy,Denotational Semantics: The Scott-Strachey Approach to Pro-

gramming Language Theory, The MIT Press, Cambridge, MA, 1977.
[8] E. A. Lee and A. Sangiovanni-Vincentelli, “The tagged signal model - a

preliminary version of a denotational framework for comparing models
of computation,” Tech. Rep., Electronics Research Laboratory, Univer-
sity of California, Berkeley, CA 94720, May 1996.

[9] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1979.

[10] J. T. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory
Using the Token Flow Model, Ph.D. thesis, University of California,
Berkeley, 1993, Dept. of EECS, Tech. Report UCB/ERL 93/69.

[11] T. M. Parks, Bounded Scheduling of Process Networks, Ph.D. thesis,
University of California, Berkeley, Dec. 1995, Dept. of EECS, Tech.
Report UCB/ERL 95/105.

[12] J.C. Shepherdson and H. E. Sturgis, “Computability of recursive func-
tions,” Journal of the ACM, vol. 10, no. 2, pp. 217–255, 1963.

[13] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of the IFIP Congress 74. 1974, North-Holland Publishing
Co.

[14] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
A framework for simulating and prototyping heterogeneous systems,”
Int. Journal of Computer Simulation, vol. 4, no. 155, pp. 155–
182, Apr. 1994, Special issue on simulation software development.
http://ptolemy.eecs.berkeley.edu/papers/JEurSim.ps.Z.

[15] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot, “Statemate: A working envi-
ronment for the development of complex reactive systems,”IEEE Trans.
on Software Engineering, vol. 16, no. 4, Apr. 1990.

[16] D. Drusinski and D. Harel, “On the power of bounded concurrency. I.
Finite automata.,”Journal of the Association for Computing Machinery,
vol. 41, no. 3, pp. 517–539, May 1994.

[17] M. von der Beeck, “A comparison of statecharts variants,” inProc. of
Formal Techniques in Real Time and Fault Tolerant Systems. 1994, vol.
863 ofLNCS, pp. 128–148, Springer-Verlag.

[18] W. Takach and A. Wolf, “An automaton model for scheduling constraints
in synchronous machines,”IEEE Tr. on Computers, vol. 44, no. 1, pp. 1–
12, Jan. 1995.

[19] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “A formal methodology for hard-
ware/software codesign of embedded systems,”IEEE Micro, Aug. 1994.

[20] W.-T. Chang, A. Kalavade, and E. A. Lee, “Effective heterogeneous
design and cosimulation,” inNATO Advanced Study Institute Work-
shop on Hardware/Software Codesign, Lake Como, Italy, June 1995,
http://ptolemy.eecs.berkeley.edu/papers/effective.

[21] Jr C. N. Coelho and G. De Micheli, “Analysis and synthesis of concurrent
digital circuits using control-flow expressions,”IEEE Trans. on CAD,
vol. 15, no. 8, pp. 854–876, Aug. 1996.

[22] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,”Proc. of the IEEE, vol. 79, no. 9, pp. 1270–1282,
1991.

[23] F. Boussinot and R. De Simone, “The ESTEREL language,”Proc. of the
IEEE, vol. 79, no. 9, 1991.

[24] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,”Proc. of the IEEE, vol. 79,
no. 9, pp. 1305–1319, 1991.

[25] A. Benveniste and P. Le Guernic, “Hybrid dynamical systems theory and
the SIGNAL language,”IEEE Transactions on Automatic Control, vol.
35, no. 5, pp. 525–546, May 1990.

[26] F. Maraninchi, “The Argos language: Graphical representation of au-
tomata and description of reactive systems,” inProc. of the IEEE Work-
shop on Visual Languages, Kobe, Japan, Oct. 1991.

[27] D. Harel, “Statecharts: A visual formalism for complex systems,”Sci.
Comput. Program., vol. 8, pp. 231–274, 1987.

[28] G. Berry, “A hardware implementation of pure Esterel,” inProc. of the
Int. Workshop on Formal Methods in VLSI Design, Jan. 1991.



386 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, PP. 366–390

[29] F. Rocheteau and N. Halbwachs, “Implementing reactive programs on
circuits: A hardware implementation of LUSTRE,” inReal-Time, Theory
in Practice, REX Workshop Proceedings, Mook, Netherlands, June 1992,
vol. 600 ofLNCS, pp. 195–208, Springer-Verlag.

[30] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proc. of the European Design and Test Conference, Mar.
1996.

[31] E. A. Lee and T. M. Parks, “Dataflow process networks,”Proc. of the
IEEE, May 1995, http://ptolemy.eecs.berkeley.edu/papers/processNets.

[32] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software Synthesis
from Dataflow Graphs, Kluwer Academic Press, Norwood, Mass, 1996.

[33] W.-T. Chang, S.-H. Ha, and E. A. Lee, “Heterogeneous simulation - mix-
ing discrete-event models with dataflow,”J. on VLSI Signal Processing,
1996, to appear.

[34] R. M. Karp and R. E. Miller, “Properties of a model for parallel compu-
tations: Determinacy, termination, queueing,”SIAM Journal, vol. 14, pp.
1390–1411, Nov. 1966.

[35] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”IEEE
Proceedings, Sept. 1987.

[36] R. Lauwereins, P. Wauters, M. Ad´e, and J. A. Peperstraete, “Geomet-
ric parallelism and cyclostatic dataflow in GRAPE-II,” inProc. 5th Int.
Workshop on Rapid System Prototyping, Grenoble, France, June 1994.

[37] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Static
scheduling of multi-rate and cyclo-static DSP applications,” inProc.
1994 Workshop on VLSI Signal Processing. 1994, IEEE Press.

[38] D. J. Kaplan et al., “Processing graph method specification version 1.0,”
The Naval Research Laboratory, Washington D.C., Dec. 1987.

[39] R. Jagannathan, “Parallel execution of GLU programs,” in2nd Int. Work-
shop on Dataflow Computing, Hamilton Island, Queensland, Australia,
May 1992.

[40] W. B. Ackerman, “Data flow languages,”Computer, vol. 15, no. 2, 1982.
[41] N. Carriero and D. Gelernter, “Linda in context,”Comm. of the ACM,

vol. 32, no. 4, pp. 444–458, Apr. 1989.
[42] F. Commoner and A. W. Holt, “Marked directed graphs,”Journal of

Computer and System Sciences, vol. 5, pp. 511–523, 1971.
[43] P. A. Suhler, J. Biswas, K. M. Korner, and J. C. Browne, “Tdfl: A task-

level dataflow language,”J. on Parallel and Distributed Systems, vol. 9,
no. 2, June 1990.

[44] Arvind and K. P. Gostelow, “The U-Interpreter,”Computer, vol. 15, no.
2, 1982.

[45] J. Rasure and C. S. Williams, “An integrated visual language and soft-
ware development environment,”Journal of Visual Languages and Com-
puting, vol. 2, pp. 217–246, 1991.

[46] C. A. R. Hoare, “Communicating sequential processes,”Comm. of the
ACM, vol. 21, no. 8, 1978.

[47] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[48] J. L. Peterson,Petri Net Theory and the Modeling of Systems, Prentice-
Hall Inc., Englewood Cliffs, NJ, 1981.

[49] W. Reisig,Petri Nets: An Introduction, Springer-Verlag, 1985.
[50] A. Valmari, “A stubborn attack on state explosion,”Formal Methods in

System Design, vol. 1, no. 4, pp. 297–322, 1992.
[51] P. Godefroid, “Using partial orders to improve automatic verification

methods,” inProc. of the Computer Aided Verification Workshop, E.M
Clarke and R.P. Kurshan, Eds., 1990, DIMACS Series in Discrete Math-
ematica and Theoretical Computer Science, 1991, pages 321-340.

[52] E. Dijkstra, “Cooperating sequential processes,” inProgramming Lan-
guages, E. F. Genuys, Ed. Academic Press, New York, 1968.

[53] R. P. Kurshan, Automata-Theoretic Verification of Coordinating Pro-
cesses, Princeton University Press, 1994.

[54] J. Burch, E. Clarke, K. McMillan, and D. Dill, “Sequential circuit verifi-
cation using symbolic model checking,” inProc. of the Design Automa-
tion Conf., 1990, pp. 46–51.

[55] R. Alur and T.A. Henzinger, “Logics and models of real time: A survey,”
in Real-Time: Theory in Practice. REX Workshop Proc., J.W. de Bakker,
C. Huizing, W.P. de Roever, and G. Rozenberg, Eds., 1992.

[56] R. K. Gupta, C. N. Coelho Jr., and G. De Micheli, “Synthesis and sim-
ulation of digital systems containing interacting hardware and software
components,” inProc. of the Design Automation Conf., June 1992.

[57] J. Rowson, “Hardware/software co-simulation,” inProc. of the Design
Automation Conf., 1994, pp. 439–440.

[58] J. Wilson, “Hardware/software selected cycle solution,” inProc. of the
Int. Workshop on Hardware-Software Codesign, 1994.

[59] D.E. Thomas, J.K. Adams, and H. Schmitt, “A model and methodology
for hardware-software codesign,”IEEE Design and Test of Computers,
vol. 10, no. 3, pp. 6–15, Sept. 1993.

[60] K. ten Hagen and H. Meyr, “Timed and untimed hardware/software
cosimulation: application and efficient implementation,” inProc. of the
Int. Workshop on Hardware-Software Codesign, Oct. 1993.

[61] A. Kalavade and E. A. Lee, “Hardware/software co-design using Ptolemy
– a case study,” inProc. of the Int. Workshop on Hardware-Software
Codesign, Sept. 1992.

[62] S. Sutarwala and P. Paulin, “Flexible modeling environment for embed-
ded systems design,” inProc. of the Int. Workshop on Hardware-Software
Codesign, 1994.

[63] S. Lee and J.M. Rabaey, “A hardware-software co-simulation environ-
ment,” in Proc. of the Int. Workshop on Hardware-Software Codesign,
Oct. 1993.

[64] C. Liem, T. May, and P. Paulin, “Register assignment through resource
classification for ASIP microcode generation,” inProc. of the Int. Conf.
on Computer-Aided Design, Nov. 1994.

[65] D.L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits, The MIT Press, Cambridge, Mass., 1988, An ACM
Distinguished Dissertation 1988.

[66] M.J.C. Gordon and T.F. Melham, Eds.,Introduction to HOL: a theorem
proving environment for higher order logic, Cambridge University Press,
1992.

[67] R.S. Boyer, M. Kaufmann, and J.S. Moore, “The Boyer-Moore theorem
prover and its interactive enhancement,”Computers & Mathematics with
Applications, pp. 27–62, Jan. 1995.

[68] S. Owre, J.M. Rushby, and N. Shankar, “PVS: a prototype verifica-
tion system,” in11th Int. Conf. on Automated Deduction. June 1992,
Springer-Verlag.

[69] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Sequential Ma-
chines Using Boolean Functional Vectors,” inIMEC-IFIP Int’l Workshop
on Applied Formal Methods for Correct VLSI Design, November 1989,
pp. 111–128.

[70] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of
finite-state concurrent systems using temporal logic specifications,”ACM
TOPLAS, vol. 8, no. 2, 1986.

[71] J. P. Queille and J. Sifakis, “Specification and verification of concur-
rent systems in Cesar,” inInt. Symposium on Programming. April 1982,
LNCS 137, Springer Verlag.

[72] A. Pnueli, “The temporal logics of programs,” inProc. of the18th An-
nual Symposium on Foundations of Computer Science. May 1977, IEEE
Press.

[73] Z. Manna and A. Pnueli,The temporal logic of reactive and concurrent
systems, Springer-Verlag, 1992.

[74] R. Alur and D. Dill, “Automata for Modeling Real-Time Systems,” inAu-
tomata, Languages and Programming: 17th Annual Colloquium, 1990,
vol. 443 ofLecture Notes in Computer Science, pp. 322–335, Warwick
University, July 16-20.

[75] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in 4th ACM Symp. on Principles of Programming Languages,
Los Angeles, January 1977.

[76] J. McManis and P. Varaiya, “Suspension automata: a decidable class of
hybrid automata,” inProc. of the Sixth Workshop on Computer-Aided
Verification, 1994, pp. 105–117.

[77] J. R. Burch, Automatic Symbolic Verification of Real-Time Concurrent
Systems, Ph.D. thesis, Carnegie Mellon University, Aug. 1992.

[78] E. Clarke, O. Grumberg, and D. Long, “Model checking and abstraction,”
ACM Trans. on Programming Languages and Systems, vol. 16, no. 5, pp.
1512–1542, Sept. 1994.

[79] A. Mazurkiewicz, “Traces, histories, graphs: Instances of a process
monoid,” inProc. Conf. on Mathematical Foundations of Computer Sci-
ence, M. P. Chytil and V. Koubek, Eds. 1984, vol. 176 ofLNCS, Springer-
Verlag.

[80] M. L. de Souza and R. de Simone, “Using partial orders for verifying
behavioral equivalences,” inProc. of CONCUR ’95, 1995.

[81] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Trans. on Computers, vol. C-35, no. 8, pp. 677–691, August 1986.

[82] J.R. Burch and D.L. Dill, “Automatic verification of pipelined micro-
processor control,” inProc. of the Sixth Workshop on Computer-Aided
Verification, 1994, pp. 68–80.

[83] R.E. Bryant and Y-A Chen, “Verification of arithmetic circuits with Bi-
nary Moment Diagrams,” inProc. of the Design Automation Conf., 1995,
pp. 535–541.

[84] F. Balarin and A. Sangiovanni-Vincentelli, “A verification strategy
for timing-constrained systems,” inProc. of the Fourth Workshop on
Computer-Aided Verification, 1992, pp. 148–163.

[85] R. Alur, A. Itai, R. Kurshan, and M. Yannakakis, “Timing verification by
successive approximation,” inProc. of the Computer Aided Verification
Workshop, 1993, pp. 137–150.

[86] J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt, “Ptolemy: a frame-
work for simulating and prototyping heterogeneous systems,”Intern-
tional Journal of Computer Simulation, vol. special issue on Simulation
Software Development, January 1990.



[87] D. Harel, H. Lachover, A. Naamad, A. Pnueli, et al., “STATEMATE: a
working environment for the development of complex reactive systems,”
IEEE Trans. on Software Engineering, vol. 16, no. 4, Apr. 1990.

[88] P. J. Ramadge and W. M. Wonham, “The control of discrete event sys-
tems,” Proc. of the IEEE, vol. 77, no. 1, January 1989.

[89] G. Hoffmann and H. Wong-Toi, “Symbolic synthesis of supervisory con-
trollers,” in American Control Conference, Chicago, June 1992.

[90] M. Di Benedetto, A. Saldanha, and A. Sangiovanni-Vincentelli, “Strong
model matching for finite state machines,” inProc. of the Third European
Control Conf., Sept. 1995.

[91] M. Theissinger, P. Stravers, and H. Veit, “CASTLE: an interactive envi-
ronment for hardware-software co-design,” inProc. of the Int. Workshop
on Hardware-Software Codesign, 1994.

[92] S. Kumar, J. H. Aylor, B. W. Johnson, and W. A. Wulf, “A framework for
hardware/software codesign,” inProc. of the Int. Workshop on Hardware-
Software Codesign, Sept. 1992.

[93] S. Kumar, J. H. Aylor, B. Johnson, and W. Wulf, “Exploring hard-
ware/software abstractions and alternatives for codesign,” inProc. of
the Int. Workshop on Hardware-Software Codesign, Oct. 1993.

[94] S. Prakash and A. Parker, “Synthesis of application-specific multi-
processor architectures,” inProc. of the Design Automation Conf., June
1991.

[95] F. Vahid and D. G. Gajski, “Specification partitioning for system design,”
in Proc. of the Design Automation Conf., June 1992.

[96] P. Chou, E.A. Walkup, and G. Borriello, “Scheduling for reactive real-
time systems,”IEEE Micro, vol. 14, no. 4, pp. 37–47, Aug. 1994.

[97] J. Henkel, R. Ernst, U. Holtmann, and T. Benner, “Adaptation of parti-
tioning and high-level synthesis in hardware/software co-synthesis,” in
Proc. of the Int. Conf. on Computer-Aided Design, Nov. 1994.

[98] K. Olokutun, R. Helaihel, J. Levitt, and R. Ramirez, “A software-
hardware cosynthesis approach to digital system simulation,”IEEE Mi-
cro, vol. 14, no. 4, pp. 48–58, Aug. 1994.

[99] X. Hu, J.G. D’Ambrosio, B. T. Murray, and D-L Tang, “Codesign of
architectures for powertrain modules,”IEEE Micro, vol. 14, no. 4, pp.
48–58, Aug. 1994.

[100] E. Barros, W. Rosenstiel, and X. Xiong, “Hardware/software partition-
ing with UNITY,” in Proc. of the Int. Workshop on Hardware-Software
Codesign, Oct. 1993.

[101] E. Barros and A. Sampaio, “Towards provably correct hardware/software
partitioning using OCCAM,” inProc. of the Int. Workshop on Hardware-
Software Codesign, Oct. 1994.

[102] A. Kalavade and E.A. Lee, “A global criticality/local phase driven al-
gorithm for the constrained hardware/software partitioning problem,” in
Proc. of the Int. Workshop on Hardware-Software Codesign, 1994.

[103] J.K. Adams, H. Schmitt, and D.E. Thomas, “A model and methodol-
ogy for hardware-software codesign,” inProc. of the Int. Workshop on
Hardware-Software Codesign, Oct. 1993.

[104] P. Eles, Z. Peng, and A. Doboli, “VHDL system-level specification and
partitioning in a hardware/software cosynthesis environment,” inProc.
of the Int. Workshop on Hardware-Software Codesign, Sept. 1994.

[105] W. Luk and T. Wu, “Towards a declarative framework for hardware-
software codesign,” inProc. of the Int. Workshop on Hardware-Software
Codesign, 1994.

[106] U. Steinhausen, R. Camposano, H Gunther, P. Ploger, M. Theissinger,
et al., “System-synthesis using hardware/software codesign,” inProc. of
the Int. Workshop on Hardware-Software Codesign, Oct. 1993.

[107] T.B. Ismail, M. Abid, and A.A. Jerraya, “COSMOS: a codesign approach
for communicating systems,” inProc. of the Int. Workshop on Hardware-
Software Codesign, 1994.

[108] S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sciuto, “A methodology
for control-dominated systems codesign,” inProc. of the Int. Workshop
on Hardware-Software Codesign, 1994.

[109] R. K. Gupta, C. N. Coelho Jr., and G. De Micheli, “Program implemen-
tation schemes for hardware-software systems,”IEEE Computer, pp.
48–55, Jan. 1994.

[110] R. Ernst and J. Henkel, “Hardware-software codesign of embedded con-
trollers based on hardware extraction,” inProc. of the Int. Workshop on
Hardware-Software Codesign, Sept. 1992.

[111] J. Henkel, T. Benner, and R. Ernst, “Hardware generation and partition-
ing effects in the COSYMA system,” inProc. of the Int. Workshop on
Hardware-Software Codesign, Oct. 1993.

[112] J.G. D’Ambrosio and X.B. Hu, “Configuration-level hardware/software
partitioning for real-time embedded systems,” inProc. of the Int. Work-
shop on Hardware-Software Codesign, 1994.

[113] C. Liu and J.W Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,”Journal of the ACM, vol. 20, no. 1, pp.
44–61, Jan. 1973.

[114] D. D. Gajski, S. Narayan, L. Ramachandran, and F. Vahid, “System

design methodologies: aiming at the 100 h design cycle,”IEEE Trans.
on VLSI, vol. 4, no. 1, Mar. 1996.

[115] J. Wilberg, R. Camposano, and W. Rosenstiel, “Design flow for hard-
ware/software cosynthesis of a video compression system,” inProc. of
the Int. Workshop on Hardware-Software Codesign, 1994.

[116] J. Hoogerbrugge and H. Corporaal, “Transport-triggering vs. operation-
triggering,” in5th Int. Conf. on Compiler Construction, Apr. 1994.

[117] M. Voss, T. Ben Ismail, A.A. Jerraya, and K-H. Kapp, “Towards a the-
ory for hardware-software codesign,” inProc. of the Int. Workshop on
Hardware-Software Codesign, 1994.

[118] S. Saracco, J. R. W. Smith, and R. Reed,Telecommunications Systems
Engineering Using SDL, North-Holland - Elsevier, 1989.

[119] E. Walkup and G. Borriello, “Automatic synthesis of device drivers
for hardware-software codesign,” inProc. of the Int. Workshop on
Hardware-Software Codesign, Oct. 1993.

[120] G. Menez, M. Auguin, F Bo`eri, and C. Carri`ere, “A partitioning algo-
rithm for system-level synthesis,” inProc. of the Int. Conf. on Computer-
Aided Design, Nov. 1992.

[121] P. Marwedel, “Tree-based mapping of algorithms to predefined struc-
tures,” inProc. of the Int. Conf. on Computer-Aided Design, Nov. 1993.

[122] P. Paulin, “DSP design tool requirements for embedded systems: a
telecommunications industrial perspective,”Journal of VLSI Signal Pro-
cessing, vol. 9, no. 1-2, pp. 22–47, Jan. 1995.

[123] G. De Micheli, Synthesis and optimization of digital circuits, McGraw-
Hill, 1994.

[124] S. Devadas, A. Ghosh, and K. Keutzer,Logic synthesis, McGraw-Hill,
1994.

[125] R. Camposano and W. Wolf, Eds.,High-level VLSI synthesis, Kluwer
Academic Publishers, 1991.

[126] P. Marwedel and G. Goossens, Eds.,Code generation for embedded pro-
cessors, Kluwer Academic Publishers, 1995.

[127] W.A. Halang and A.D. Stoyenko,Constructing predictable real time
systems, Kluwer Academic Publishers, 1991.

[128] G. C. Sih and E. A. Lee, “Declustering: A new multiprocessor scheduling
technique,”IEEE Trans. on Parallel and Distributed Systems, vol. 4, no.
6, pp. 625–637, June 1993.

[129] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE Trans. on Parallel and Distributed Systems, vol. 4, no. 2, Feb. 1993.

[130] M. Cochran, “Using the rate monotonic analysis to analyze the schedula-
bility of ADARTS real-time software designs,” inProc. of the Int. Work-
shop on Hardware-Software Codesign, Sept. 1992.

[131] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Hardware/software codesign of embedded
systems,”IEEE Micro, vol. 14, no. 4, pp. 26–36, Aug. 1994.

[132] P. Chou and G. Borriello, “Software scheduling in the co-synthesis of
reactive real-time systems,” inProc. of the Design Automation Conf.,
June 1994.

[133] R.K. Gupta and G. De Micheli, “Constrained software generation for
hardware-software systems,” inProc. of the Int. Workshop on Hardware-
Software Codesign, 1994.

[134] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Synthesis of software programs from
CFSM specifications,” inProc. of the Design Automation Conf., June
1995.

[135] K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient software perfor-
mance estimation methods for hardware/software codesign,” inProc. of
the Design Automation Conf., 1996.

[136] C. Liem, T. May, and P. Paulin, “Instruction set matching and selection
for DSP and ASIP code generation,” inEuropean Design and Test Conf.,
Feb. 1994.

[137] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded soft-
ware: a first step towards software power minimization,”IEEE Trans. on
VLSI Systems, vol. 2, no. 4, pp. 437–445, Dec. 1994.


