
RC24104 (W0701-015) January 3, 2007
Computer Science

IBM Research Report

A New Abstraction for Summary-Based Pointer Analysis

Marcio Buss1, Daniel Brand2, Vugranam Sreedhar3, Stephen A. Edwards1

1Columbia University
New York, NY

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

3IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A New Abstraction for Summary-Based Pointer Analysis

Marcio Buss
Columbia University

New York, NY
marcio@cs.columbia.edu

Daniel Brand
IBM T.J. Watson

Yorktown Heights, NY
danbrand@us.ibm.com

Vugranam Sreedhar
IBM T.J. Watson
Hawthorne, NY

vugranam@us.ibm.com

Stephen A. Edwards
Columbia University

New York, NY
sedwards@cs.columbia.edu

ABSTRACT
We propose a new abstraction for pointer analysis based on the
principle of matching pointer dereferences or “memory fetches”
with pointer assignments. Our abstraction, the Assign-Fetch Graph
(AFG), has several advantages over traditional points-to graphs. It
leads to concise procedure summaries for pointer analysis and sim-
ilar computations; each procedure’s summary information can be
used effectively in arbitrary calling contexts. Different analysis
variations can be formulated on the AFG— we present two possible
variations. One is based on a standard flow-insensitive view of the
program; the other takes some statement ordering into account and
produces results that are both more precise and more quickly com-
puted. Our abstraction also facilitates incremental summary-based
pointer analysis, which is not generally possible with conventional
points-to graphs.

We show how the AFG simplifies certain steps in updating pointer
graphs and computing procedure summaries. For efficiency and
compactness, we build a single summary for each procedure under
the optimistic assumption that distinct pointers from the environ-
ment are not aliased. We restore soundness when the summary is
used in a context with aliases. We present some results of the prac-
tical impact of our technique.

Categories and Subject Descriptors
D.3.0 [Programming Languages]: General; D.2.0 [Software En-
gineering]: General

General Terms
Algorithms, Languages, Performance

Keywords
Points-to analysis, summary-based analysis, incremental analysis

1. INTRODUCTION
Pointer analysis is a necessary step in most language processing

tools, including bug finding tools, program optimizers, program

.

understanding and refactoring tools. Pointer analysis consists of
computing points-to information—given two program variables, p
and q, we say that p points-to q if p can contain the address of
q. For heap allocated objects, we say that p can point-to an ob-
ject O if p can contain the address of O. Although the address of a
heap-allocated object is generally not known at compile-time, static
analyses assign analysis-time addresses to such objects.

Most previous pointer analysis techniques focus on interpreting
program statements that affect pointers by constructing a points-to
graph [7], where nodes correspond to pointer variables and objects,
and edges correspond to the points-to relation. In this paper, we
describe a new representation for the behavior of a function. This
flexible representation lends itself to a variety of pointer analysis al-
gorithms, including a classical flow-insensitive analysis and a new
“flow-aware” analysis that is both faster and more precise.

In our representation, called assign-fetch graph (AFG), nodes
represent locations and values, and edges represent read and write
operations. Pointer analysis amounts to matching pointer derefer-
ences (“fetch edges”) with pointer assignments (“assign edges”).

After quickly introducing our techniques through an example,
we describe our assign-fetch graph (Section 2) and discuss the gen-
eral approach of performing pointer analysis on it (Section 3). From
there, we describe two particular instances of pointer analysis on
the AFG: classical flow-insensitive (Section 4) and our new flow-
aware technique that is both faster and more accurate (Section 5).
Finally, we present experimental results showing our technique work-
ing well on large programs (Section 6).

1.1 An Example
Figure 1 is a simple example illustrating our pointer analysis

techniques. They are centered around the assign-fetch graph (AFG),
Figure 1(b), an abstract procedure representation that captures as-
signments and memory dereferences. Our approach has three main
advantages that lead to faster, more precise pointer analysis: the
AFG is simpler to construct than a points-to graph; unlike a points-
to graph, whose structure depends on a procedure’s context (i.e.,
aliases present when the procedure is called), the AFG is context-
agnostic and therefore can be reused in any context; and finally our
AFG makes it easy to vary the precision (and hence cost) of the
analysis by using different analysis algorithms on the same under-
lying representation. Figure 1 illustrates this last point: we perform
two analyses from the same AFG.

An AFG is a directed graph whose nodes represent values (in-
cluding addresses) and whose edges represent read and write oper-
ations. We call these fetch and assign edges, respectively. Consider
the first statement in Figure 1(a): *z = &x;. This fetches the
contents of z and stores the address of x, a global variable, as one
of the locations to which z may point. In the AFG of Figure 1(b),
we represent variable z with a location node labeled z, the fetch of

foo()
{
*z = &x; // F1 A2
z = &v; // A3

if (...) {
z = &w; // A4

} else {
*z = &y; // F5 A6

}
}

abstract
into
an

assign-fetch
graph
→

↗
flow-insensitive

analysis

↘
flow-aware

analysis
(a) (b)

summarize
→

(c) (d) (g)

summarize
→

(e) (f) (h)

Figure 1: An illustration of our pointer-analysis technique. A procedure (a) is first abstracted as an assign-fetch graph (b), whose
nodes represent addresses and values and whose edges represent memory operations. An assign-fetch graph can be analyzed in at
least two ways: a classical flow-insensitive analysis (c), where potential aliases are calculated ignoring statement ordering to produce
a summary (d); and a new flow-aware analysis, which considers statement execution order (e) to produce a more accurate summary
(f). Contrast these summaries with the pointer analysis solutions of (g) Andersen and (h) Steensgaard.

x = &y; // A1
.. = x; // F2

Figure 2: The simplest case: x is assigned in A1 and fetched in
F2; an alias edge indicate that n can be an alias for y. Self-loops
indicate trivial aliasing of location nodes.

z with the fetch edge labeled F1, the fetched value of z with a fetch
node labeled n1 (we shade each fetch node gray to indicate we do
not know its values when we construct the graph), the address of x
with the location node labeled x, and the assignment to *z with the
assign edge labeled A2. We construct the rest of Figure 1(b) using
similar reasoning.

Fetch nodes correspond to unknown values that need to be re-
solved during the analysis. The resolution is done through alias
edges that connect fetch nodes to location nodes. The simplest ex-
ample is shown in Figure 2—an alias edge (dashed line) is created
from n to y to indicate that fetching x (F2) after it has been assigned
the address of y (A1) should be an alias for y. Self-loops indicate
trivial aliasing of location nodes; we omit them in all other figures.

The bulk of the analysis is to determine aliases between fetch
nodes and location nodes. This produces the resolved AFG; de-
pending on the precision of the analysis, different resolved AFGs
can be generated from the same initial AFG, such as Figure 1(c)
and (e).

1.2 Flow-Insensitive Analysis
We first show how to perform classical flow-insensitive analy-

sis (Figure 1(c) and (d)) on the AFG. Such an analysis does not
consider the order in which assignments and fetches will execute,
which makes for a fast analysis at the cost of some precision. First,
we add to the AFG of Figure 1(b) the initial value node z1 and the
assign edge labeled A in Figure 1(c) to model the environment’s
(assumed) initialization of the global variable z. Next, we add the
alias edges (n1, v), (n1, z1), and (n1, w) by repeatedly applying the

rule in Figure 2. For example, alias edge (n1, w) in Figure 1(c) is
added due to edges F1 and A4, respectively fetching from and as-
signing to location z. The AFG is designed to make such relation-
ships easy to see. In total, there are three assignments to z (edges
A, A3, and A4), so there are three potential aliases for fetches F1
and F5: nodes v, z1, and w.

The final step is to produce the procedure summary AFG. We
delete any information that would be invisible to a potential caller,
e.g., fetch nodes n1 and n5 in Figure 1(c), will be deleted. Before
deleting these nodes, the information they carry is “transfered” to
location nodes in the graph, which are visible to callers. Figure 1(d)
shows the result. The basic idea is the following: if an assignment
is made to some fetch node n, and n can be an alias for a location
node n′, then the assignment is equivalent to an assignment to n′.
For example, in Figure 1(c), n1 is assigned the address of x and can
be an alias for z1, v, and w. Assign edges are therefore added from
z1, v, and w to x. Similar reasoning connects edges from z1, v, and
w to y. Finally, the fetch nodes n1 and n5 are removed and node
z1 is demoted to a fetch node to represent the fact that z has been
dereferenced inside foo; this produces the final flow-insensitive
summary in Figure 1(d).

The right side of Figure 1 also shows the points-to graphs for
the code example generated by two well-known techniques. Fig-
ure 1(h) shows the result of Steensgaard [17], and Figure 1(g) shows
the result of Andersen [1]. The latter is equivalent to our flow-
insensitive result (Figure 1(d), although it would not usually in-
clude something like an initial value node z1). Steensgaard’s merges
nodes pointed-to by the same pointer into equivalence classes, as
seen for {v,w} and {x,y} in Figure 1(h); it is therefore less accu-
rate although generates smaller graphs.

In Section 4, we describe flow-insensitive analysis using the AFG
in detail.

1.3 Flow-Aware Analysis
Flow-insensitive analysis ignores the fact that assignments and

fetches in a program happen in sequence: later assignments cannot
be “seen” by earlier fetches. This leads to pessimistic results: flow-
insensitive analysis often arrives at many more aliases than actually
possible. For example, in Figure 1(a), the first fetch of z (F1) can
only “see” the initial value of z, since it is the first statement in the

procedure. Thus, the only possible alias edge from n1 is to z1, as
shown in Figure 1(e). In Figure 1(c), flow-insensitive analysis also
introduced edges from n1 to w and v, which can never happen.

In addition, the dereference *z at statement *z = &y (repre-
sented by F5) can only access two locations—the initial value of
z, and v; we know assignment z = &w (represented by A4) can-
not be seen by fetch F5 because they are in separate branches of
the conditional. Hence the alias edges from n5 do not include w in
Figure 1(e).

The result, after performing the same graph clean-up as flow-
insensitive analysis, is the more precise summary in Figure 1(f).
This has three fewer assign edges than the flow-insensitive result in
Figure 1(d).

Our flow-aware analysis takes advantage of the fact that each op-
eration has a distinct edge in the AFG and we decompose loops
into tail-recursive procedure calls. Therefore all procedures are
acyclic and their statements can be considered in order in the in-
traprocedural phase of the analysis. Recursive procedures (in gen-
eral, strongly-connected components in the call graph, i.e., mutu-
ally recursive procedures) are handled by iterating the intraproce-
dural phase until convergence.

The flow-aware analysis is faster than flow-insensitive analysis
as well as being more precise. We present these results in Section 6
after describing the analysis in detail in Section 5.

2. THE ASSIGN-FETCH GRAPH
Our pointer analysis is interprocedural. It propagates procedure

summaries through the call graph of the program. More precisely,
the input to our analysis analysis is a program we assume has been
partitioned into procedures. Each procedure is treated as consisting
of three types of operations: assignments, fetches, and procedure
calls. We ignore pointer arithmetic by making the common sim-
plification of treating all elements of an array as one location. In
this section, we will merge fields of structures and classes, so ex-
pressions such as p->next is treated as *p. Procedure return is
modeled by creating a special location ret; heap locations are mod-
eled through a naming scheme similar to that of Choi et al. [5].

To analyze procedures, we represent them initially using an asssign-
fetch graph. An AFG is an abstraction of a procedure in the form
of a directed graph. Its nodes represent addresses and values and its
edges represent memory operations, initial values, and aliases be-
tween nodes. A location node is simplest: it represents the address
of global or stacked variables, or heap-resident data. In Figure 1(b),
v, w, x, y, and z are each location nodes that represent the address
of distinict global variables.

Fetch nodes, shaded gray, represent the results of reading a value
from memory. Since in general the result of such a fetch depends
on the behavior of the program at runtime, we think of the “value”
of a fetch node as being unknown. Resolving the possible values
returned by each fetch is the bulk of the analysis. In Figure 1(b), n1
and n5 are fetch nodes. By definition, each fetch node has exactly
one incoming fetch edge (defined below).

Interface nodes are location nodes that correspond to informa-
tion that crosses the caller-callee interface of a procedure. They
are the global variables, parameters values, and heap locations al-
located inside the callee. Nodes for local (automatic) variables are
therefore never interface nodes. In Figure 1, nodes v, w, x, y, and z
are all interface nodes, assuming they all represent global variables.

Initial value nodes are placeholders for the values of global vari-
ables and parameters supplied by the environment and represent
chains of dereferences starting from interface nodes. We add them
in the process of analyzing the initial assign-fetch graph. At that
point, we think of them as location nodes (e.g., z1 in Figure 1(c)).

Figure 3: The conventional canonical statements and their re-
spective Assign-Fetch Graph representations.

After we summarize the results of an analysis, we “demote” them
to fetch nodes (e.g., z1 in Figure 1(d)). Note that we only add those
initial value nodes that are actually needed by the procedure, e.g.,
even though the variable x appears in Figure 1(a), we do not con-
struct an initial value node for it because the procedure never reads
its value.

There are two type of operation edges. A fetch edge, which we
label with an “F,” represents a memory read operation. Its source
node represents the address being read and its target is a fetch node
that represents whatever value is stored at that location. An assign
edge, labeled “A,” represents a memory write operation. Its source
node represents the target address and its destination represents the
value being written.

Figure 2 shows AFG fragments for the four canonical statements
used by traditional pointer analyses. Consider the assignment x=&y.
We represent both the lvalue x and the rvalue &y as location nodes
and connect them with an assign edge indicating that x now points
to the memory location for y. Note that this assignment does not
read or change the contents of y. By contrast, since the statement
x = y does read the contents of y, we introduce the fetch node
n1 to represent these contents, indicate with a fetch edge that y’s
contents are read, and indicate they are written to x with an assign
edge. The other two statements in the bottom of Figure 2 follow a
similar idea.

Alias edges, which we draw as dashed lines, represent aliasing
information among nodes and can be read “can be an alias for.”
Each location node has an implicit self-loop alias edge that rep-
resents the fact that the address of each variable is unique. Proper
alias edges always leave fetch nodes and terminate at location nodes
that the fetch node can alias. For example, the alias edge from n5
to v in Figure 1(e) means the F5 fetch of z can return the address
of v.

Finally, initial value edges represent environment initialization.
Like initial value nodes, we think of them one way (as assign edges)
when we are analyzing the AFG and another way (as fetch edges)
after we summarize the graph. We draw them with dashed/dotted
lines, e.g., from z to z1 in Figure 1(c), (d), (e), and (f).

Using the present terminology, the final summary AFG for a pro-
cedure only has interface nodes and initial value nodes. Each in-
terface node may have a chain of initial value nodes represented by
a chain of fetch edges; assign edges may connect any two pair of
nodes in the summary (Figure 5).

f(p,q)
{

*p = &x;
y = *q;

}

(a) (b) (c)

Figure 4: (a) A procedure with arguments, (b) its AFG, and (c)
its summary.

Figure 5: A generic procedure’s summary.

2.1 Procedure Parameters
We treat procedure parameters a little differently than global

variables. While both are assumed to come from the environment,
we always introduce initial value nodes for procedure parameters
since they are always assigned by a caller when a procedure is
called. During execution, those initial values are assigned to for-
mal parameters, which are local variables. Since local variables are
popped off the stack as the procedure returns, the location nodes
representing formal parameters are removed in the summarization
process.

Figure 4 illustrates the summarization process for a simple pro-
cedure. Location nodes are created for the formal parameters p and
q and assigned initial value nodes #1 and #2, which represent the
values passed by the caller through these two arguments. This plus
adding nodes and edges for the two statements in the procedure
gives the AFG for function f in Figure 4(b).

Since formal parameters are assumed initialized through “#i”
nodes, the AFG representation for *p = &x in Figure 4(b) does
not include a fetch edge; *p yields directly its initial value node,
#1, originally assigned to p through assign edge A1.

To summarize the procedure, whose analysis did not find any
aliases, we remove the nodes for the formal parameters p and q
and rename the initial value nodes to indicate the name of the pro-
cedure. Also, fetch edge F4 in Figure 4(b) generates an initial value
for node #2, which in Figure 4(c) is labeled n. Figure 4(c) shows
the final summary for procedure f. This summary is built assum-
ing that parameters p and q point-to different locations at function
entry (i.e., #1 and #2, which are treated as location nodes).

Figure 5 shows the general structure of a procedure summary,
which consists of two layers. The top layer contains interface nodes,
which include nodes #1, #2, etc., for the values of procedure param-
eters. Also in this layer are nodes for global variables (x, y, etc.)
and heap locations h1, h2, etc.

The bottom layer represents the initial values for the interface
nodes, which must all be fetch nodes. These are the only fetch
nodes in the summary since all others are removed as part of the
summary process; those that remain were demoted from (initial
value) location nodes, as described earlier. Since each interface
node is assumed to have at most one initial value, each node in the
summary has at most one outgoing fetch edge.

g()
{
f(&z, &z);

}

(a) (b)

(c) (d)

Figure 6: (a) A procedure g, which calls the procedure f from
Figure 4, (b) its initial AFG, (c) after resolving, and (d) its final
summary.

2.2 Procedure Calls and Summaries
To construct an AFG for a procedure P, we add nodes and edges

for each statement that reads and writes memory and instantiate
(make a copy of) the summary for each procedure Q called by
P. Instantiating the summary amounts to merging common global
variables as well as merging actual parameters to formal parame-
ters. The usual advantage of procedure summaries is that we do not
have to analyze the body of a procedure repeatedly—the summary
captures all we need to know about its behavior.

Figure 6 demonstrates this with a simple procedure g that calls
the procedure f from Figure 4. Starting from the summary of f
(Figure 4(c)), we bind the actual parameters to formal parameters
by merging the formal parameter initial value nodes (f#1 and f#2)
with their corresponding actual arguments. The procedure g passes
the address of the global variable z to both parameters. In Fig-
ure 6(b), nodes f#1 and f#2 are marked to be merged into node z.
The merging is complete in Figure 6(c).

Global variables are handled similarly: their nodes in the callee
are merged with matching nodes in the caller. This is vacuous for
the example of Figure 6 since g does nothing with the global vari-
ables x and y.

Note that node merging is the only operation we need for argu-
ment/parameter binding, even in cases where the actual parameter
is an arbitrary expression. A function call such as f(z, z), for
instance, would represent its actual arguments as two fetch edges
(z, n1) and (z, n2), respectively; n1 would be merged with f#1,
and n2 merged with f#2. Later, when determining aliases between
fetch nodes and location nodes, the aliasing introduced at the func-
tion call f(z, z) is directly recovered by the analysis.

After instantiating the summaries for the callees, computing a
summary for the calling procedure proceeds normally. In Figure 6(c),
we have applied flow-insensitive analysis: added an initial value
node z1 and initial assign edge for global variable z, and alias edges
from n to x and z1 since both are assigned to z. Finally, summariz-
ing g produces the graph in Figure 6(d). The fetch node n has been
removed and the effects of its aliases now manifest themselves as
the assign edges from y to z1 and x.

This example illustrates a novel and useful aspect of our pro-
cedure summaries: they are agnostic about parameter aliasing and
can be reused in contexts with arbitrary alias relationships. In this
example, our initial summary for the f procedure did not explicitly
consider the case that its two parameters were aliased. However the
summary for g correctly ascertains that y can point to x, which is
only possible if the two arguments are aliases at the call to f.

3. POINTER ANALYSIS USING THE AFG
We perform pointer analysis on a procedure through a series of

graph transformations on the AFG for the procedure. To construct
this initial AFG, we create edges and nodes for each pointer-related
statement in the procedure and replace procedure calls with a sum-
mary for the called procedure. The resolved and summary AFGs
(the intermediate steps) are obtained by performing two transfor-
mations on the initial AFG. First, we augment the initial AFG with
alias edges from each fetch node n to the set of location nodes to
which n can be an alias; initial values are lazily constructed by
observing which interface nodes have been fetched. The resulting
graph is the resolved AFG for the procedure. Then to form the
summary AFG, we first remove all fetch nodes and subsequently
demote to fetch nodes all initial value nodes that represent environ-
ment initialization.

Different techniques for adding alias information to an AFG lead
to different analysis variations with different precision levels; con-
structing the AFG itself and building the summary after computing
alises are straightforward, mechanical procedures.

Below, we discuss the general problem of adding aliases to an
AFG. In Section 4, we describe a specific approach to adding aliases
that gives classical flow-insensitive analysis. In Section 5, we de-
scribe a more precise analysis we have dubbed “flow-aware anal-
ysis” that takes some control flow into account to produce a more
precise analysis that is also more efficient.

In what follows, x,y,z,... denote location nodes (i.e., interface
nodes or initial value nodes before demotion); n1,n2,n3, ... are fetch
nodes; and α,β ,γ, ... are arbitrary nodes.

3.1 Determining Aliases
In our framework, the main step in pointer analysis is to calculate

the set of locations each node in the graph could alias with; this
set is denoted al(α). In general al(n) for a fetch node n is not
reflexive, i.e., a fetch node n can simultaneously be an alias for
multiple locations x, y, z, etc., much as *p is an alias for r, s and
p1, the initial value of p, in the following code fragment:

void foo() { p= &r; . . . p= &s; . . . *p= &k; }

However, x can never be an alias for y or vice-versa since they refer
to different variables, and therefore are guaranteed to be placed at
different memory locations.

An alias edge from a node α to a node x indicates x∈ al(α); the
target x is always a location node. The common assumption of no
aliasing among location nodes implies al(x) = {x}.

A fetch node n can only alias with the target of an assign edge.
This aliasing occurs if in some execution the fetch returns the value
of the assignment, i.e., if the assignment is the last to change the
location before it is fetched. To indicate such an aliasing can occur,
we write affects(σA,σF), where σA is an assign edge and σF a fetch
edge (assignment σA “affects” fetch σF).

In general, the relation affects(σA,σF) is not effectively com-
putable and therefore any pointer analysis uses an approximation.
The more accurate the approximation, the more accurate the anal-
ysis. For a sound analysis, it should be an over-approximation, i.e.,
the approximation should always be true when the relation is, but
not necessarily vice versa.

If the relation affects(σA,σF) (or its approximation) is available,
determining aliases can be described by the following simple rule.

σA : γ A
−→β σF : α F

−→n affects(σA,σF)

al(β) ⊆ al(n)
[ALIAS]

where γ A
−→β indicates an assign edge from γ to β and α F

−→n in-
dicates a fetch edge from α to n. This states that whenever there is
an assign edge affecting a fetch edge then the fetch node n aliases
with everything the assigned value β does. The solution to pointer
analysis is then the minimal resolved AFG that satisfies this rule.
Different approximations of affects result in different minimal re-
solved AFGs for the same initial AFG, i.e., different pointer analy-
sis solutions.

In the next two sections we present two ways to approximate the
affects relation with different precisions and costs. The less pre-
cise analysis we describe in Section 4 is equivalent to Andersen’s
flow-insensitive analysis [1]. Our more precise solution, which we
describe in Section 5, is actually more efficient. In it, the control-
flow graph is “linearized,” i.e., conditions are removed by imposing
an artificial total order in the procedure’s statements. We call such
an approximation total order flow-aware analysis.

4. FLOW-INSENSITIVE ANALYSIS
Section 3 described pointer analysis of arbitrary precision that

depends on the uncomputable affects relation. In this section, we
describe one possible approximation to affects that gives Andersen-
style flow insensitive analysis. In Section 5, we describe a more
precise approximation.

Define the predicate aliases as follows.

aliases(α,γ) ⇔ α = γ ∨al(α)∩al(γ) 6= /0.

This says that nodes α and γ are aliases for the same thing if they
are the same node (the trivial case), or if they are aliases for at least
one common location node, i.e., al(α)∩al(γ) 6= /0 or equivalently,
there is some node x present in both al(α) and al(γ).

The aliases(α,γ) relationship is a flow-insensitive approxima-
tion to the exact affects(σA,σF) for edges σA : γ A

−→β and σF :
α F
−→n. Hence the [ALIAS] rule can be approximated as follows.

σA : γ A
−→β σF : α F

−→n aliases(α,γ)

al(β) ⊆ al(n)
[FI-ALIAS]

This rule is recursive in that the premise refers to the relation
aliases, which is defined in terms of al, which is to be computed.
Therefore finding the minimal resolved AFG requires a fixed point
computation. Below, we describe our implementation of this: a
worklist algorithm that iterates to convergence.

Figure 7 illustrates the [FI-ALIAS] rule graphically. Existing alias
relationships are shown with thin dashed lines and the rule gener-
ates the edges in bold. Figure 7(d) is the most general case; Fig-
ure 7(a) is the special case when α is an arbitrary node and β = y;
Figure 7(b) is the special case when α = n0, γ = x and β = y; and
Figure 7(c) is the special case when α is an arbitrary node and β is
a fetch node n1; assume al(n1) = y for this figure.

4.1 Implementation
Here, we illustrate our worklist-based implementation of the flow-

insensitive inference rule through the example in Figure 8. Our
algorithm maintains a set of pairs 〈σA, σF〉 that are known to sat-
isfy the premise of the [FI-ALIAS] rule. Technically, we maintain a
worklist of pairs of the form 〈σF ,SσF 〉 where SσF is a set of assign-
ments. Intuitively, instead of considering pairs 〈σA, σF 〉 separately,
we group together all assignments that should resolve to σF in the
current iteration of the algorithm. We will refer to pairs 〈σA, σF 〉
and 〈σF ,SσF 〉 interchangeably; the meaning should be clear from
context.

Fetch from a node Fetch from a fetch node

al(y) = {y} ⊆ al(n)
in (a) and (b)

(a) (b)

al(n1) = {y} ⊆ al(n)
in (c)

(c) (d)

Figure 7: Four cases of applying the [FI-ALIAS] rule. A node
is fetched in (a) and (c) (α = γ); the result of a fetch is itself
fetched in (b); (d) is the general case.

bar()
{

z = &x; // A1
x = &y; // A2
w = *z; // F3 F4 A5

*z = &v; // F6 A7
}

(a) (b)

(c) (d)

Figure 8: (a) A code fragment and its AFG (b), after resolution
(c), and after summarization (d).

We initialize the worklist with all pairs of edges 〈σA, σF 〉 that
share their source nodes. The algorithm is incremental in the sense
that addition of new aliases triggers additions to the worklist. We
will refer to determining aliases as the resolution phase.

Consider the code for bar in Figure 8(a). Its initial AFG is
shown in Figure 8(b). The worklist starts containing exactly two
elements: 〈F3,{A1,Az}〉 and 〈F6,{A1,Az}〉. The assign edge la-
beled Az is the initial value edge for interface node z, lazily created
by the algorithm because z is fetched by either of F3 or F6.

For the initial AFG of bar, the algorithm produces the resolved
AFG in Figure 8(c) as follows. The first element, 〈F3,{A1,Az}〉,
is taken from the worklist, and alias edges (n3,x) and (n3,z1) are
added. Doing so requires three actions: first, we add the pair
〈F4,{A2}〉 to the worklist because n3 is now an alias for x, and
therefore F4 should resolve to A2—an application of the rule in
Figure 7(b). Second, because al(n3) = {x,z1} at this point, fetch-
ing n3 through edge F4 means indirectly fetching both x and z1.
Our algorithm therefore creates two initial values: x1 and z2, and
adds the assign edges (x, x1) and (z1, z2). In Figure 8(c) these

Figure 9: With the addition of new alias (ni, x), the worklist is
augmented with 〈F1,{A5,A6}〉, 〈F2,{A4}〉 and 〈F3,{A4}〉.

edges are labeled Ax and Az1 . Third, the worklist is augumented
with 〈F4,{Ax,Az1}〉 for the same reason it was augumented with
〈F4,{A2}〉: applications of the rule in Figure 7(b). Since we group
together common elements based on σF , this means the new work-
list element is in fact 〈F4,{A2,Ax,Az1}〉

Assume the worklist is augumented at its head; 〈F4,{A2,Ax,Az1}〉
is hence the next to be processed. This adds alias edges (n4, y),
(n4, x1) and (n4, z2).

Next, 〈F6,{A1,Az}〉 is processed and alias edges (n6, x) and
(n6, z1) are added. Doing so requires us to return F4 to the work-
list, this time paired up with A7—i.e, 〈F4,{A7}〉, an instance of Fig-
ure 7(d) with α = n3, γ = n6, n = n4, and β = y, which is replaced
by v. This happens because aliases(n3,n6) is true, i.e., al(n3)∩
al(n6) 6= /0. Specifically, x ∈ al(n3),al(n6) and z1 ∈ al(n3),al(n6).

Processing 〈F4,{A7}〉 adds the alias edge (n4, v), completing the
resolution phase. Because al(n3)∩ al(n6) 6= /0, both n3 and n6 are
two aliases for at least one common location node x. Therefore,
any assignments to or dereferences of n3 and n6 indirectly afect
each other.

We returned F4 to the worklist because we need to arrive at a
fixed point for the [FI-ALIAS] rule. In the graph of Figure 8(b), note
that a solution with al(n3) = al(n4) = al(n6) = /0 does not satisfy
the rule. A valid solution must include an alias edge, e.g., from n3
to x for two reasons: there is a fetch edge (z, n3) and an assign
edge (z, x), and aliases(z,z) is true. A similar argument demands
the other alias edges in Figure 8(c).

We produce the summary AFG in Figure 8(d) by adding assign-
ment edges around each fetch node based on its aliases, deleting
all fetch nodes, and demoting assignment edges (x,x1), (z,z1)
and (z1,z2) to fetch edges, turning nodes x1, z1 and z2 into fetch
nodes.

Our algorithm adds elements to the worklist when new aliases
are discovered by the analysis. This means newly-added alias edges
will “trigger” the inference rule. Figure 9 shows the most gen-
eral case: a new alias edge (ni,x) is highlighted—due to this new
alias, the worklist is augumented with 〈F1,{A5,A6}〉, 〈F2,{A4}〉
and 〈F3,{A4}〉. These three elements are the new facts that need to
be considered because of the new alias between (ni, x). For this in-
cremental procedure, node mergings occuring at summary instanti-
ation can be seen as preceded by an alias edge from the callee node
to the corresponding caller node.

Let L(x) = {ϕ|x∈ al(ϕ)} be the inverse of the al function. Since
the range of al is sets of location nodes, L is only defined for loca-
tion nodes. In Figure 9, L(x) = {ni,x,γ} (γ not necessarily distinct
from x). When we add a new alias (ni,x), we add to the worklist
fetch edges of the form (ϕ,n j) where ϕ ∈ L(x). In Figure 9, such
set of edges corresponds to F1, F2 and F3. The sets of assignments
that pair up with each fetch edge (ϕ,n j) are defined as follows.
If ϕ = ni, all η A

−→µ s.t. η ∈ L(x)\ni. In Figure 9, this means
〈F1,{A5,A6}〉. If ϕ 6= ni, all ni

A
−→δ . This means the other two

worklist elements. Note that if no ni
A

−→δ exists, then both F2 and
F3 in Figure 9 are not affected by the new alias (ni,x).

In the example of Figure 8, the new alias discovered between n6
and x while processing 〈F6,{A1,Az}〉 auguments the worklist with
〈F4,{A7}〉 (an instance of Figure 9 with ni = n6, x=x, and γ = n3).

Note that F4 corresponds to the second dereference of variable z
in the statement w=*z. In traditional incremental techniques, the
addition of a new alias would trigger the (re)analysis of at least
one entire statement [14, 18]. In our finer-grain algorithm, it only
triggers the local (re)analysis of sub-expressions within statements.

5. FLOW-AWARE ANALYSIS
Our AFG has the advantage of enabling a variety of analyses. In

this section, we describe a more accurate analysis that uses a more
precise, but not any harder to compute, approximation of the affects
relation defined in Section 3.

Flow-insensitive analysis, by definition, ignores the order of state-
ments in the program, a pessimistic simplification that leads to spu-
rious aliases. A “flow-aware” analysis considers the order of state-
ments in the program and therefore greatly improves the precision
of the analysis.

(a) (b) (c) (d) (e)

Figure 10: Motivation for flow-aware analysis. (a) An assign-
ment before a fetch can affect the fetch, but (b) an assignment
after a fetch cannot. The presence of conditionals (c, d) fur-
ther constrain which assignments are visible to each fetch. Our
total-order flow-aware analysis approximates the execution or-
der of (d) with the total order of (e).

Figure 10 illustrates the motivation for flow-aware analysis. Each
drawing represents a fragment of the control-flow graph of a pro-
cedure. Figure 10(a) illustrates the most basic case: the assignment
A j runs before the fetch Fi, so A j can affect Fi, i.e., affects(A j, Fi)
holds. However, a fetch that runs before an assignment, as in Fig-
ure 10(b), cannot be affected by the assignment. A flow-insensitive
analysis treats these two cases identically; our total-order flow-
aware analysis does not build an alias in the second case.

Conditionals further complicate the situation. In Figure 10(c),
fetch Fi should resolve to assign A j, since the latter occurs strictly
before the former. On the other hand, affects(Ak, Fi) is false because
the two operations are mutually exclusive. Finally, affects(Am, Fi)
and affects(Am, Fl) are both false because Am runs after Fi and Fl .

The situation in Figure 10(d) is similar to Figure 10(c) with a
few noteworthy exceptions. Although Fl occurs (not strictly) after
Am, Am cannot possibly affect Fl because they are mutually exclu-
sive: the same expression c controls the two conditionals. On the
other hand, Ak does affect Fl because Ak comes before Fl along a
feasible path. Of course, path-feasibility is in general undecidable,
so affects will always be an over-approximation.

In this section, we use a flow-aware analysis that simply imposes
a total order on the statements in each procedure to produce a sim-
ple approximation of affects that can result in significant accuracy
and perfomance benefits. Totally-ordering the statements in a pro-

cedure is itself an approximation (e.g., it ignores mutual exclusitiv-
ity between conditional branches, data-dependent infeasible paths,
etc.), but is inexpensive and produces good results. Figure 10(e)
shows the linearization we choose for the control-flow graph of
Figure 10(d): we place the code for the true branch of each con-
ditional before the code for its false branch.

Let affects0(σA,σF) be true whenever the assignment σA occurs
before the fetch σF in the total order imposed on its procedure.
This is an approximation that leads to some spurious results. For
example, in the linearization of Figure 10(d) shown in Figure 10(e),
affects0(Ak,Fi) and affects0(Am,Fl) are true, yet affects(Ak,Fi) and
affects(Am,Fl), the exact relations in Figure 10(d), are false. Thus,
using affects0 means a fetch edge can resolve to more assignments
than the tightest analysis would, but it is a sound solution that turns
out to greatly improve precision over a flow-insensitive analysis.
We present experimental results in Section 6.

To implement flow-aware analysis, we label each edge σ in the
AFG with an integer rank(σ) obtained from a topological sort of
the statements in the procedure. In this paper, we have written these
labels as subscripts on F’s and A’s in the graphs. As mentioned ear-
lier, our procedures are loop-free: a preprocessing step transforms
loops into tail-recursive procedure calls.

In flow-aware analysis, the [ALIAS] inference rule becomes

σA : γ A
−→β σF : α F

−→n aliases(α,γ) affects0(σA,σF)

al(β) ⊆ al(n)
[FLOW-AWARE]

We implement this rule using a variant of the worklist algorithm
presented in Section 4.1 in which a pair (σA, σF) is inserted into
the worklist only if affects0(σA,σF) is true. Analyzing the example
of Figure 8 follows almost the same steps as those in Section 4.1.
However, the addition of alias edge (n6,x) does not trigger the in-
sertion of 〈F4,{A7}〉 into the worklist. Indeed, affects0(A7,F4) is
false, since A7 occurs after F4. Note this implies both faster con-
vergence and a more accurate solution, since spurious alias (n4,v)
is avoided.

5.1 Ordering Aliases
To further increase the accuracy of our analysis, we also maintain

ordering information on the alias edges in the AFG. This informa-
tion indicates at what point in the procedure’s execution the alias is
created. We use such information to make later aliases invisible to
earlier fetches, much as we do for later assignments.

Consider the resolved graph in Figure 8(c). The initial value
edge for z—assignment edge Az—is demoted into a fetch edge in
Figure 8(d). This fetch edge “condenses” both F3 and F6 from Fig-
ure 8(c), given that either (or both) of them would set the initial
value for z. To record this fact in the final summary, initial value
edges are annotated with the interval that they represent—in Fig-
ure 8(d), the fetch edge (z, z1) would be labeled as F3

6 . Operation
edges can be seen as representing a unitary interval, e.g., A1

1. We
will refer to the superscript and subscript as min and max indices.

Figure 12 further illustrates alias ordering. Figure 12(a) repre-
sents the initial AFG for function h in Figure 11(c), obtained after
the summaries for f and g have been computed. It is assumed that
the summary for g was constructed by previously instantiating the
summary for f. Figure 12(a) therefore shows the call to g that
occurs in the body of h.

The resolved AFG for h (Figure 12(b)) shows the alias edge de-
rived by the resolution phase. Like the other edges in the graph,
it has been annotated with two indices. Such indices are obtained
from the assign edge participating in the resolution, here A8

8.

f(r,s,t)
{

**r = &y;
*s = &z;

**t = &w;
}

g(p,q)
{

f(p,q,p);
}

h()
{
g(&x,&x);

}

(a) (b) (c)

Figure 11: The code for procedures f, g and h.

(a) (b) (c)

Figure 12: (a) Initial, (b) resolved and (c) summary AFG for h.

Indices for alias edges are used when re-directing assign edges
in the resolved AFG to form the summary AFG. To remove a fetch
node n, we re-direct its incoming and outgoing assign edges ac-
cording to al(n). In the graph of Figure 12(b), this would mean

creating two new assign edges: z
A7

7−→y and z
A10

10−→w. However,

edge z
A7

7−→y is a spurious pointer relation that emerges because
multiple dereferences have been encapsulated into a single derefer-
ence (i.e., multiple fetches have been condensed into F6

9 much as
F3

6 represents Az in Figure 8(d)). Indeed, a quick look at Figure 11
verifies that z does not point to y because A8

8, representing the as-
signment in *s=&z, occurs between A7

7 and A10
10, representing the

assignments in **r=&y and **t=&w, respectively.

We avoid the spurious edge z
A7

7−→y by noting the min index for
the resolution edge (n1, z) is greater than the max index for A7

7
(both encircled in Figure 12(b)). Intuitively, this means the aliasing
between n and z in Figure 12(b) is created only after A7

7 executes,

and therefore z
A7

7−→y is invalid. Maintaining this additional order-
ing information increases the accuracy of our total order flow-aware
analysis.

6. EXPERIMENTAL RESULTS
We implemented the pointer analysis framework presented in

this paper in a static analysis (bug-finding) tool called BEAM [2],
which is in widespread use within IBM Corporation. Our experi-
ments show a number of things: first, our AFG-based pointer anal-
ysis technique can be applied on real-world programs; second, our
flow-aware analysis (Section 5) has both better performance and
accuracy than a flow-insensitive analysis; third, our AFG-based,
summary-based analysis, generates pointer abstractions that have
considerably smaller points-to sets when compared to existing tech-
niques.

Table 1 lists the benchmark programs we analyzed. Paraffins
is an implementation of the Salishan Paraffins problem, Compress
and Gzip are well-known file compression programs, Ispell is a
spelling checker, Pcre is a library that implements regular expres-
sion pattern matching, Make is the well-known build tool, Bison is

Table 1: Benchmark programs
Benchmark Lines Source Internal SCCs

functions functions

paraffins 1.5K 13 36 36
compress 2.2K 30 66 66
gzip 8.3K 126 331 330
ispell 10.1K 117 337 337
pcre 15.4K 63 300 299
make 22.1K 309 853 799
bison 25.4K 700 1297 1296
tar 32.7K 651 1145 1124
balsa 110.0K 2659 4682 4648

Table 2: Flow-insensitive experiments
Benchmark Analysis Time Avg. Size Max. Size

paraffins 0.22s 6.10 19
compress 0.13s 3.36 9
gzip 0.72s 3.86 18
ispell 13s 6.72 101
pcre 21s 5.76 19
make 114s 15.5 279
bison 44s 7.60 356
tar 27s 11.6 178
balsa 31s 4.32 51

the well-known gnu parser generator, Tar is a unix utility to con-
catenate multiple files into a single file, and Balsa is an electronic
mail client. “Source functions” refers to the number of procedures
in the original code; “internal functions” refers to the total number
of procedures after replacing loops with tail-recursive functions.
“SCCs” refers to the number of strongly-connected components in
the program’s call graph. Some of the benchmarks contain SCCs
with as many as 52 functions (Make), 19 functions (Tar), and 14
functions (Balsa). This means, for instance, that Make has a “clus-
ter” with 52 mutually recursive functions where the analysis must
first converge before proceeding.

Table 2 lists runtimes for the flow-insensitive analysis described
in Section 4. The analysis time is for BEAM running on a 2.2 GHz
Pentium 4 machine with 4 GB of memory running Linux. The
Avg. Size and Max. Size columns lists the average and maximum
number of nodes in the summary graphs for the program’s pro-
cedures. Analysis times include the time to calculate the points-to
sets as initial, resolved, and summary AFGs, and to propagate sum-
maries until convergence. They do not include time taken to read
source files, parsing, and building the program’s intermediate rep-
resentation in BEAM.

Analysis times are short enough to make our technique practical,
but vary widely depending on the size of the input program and
other characteristics. For example, although Make is only twice as
long as Ispell, it takes more time to analyze Make because its call
graph has large SCCs (ie., mutually recursive functions) on which
the analysis must iterate.

The third and fourth columns of Table 2 suggest that procedure
summary graphs are small on average and appear to grow polyno-
mially with program size, i.e., much slower than the exponential
worst case. Wilson and Lam [20] observed similar behavior with
their partial transfer functions.

Table 3: Total Order Flow-aware compared to flow-insensitive
Benchmark Speedup Accuracy

Overall Slowest Proc. Average Peak

paraffins – – 1% 20%
compress 3% 5% 1% 50%
gzip 8% 13% 7% 40%
ispell 60% 127% 34% 122%
pcre 243% 360% 10% 45%
make 109% 65% 23% 446%
bison 159% 503% 19% 337%
tar 59% 145% 5% 75%
balsa 23% 78% 12% 80%

For heap locations, we use a naming scheme that is similar to the
technique of Choi et al. [5]. Basically, a heap location is named by
continuously prepending the name of the caller function whenever a
summary for a callee is embedded into the caller. A limit is given to
the number of prefixes allowed, and distinct heap nodes are merged
together based on this limit. The full handling of heap locations is
out of the scope of this paper but can be found elsewhere [3].

Table 3 shows the results of experiments that compare flow-
insensitive analysis to our flow-aware analysis (see Section 5). For
these experiments, we used the simple-minded total linearization
of the statements in each procedure and considered min and max
times for each operation and alias edge.

Table 3 shows that our total-order flow-aware analysis is both
more efficienct and more precise than the flow-insensitive analysis
implementation. The second column lists the overall decrease in
runtime for our flow-aware analysis compared to our implementa-
tion of flow-insensitive analysis. The third column indicates how
much faster flow-aware analysis is at analyzing the procedure that
took the most time.

The “accuracy” columns in Table 3 compare the size of the sum-
mary graphs obtained by flow-aware analysis compared with those
from flow-insensitive analysis. We computed these numbers as fol-
lows: let R be the ratio of assign edges to the total number of nodes
in the final summary graph for a procedure. If RI is this ratio after
flow-insensitive analysis and RA is this ratio after flow-aware anal-
ysis, then the increase in accuracy is Q = (RI −RA)/RA. The peak
accuracy (fifth column) is the highest such Q over all procedures;
the average accuracy is the average increase over all procedures:
(Q1 + · · ·+Qn)/n.

Table 4 shows that the AFG abstraction for pointer analysis gen-
erates points-to sets that are considerably smaller than those ob-
tained through Andersen or Steensgaard analysis[6, 13]. We com-
pute points-to set sizes by observing that assign edges in the AFG
for a function correspond to the set of locations pointed-to by the
source node of the assign edge. Clearly, there are several summary
AFGs in a given benchmark – one for each function in the program.
To calculate the points-to set sizes shown in column 1 of Table 4,
we compute an average among all AFGs. The table shows the re-
sulting numbers for the flow-insensitive analysis on the AFG.

7. RELATED WORK

7.1 Pointer Analysis
Existing (flow-insensitive) pointer analysis algorithms can be roughly

divided into Steensgaard’s [17], Andersen’s [1] and Das’s [6]. Each
computes one solution for the entire program with different degrees

Table 4: Points-to Set Sizes
Benchmark AFG Andersen Steensgaard

paraffins 1.11 – –
compress 0.524 1.22 2.1
gzip 2.06 2.96 25.17
ispell 1.92 2.25 16.45
pcre 2.21 – –
make 26.11 74.70 414.04
bison 1.88 1.72 20.51
tar 2.58 17.41 53.7
balsa 0.92 – –

of precision and performance. The analysis solution is usually in
the form of a large points-to graph, a directed graph where nodes
represent memory locations and edges represent “poins-to” rela-
tionships. An edge from node p to node q means that p points-to
q. Precision refers to the ratio between valid points-to relationships
and spurious information (e.g., when the graph says that p points-to
q but that can never happen in the actual code). Steensgaard’s anal-
ysis unions two objects that are pointed to by the same pointer into
one object (i.e., the outdegree of any node in the points-to graph
is at most one). This leads to the unioning of the points-to sets of
these formerly distinct objects, and therefore loss of precision. To
implement that, Steensgaard’s analysis employes a fast union-find
data structure to represent all alias relations. Andersen’s analysis
also uses one solution for the entire program, but it does not merge
objects that have a common pointer pointing to them. This leads
to a better precision, although worse running time [1]. Das adds a
small amount of directionality to a unification-based analysis [6],
creating an analysis with precision close to Andersen’s while re-
maining scalable.

Our AFG-based approach is a general one that can be special-
ized into a variety of analysis techniques. We presented two: an
Andersen-style flow-insensitive analysis as well as a more precise,
more efficient version called flow-aware analysis. The affects rela-
tion of Section 3.1 can be also used to derive analysis that are sen-
sitive to conditions in the code, including a form of path-sensitive,
flow-aware analysis.

A number of works present implementations of Andersen’s anal-
ysis that are not whole-program. In [12], program fragments, i.e.,
arbitrary collections of functions, are analyzed using worst-case as-
sumptions about callees and callers. Demand-driven versions of
Andersen’s analysis have been proposed for C [9] and Java [15, 16].
For each query, these analysis evaluate only those statements that
are relevant for the particular query.

7.2 Summary-based analysis
The main goal of summary-based pointer analysis is to avoid

re-analyzing the body of a function each time the function is in-
voked. One approach to this idea is to analyze the body of a func-
tion the minimum number of times possible, which is implemented
by recording the set of input/output behaviors of a procedure. I.e.,
once a summary 〈I,O〉 has been computed for a procedure pr, it
is not necessary to reanalyze the body of pr if context I arises at
another call to pr. Instead, the summary 〈I,O〉 is consulted and the
corresponding output context O is used. On the other hand, if a yet
unseen input I′ arises, then the body of pr needs to be re-evaluated
in order to compute and store the new pair 〈I ′,O′〉. This is basi-
cally the idea behind the algorithm of Wilson and Lam [20], where

multiple summaries for a function are constantly being memoized
during a top-down traversal of the program. For any given func-
tion f, there is one summary for each distinct calling context I
under which f has been invoked (a calling context is defined in
terms of the alias relations among function parameters, which are
determined by the callers). This signifies that the procedure is not
summarized for all potential aliases among its inputs, but only for
those that actually occur in the program—which also implies that a
function may need to be re-summarized upon the addition of new
callers (e.g., in a modular development).

Instead of recording multiple input/output behaviors for each
possible input (i.e., alias contexts) that occur in the program [20],
we create a single summary for each procedure that can be special-
ized at any call site. However, our summaries are soundly used at
a call site containing aliases. In contrast, a single points-to graph
cannot summarize a C function for all possible calling contexts.

Another approach to summary-based analysis is to evaluate the
body of a function once, but to store multiple analysis results (i.e.,
multiple summaries); each result is indexed under the possible alias
relations that may exist at function entry [4, 8]. In contrast to Wil-
son and Lam [20], summaries are built using no information “from
above” (i.e., from callers). For example, for a function f with two
pointer parameters p1 and p2, two “initial conditions” may be as-
sumed: either p1 and p2 point to the same location(s), or they
don’t. From these starting points, two initial summaries are gener-
ated, which may later branch into more derived summaries. Basi-
cally, such techniques use alias contexts to lazily enumerate poten-
tial aliases among parameters in order to distinguish transfer func-
tions for different calling contexts. In [10], the authors formulate a
“conditional may alias analysis” for C, handling multiple levels of
indirection, for both scalar and aggregate data types. Given a set
of alias pairs that are true at function entry, they compute the set
of the alias pairs that hold at function exit (i.e., conditioned on the
alias pairs at the entry).

Our technique builds a single summary for each function that
uses no information from above and analyzes the body of each
function once1. Like Livshits et al. [11] and Whaley and Rinard [19],
we assume no aliasing among locations from the environment while
analyzing a procedure, a seemingly unsound assumption. Later,
aliasing is (incrementally) taken into account when incorporating
the summary into a calling environment containing aliases, restor-
ing the soundness of the analysis. The approach has the advantage
of computing just one summary that can be applied in all situa-
tions, simplifying the summary representation as well as speeding
the analysis, and it applies for languages such as C.

8. CONCLUSIONS
We presented a new approach to pointer analysis based on the

assign-fetch graph. By representing the operations in a procedure
rather than points-to relations, the AFG enables context-agnostic
procedure summaries and several pointer analysis variations.

We present two pointer analysis techniques on the AFG: a stan-
dard flow-insensitive one and a new approach we call flow-aware.
The flow-aware analysis considers an approximation of the control-
flow in a procedure to reduce the number of spurious alias relation-
ships that would otherwise arise in a flow-insensitive analysis of a
procedure.

Experimental results on real-world C programs showed that our
flow-aware analysis is both faster (3–243%) and more precise than
flow-insensitive analysis. We measured precision by looking at the
number of edges in the procedure summaries. Since both analyses
1Modulo achieving a fixed-point for recursive procedures.

are sound, fewer edges corresponds to a more precise summary.
In the future, we plan to develop yet more precise analyses by

refining the approximation of the affects relation of Section 3.1.
For instance, a path-sensitive approximation can be made by in-
cluding the conditions under which fetches and assignments occur.
Moreover, we are currently adding field-sensitivity to the analysis
by inserting one more type of edge in the AFG, a field-dereference
edge, which will handle arbitrary casting possible in C.

9. REFERENCES

[1] L. O. Andersen. Program analysis and specialization for the
C programming language. PhD thesis, DIKU, University of
Copenhagen, May 1994. Available at
ftp.diku.dk/pub/diku/semantics/papers/D-203.dvi.Z.

[2] Daniel Brand. A software falsifier. In International
Symposium on Software Reliability Engineering, pages
174–185, October 2000.

[3] Marcio Buss. Phd thesis (to appear). Department of
Computer Science, Columbia University.

[4] Ramkrishna Chatterjee, Barbara Ryder, and William A.
Landi. Relevant context inference. In Proceedings of
Principles of Programming Languagues (POPL), pages
133–146, 1999.

[5] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. In Proceedings of the 20th Annual ACM
Symposium on Principles of Programming Languages, pages
232–245, 1993.

[6] Manuvir Das. Unification-based pointer analysis with
directional assignments. In Proceedings of Programming
Language Design and Implementation (PLDI), pages 35–46,
2000.

[7] Maryam. Emami, Rakesh Ghiya, and Laurie Hendren.
Context-sensitive interprocedural points-to analysis in the
presence of function pointers. In Proceedings of
Programming Language Design and Implementation (PLDI),
pages 242–256, 1994.

[8] Mary Jean Harrold and Gregg Rothermel. Separate
computation of alias information for reuse. IEEE
Transactions of Software Engineering, 22(7):442–460, 1996.

[9] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing
analysis using CLA: a million lines of C code in a second. In
Proceedings of Programming Language Design and
Implementation (PLDI), pages 254–263, 2001.

[10] William Landi and Barbara Ryder. A safe approximate
algorithm for interprocedural pointer aliasing. In
Proceedings of Programming Language Design and
Implementation (PLDI), pages 235–248, 1992.

[11] V. Benjamin Livshits and Monica S. Lam. Tracking pointers
with path and context sensitivity for bug detection in c
programs. In Proceedings of the SIGSOFT Symposium on the
Foundations of Software Engineering, 2003.

[12] Atanas Rountev, Barbara Ryder, and William Landi.
Data-flow analysis of program fragments. In 7th European
Software Engineering Conference/ACM SIGSOFT
Symposium on the Foundations of Sofware Engineering,
ESEC/SIGSOFT FSE, pages 235–252, 1999.

[13] Marc Shapiro and Susan Horwitz. Fast and accurate
flow-insensitive points-to analysis. In Proceedings of
Principles of Programming Languagues (POPL), pages
1–14, 1997.

[14] Jyh shiarn Yur, Barbara Ryder, and Willim Landi. An
incremental flow- and context-sensitive pointer aliasing
analysis. In Proceedings of the 21st International Conference
on Software Engineering, pages 442–451, 1999.

[15] Manu Sridharan, , and Rastislav Bodik. Refinement-based
context-sensitive points-to analysis for java. In Proceedings
of Programming Language Design and Implementation
(PLDI), pages 387–400, 2006.

[16] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav
Bodik. Demand-driven points-to analysis for java. In
Proceedings of the SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications
(OOPSLA), 2005.

[17] Bjarne Steensgaard. Points-to analysis in almost linear time.
In POPL ’96: Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 32–41, 1996.

[18] Frederic Vivien and Martin Rinard. Incrementalized pointer
and escape analysis. In Proceedings of Programming
Language Design and Implementation (PLDI), pages 35–46,
2001.

[19] John Whaley and Martin Rinard. Compositional pointer and
escape analysis for java programs. In Proceedings of the 14th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), 1999.

[20] R. Wilson and M. Lam. Efficient context-sensitive pointer
analysis for C programs. In Proceedings of Programming
Language Design and Implementation (PLDI), pages 1–12,
1995.

