
Synthesized In-BRAM Garbage Collection for
Accelerators with Immutable Memory

Martha Barker, Stephen A. Edwards, and Martha A. Kim
Department of Computer Science

Columbia University
New York, USA

{mbarker, sedwards, martha}@cs.columbia.edu

Abstract—Speed and ease of accelerator design is a growing
need. High level programming languages have provided signif-
icant gains in the software world, but lag for hardware. We
present a hardware implementation of a garbage collector that
automates memory management, one of the major conveniences
of modern software languages. Our garbage collector runs con-
currently with the application it serves, using already-idle mem-
ory slots to do its work with little to no impact on performance.
To achieve this, our collector exploits rapid synchronization
that is straightforward in hardware but difficult in software.
This synchronization enables the collector to interleave with fine
pockets of idleness on a per-cycle, per-heap basis.

Our collector typically incurred negligible overhead, only
slowing the application to wait for collection to free memory
when the heaps were so small that the collector could not
keep pace with allocation. We also found that our concurrent
collector performs best under an eager collection policy that
collects garbage well before the application exhausts the available
memory. Although this eager strategy performs more collection
operations than strictly necessary, the application never pauses
because our collector operates entirely in the background.

Index Terms—garbage collection, BRAM, heaps, accelerators,
high-level synthesis

I. INTRODUCTION

FPGAs are attractive acceleration platforms with recent
commercial and cloud deployments. However, programming
FPGAs remains a formidable engineering effort, demanding
intimate knowledge of hardware design and the application.
High-level synthesis (HLS) can greatly reduce this effort
by compiling programs specified in a higher-level language,
although it rarely matches hand-engineered design quality.
Nevertheless, rapid design and deployment sit alongside per-
formance as paramount concerns, as suggested by Google’s
use of HLS to design its video transcoding chip [1].

In modern programming languages, garbage collection sim-
plifies the developer’s task and eliminates bugs such as
memory leaks and use-after-free errors. While today’s HLS
frameworks excel at optimizing arithmetic, loops, and regular
memory accesses, memory management is not well supported.

Software garbage collectors typically impose a 10-35%
slowdown depending on the application [2], [3], which hard-
ware acceleration can sometimes reduce [3]–[6]. By definition,
accelerators are faster than software and thus even more sensi-
tive to interference from garbage collection. A 1ms collection
pause on a 100ms software task is just 1% of runtime, but a
1ms pause on a 10ms accelerated task is a 10% slowdown.

We present a synthesized, hardware-only automatic garbage
collector that operates concurrently with the accelerator, im-
posing a negligible slowdown on the accelerator (e.g., un-
der 1%) when heaps are sufficiently large. Our collector inte-
grates with FPGA accelerators synthesized from Haskell [7],
[8] and operates on multiple, parallel heap memories. Each is
implemented with FPGA BRAMs and can perform either an
application or garbage collection operation each clock cycle.

When free memory dwindles below a given fraction of the
total heap size, our garbage collector initiates collection. First,
it performs a global memory fence, waiting for all in-flight
memory operations to complete while prohibiting new ones.
Then, the collector takes a single-cycle snapshot of all the
“roots”—the pointers directly in the program’s possession—
and resumes normal application execution concurrently with
collection. In our hardware collector, this operation is vastly
less intrusive than is typical in software implementations.

Our hardware collector synchronizes rapidly with the appli-
cation, allowing the collector to safely run in the background.
The collector uses memory cycles that the application other-
wise would not use, much like simultaneous multithreading [9]
fills idle execution slots with instructions from other threads.
To keep the memory allocator available to the application
during collection, the allocator and collector maintain a shared
list of free objects, which is easier to do in hardware.

Our collector is integrated into an FPGA HLS flow that
relies on an immutable memory model, i.e., the contents of an
object are set only when it is allocated. While this simplifies
allowing the application to run during collection, our approach
does not demand it. Existing techniques [4], [10] to manage
heap mutations during collection could be used.

II. GARBAGE COLLECTION BACKGROUND

A garbage collector is an automated memory management
tool that identifies and reclaims memory allocated to “dead”
objects that are no longer accessible by the application,
releasing application developers from having to manually free
unused memory and the bugs that often accompany doing so.
Jones [11] is the standard text on garbage collection.

Tracing and reference counting are the two main ap-
proaches. Ours is a tracing collector, which starts from
the application’s roots—the set of pointers held directly
in variables (our roots reside in buffers throughout the



Haskell
Source

Compiler Dataflow Translator
Accelerator

SystemVerilog Assembler Glue (§IV-C)

Application (§IV-A)

Memory Heaps (§IV-B)

Fig. 1. Accelerator synthesis toolchain. The Haskell program is compiled into SystemVerilog through a dataflow IR. The assembler synthesizes per-type
garbage collected heaps (Section IV-B) connected to the application with glue logic (Section IV-C) according to type information and designer parameters.

microarchitecture)—then traverses the object graph to mark
all objects reachable from roots. When marking is complete,
the mark and sweep variant of a tracing collector does a linear
scan to reclaim the storage of all unmarked objects.

By contrast, reference counting maintains a per-object count
of references, recursively frees an object when its count
reaches zero, and usually requires more bookkeeping.

Collectors often pause the application to avoid the confusion
of a changing reference graph, a stop-the-world approach.
Unfortunately, this often produces unacceptable pauses. Con-
current collectors avoid such pauses by allowing the appli-
cation to continue during collection, but are challenging to
implement efficiently because of the careful synchronization
required between the application and collector.

III. RELATED WORK

Bacon et al. [4], [10] present one of the few garbage
collectors that, like ours, is hardware and coexists with an
accelerator on an FPGA. Their collector is also concurrent and
collects multiple inter-connected heaps. They observed zero
mutator stall cycles with heaps between 1.1 and 1.7 times the
minimum necessary heap size, but did so on memory traces
from a Java application; it is less clear what their performance
overhead would be for an accelerator. Our garbage collector is
integrated with a Haskell-to-Hardware compiler and we have
measured its overhead on six accelerators being virtually zero.

Termination detection is a key challenge of multi-heap
garbage collectors. Bacon et al. detect termination by waiting
for the maximum cycles required for a pointer to travel be-
tween heaps; we support undetermined delays between heaps.
Furthermore, Bacon et al. connect every pair of heaps; we only
connect heaps that reference each other. Together, we believe
these differences make our approach more scalable.

Hardware accelerators for software garbage collection are
less like our work. Maas et al. [3] propose a tracing garbage
collection accelerator that employs small CPU modifications.
Their accelerator achieves high memory bandwidth by using
a bidirectional object layout to identify reference fields and
decoupling marking and tracing. Unlike our collector, software
collects roots and processes state such as the page-table base
register and provides them to the accelerator. Jang et al. [5]
accelerate key primitives in the ParallelScavenge GC algorithm
on the near-memory logic layer of a 3D stacked DRAM. Tang
et al. [12] accelerate three common GC functions that consume
nearly 50% of collection time and add CPU instructions.

Researchers have proposed alternative hardware assists for
GC. The hardware reference counting of Joao et al. [6] stores
the reference count in object headers and caches updates to

reduce memory accesses. Srisa-an et al. [13] store a limited
reference count for each object in their Active Memory Pro-
cessor. These works identify and reclaim some dead objects
in hardware, reducing the frequency of software collections.
GC co-processors move collection off of the main core. The
Integrated Hardware Garbage Collector of Garcia et al. [14]
is closely coupled with the processor to support modern lan-
guages in embedded systems. Meyer [15] develops an on-chip
GC co-processor paired with a special purpose processor for
embedded systems. Schmidt and Nilsen’s Garbage Collected
Memory module [16] is a near-memory co-processor accessed
over the memory bus. In a CPU, hardware read barriers
reduce the synchronization cost of concurrent collectors. Azul
Systems’ Click et al. [17] build a custom system for concur-
rent garbage collection including a read barrier instruction.
Meyer [18] implements both a hardware read barrier and
handler directly in the pipeline of his GC co-processor.

IV. GARBAGE COLLECTOR DESIGN

Our garbage collector works in tandem with a hardware
accelerator capable of taking atomic snapshots of the roots.
We describe these structures below.

A. Accelerator Synthesis Flow

Figure 1 illustrates how we synthesize our accelerators
with garbage collection. We extended the Haskell-to-Hardware
compiler of Townsend et al. [7], [8], which targets algorithms
with complicated control and irregular memory access patterns
that rely on an immutable, garbage-collected heap.

The compiler synthesizes accelerators from Haskell pro-
grams by transforming them into a dataflow network, opti-
mizing the network, and then synthesizing the network into
SystemVerilog. The compiler dismantles recursion and poly-
morphism [7] and adds buffers to the dataflow network to
break what would become combinational cycles [8].

Dataflow nodes communicate data tokens that encode in-
tegers and Haskell’s algebraic data types (tagged unions).
The hardware employs latency-insensitive channels with back
pressure [19]. Bit vectors hold data that typically includes
a tag to indicate how to interpret the fields in the rest of
the vector, typically consisting of integers and references to
other objects encoded as pointers—per-type word addresses.
Channels are strongly typed in that the compiler knows the
possible interpretations of each vector, including any pointers.

Like Haskell’s, our heap is immutable: an object’s value is
set only when the object is created. While the maximum live
object count is the same for mutable and immutable memory,
the immutable model results in more garbage because updating



1right child ptr.

log2 N -bit
pointer

value

32-bit integer

left child ptr.

log2 N -bit
pointer

00 unmarked
01 marked
10 freelist
11 workqueue

next ptr.

log2 N -bit
pointer

GC Overhead Object Data

Fig. 2. Layout of a binary tree node in memory. The application sees the Object Data bits: a value field, two child pointers, and a flag indicating the object
is a branch or leaf. GC Overhead bits are a pointer field used to indicate the next object in the work or free list and two object status bits.

Garbage
Collector

Heap of C Objects

Garbage
Collector

Heap of B Objects
Heap of A Objects

Storage Array

arbiter
p0 p1

Marker
(Section IV-D)

Sweeper
(Section IV-F)

Garbage Collector

tail

size

head
Freelist

Writer /
AllocReader

Application Interface

roots from application via glue

APtr

reads and writes from application via glue

APtrAAAPtr
inter-heap communication re: collection
start, mark termination detection, and
pointer exchange

Fig. 3. Parallel heap architecture. Each type in the application has a dedicated heap that operates independently from the other heaps except during garbage
collection, when the heaps share pointers discovered during mark and communicate to detect mark completion.

an object creates a new copy, keeping the live object count the
same, but generating garbage out of the old copy. The dataflow
network interacts with the heap through two primitives: write
operates like C++’s new operator: it takes the data for a
particular type of object (typically tag and field), allocates and
stores it in memory, and returns a pointer to the object, whose
data may be later retrieved by passing the pointer to read.

B. Heap Architecture

Our toolchain synthesizes an application-specific memory
architecture in which each type has its own heap. The bit-
width of each heap is set by the bit-width of the objects it
stores and garbage collection metadata; the number of objects
per heap is set by the designer. Figure 2 depicts the encoding
of a binary tree node. The encoding, and hence the number of
bits used for each object’s fields, is automatically synthesized
and is type- and application-specific.

Figure 3 shows the heaps we synthesize for an application
that manipulates A’s, B’s, and C’s. Each heap has a object
storage array that is accessed by the application through the
heap’s read/write interface and implemented with pipelined
FPGA BRAM with logic designed to fill the pipe and tolerate
its latency. In each cycle, an arbiter that favors the application
grants access to either the application or the collector. Thus,
while there is free memory, the application operates uninter-
rupted and the collector works in the background.

Objects that reference each other require special considera-
tion in our multi-heap setting. Our static typing policy ensures
we know at compile time which objects could potentially
reference objects in other heaps. Consider an application with
three types A, B, and C, where A objects contain B and C
pointers. During garbage collection, when the marking process
encounters an object of type A, marking will have to then mark
the B and C objects it refers to, which are in separate heaps.
Our heaps include such communication channels.

C. Root Collection

The parallelism available in hardware allows us to take an
atomic root snapshot in a single cycle. Every buffer that holds
a type that may contain a “pointer.” may contain a root. We
augment each such buffer with an additional “root register”
that can be compelled by a global “snap” signal to capture all
pointers, if any, held in the buffer. The root registers of each
type connect into a shift register leading to that type’s heap.

When the free list in any heap dwindles below a threshold,
collection is triggered and back pressure on the request chan-
nels blocks new memory operations. Once pending memory
requests have completed, the root registers are loaded, and the
hold on new memory operations is lifted. The application can
continue normal execution and marking begins.



D. Marking

Marking begins by appending roots to a work list linked via
the “next ptr” field (see Figure 2). Each object’s status field
indicates whether it is marked, is in the work queue, or is
free. Marking then traverses the object graph breadth-first by
popping an element from the work list then appending each
of its unmarked children. The only departure from a standard
mark algorithm is that pointers can come from roots, be locally
discovered, or be discovered while marking another heap.

To avoid deadlock, each marker adds discovered references
to the appropriate work list before popping the next object.
Thus, as long as each marker has sufficient internal buffering
for the maximum number of discoverable references per
object, the marker can always drain them and make progress.

To maintain correctness during concurrent operation, objects
allocated during marking are presumed live and allocated
marked. This is a conservative assumption that ensures no
live objects are reclaimed. At worst, an object may survive
one additional collection. Marking is complete when all mark
engines have run out of objects to mark.

E. Mark Termination Detection

Termination detection is challenging because while a marker
may appear to be done, a remotely-discovered pointer may
restart it. Termination occurs only once the last marker has
completed and there are no inter-heap pointers in flight. We
adapted our algorithm from Chandy-Lamport [20]: we connect
the heaps in a simple ring around which they send “done
check” messages. A cycle counter in each heap records the
time when it “runs out” of work. At that point, a heap initiates
a check by sending a positive done check message to the
next heap which contains the initiating heap’s ID and the time
stamp of local completion. When a heap receives a done check,
if it is done marking and finished before the heap initiating the
check, it propagates the positive done check to the next heap.
If instead it still working, or ran out of pointers later than the
initiating heap, it propagates a negative done check message.
The cycle completes when the initiating heap receives a done
check message with its own ID. If the message is still positive,
then all types have finished and the check initiator was the last
to finish, indicating the mark phase is complete.

F. Sweeping

To reclaim unmarked garbage, each heap performs a linear
sweep of its address space. Unmarked objects are added to
the free list and marked objects are unmarked. We allow
allocations to proceed during sweep by either allocating an
object marked or determining that it will not be swept. During
the sweep, each heap maintains a pointer S to the current
position of the linear sweep. At all times, objects in memory
below S have already been swept and are allocated normally;
objects above S have not been swept and are therefore
allocated marked guaranteeing the object survives sweep. If
the sweeper and allocator collide, allocation will occur before
sweeping, so the object is allocated marked.

TABLE I
BENCHMARK APPLICATIONS

Application Size (LoC) Heaps Rate (Obj/Cyc)

Bandwidth 176* 5 varies
MergeSort 48 6 0.073
TreeSort 49 7 0.073
Reflect 49 6 0.085
RedBlack 124 6 0.079
Map RedBlack 129 6 0.075
TSP 100 8 0.001
Clustering 382 19 0.071

*Lines of SystemVerilog code; all others are lines of Haskell code

V. EVALUATION

Our evaluation quantifies the performance overhead of our
collector by comparing its performance to an (unrealizable)
ideal of execution without garbage collection.

We find our run-in-the-background collector imposes less
than a 1% performance overhead when the heaps are “big
enough” (often 2.5× the working set size), the collector is set
to start collecting before the heap fills up, and the application
does not fully use the available memory bandwidth. Our
evaluation aims to characterize the design space of systems
that are provisioned just enough to achieve such low overhead.

We measure performance as the total number of execution
cycles, which we gathered from the cycle-accurate simulator
Verilator. Our experiments indicate that the clock frequency
does not change for all implementations of the same appli-
cation. Application slowdown is the percentage of additional
cycles taken beyond that necessary for the ideal collector
(simulated by making the heaps so large as to avoid ever
needing collection); a 100% slowdown means the application
running with our collector took twice as many cycles as the
application would with an ideal collector.

A. Synthesis Results

Our accelerators and synthesized garbage collectors are
heavily pipelined to maintain high clock frequencies regardless
of size, which our experiments confirm. To evaluate operating
frequency and area, we synthesized our collectors in Xilinx
Vivado targeting a Zynq Ultrascale XCZU7CG-FBVB900-
1LV-I FPGA with 230400 LUTs and 11Mb of BRAM.

Area: We synthesized the memory and garbage collector
without an application, implemented a single heap containing
linked-list type objects, and swept its capacity from 28 to
217 objects. This increased LUT and register needs only
modestly since only the size of the pointer objects and memory
multiplexing logic needed to change. The largest collector
required fewer than 1200 LUTs.

Frequency: The clock frequency of the synthesized
garbage collector and memory with no application ranged
from 270 MHz to 350 MHz across all the heaps we considered.
The frequency decreased modestly for larger heaps, likely due
to BRAM wiring. In any case, our collector never limited
application frequency: we synthesized accelerators with and
without GC and found working frequency unchanged.



1.0 1.2 1.4 1.6 1.8 2.0 2.2

heap size (rel. to peak working set)

0%

20%

40%

60%

80%

100%
ap

pl
ic

at
io

n 
sl

ow
do

w
n

collect @ 25% free
collect @ 95% free
collect @ 5% free

Fig. 4. Garbage collector overhead in cycles on MergeSort as a function of
heap size and collection threshold. An eager garbage collection trigger lets it
run continuously in the background. Sufficient heap space prevents stalls by
providing enough room for the collector to outpace allocations.

B. Applications

We ran experiments on the eight applications listed in
Table I. Haskell naturally supports applications with irregular
memory access patterns and recursion which our benchmarks
exploit. We synthesized most applications from Haskell pro-
grams using the toolchain depicted in Figure 1; we manually
coded Bandwidth in SystemVerilog.

Bandwidth is a micro-benchmark that generates high levels
of memory traffic. It reads and writes from memory at speci-
fied rates while building and destroying list data structures.

MergeSort recursively sorts an integer list by separating it
into even- and odd-indexed elements, sorting those, and then
merging. TreeSort sorts a list by building and flattening a
binary search tree. Reflect builds a binary search tree then
flips the left and right children of each node. RedBlack
and Map RedBlack build balanced red-black trees then Red-
Black swaps the left and right children of each tree node;
Map RedBlack rewrites the tree ten times, adding a constant
to each tree node each pass. TSP implements a nearest-
neighbor heuristic for the traveling salesman problem starting
from a matrix of towns and the distances between them.
This is computationally intensive, but generates little garbage,
which demonstrates the unobtrusive nature of our collector
on applications with a small memory footprint. Clustering
implements K-means clustering. Used in a range of machine
learning applications, it first constructs a K-d tree from a list
of 2D points then performs the clustering algorithm.

C. Performance Overhead vs Heap Size

Our experimental results for MergeSort in Figure 4 show
the performance overhead of our collector drops below 1%
compared to an ideal collector as the heap sizes begin to
exceed about twice the size of the maximum working set. We
gathered this data with each heap sized randomly between the
maximum working set for its type and an over-provisioned
maximum. The horizontal axis of Figure 4 shows the heap
size in objects compared to the maximum working set of the
application, which we found empirically using memory access

1.0 1.5 2.0 2.5 3.0 3.5 4.0

heap size (rel. to peak working set)

0%

2%

4%

6%

8%

10%

12%

ap
pl

ic
at

io
n 

sl
ow

do
w

n

treesort
mergesort
reflect
redblack
map_redblack
clustering
tsp

Fig. 5. Garbage collector overhead in cycles as a function of heap size. Each
application has a heap size where the collector can run fully in the background.

traces from each application. The heaps on the left side of
the figure are just barely large enough to run the application;
heap space increases towards the right. Unlike stop-the-world
collectors, concurrent collectors require more heap space than
the working set to accommodate allocations during collection.

On the far left of Figure 4, the garbage collection overhead
is as high as 40%, which corresponds to the case where the
heap is just barely large enough to accommodate the appli-
cation. Here, the heap requires frequent garbage collection
and the application is using memory at a rate faster than the
collector recycles it. As heap capacity increases, the collection
overhead drops as the application uses memory at a rate equal
to or lower than the collection rate, indicating that the collector
is able to scavenge unused memory bandwidth and still recycle
garbage fast enough that the application can always allocate.

The overhead we report for each heap capacity value (hori-
zontal position) represents the minimum observed overhead for
that particular heap size—a Pareto frontier. An open problem
in our technique is how best to allocate space among multiple
heaps. We assume that an accelerator will be given a heap
memory area budget, but that it will fall to the designer to
allot it among the heaps, depending on the desired trade off
between memory overhead and performance. Heap allocation
is important because an under-provisioned heap can become
a bottleneck by forcing more collections than if it had more
capacity. Absent an effective algorithm for finding the best
relative allocations, we show the best configurations from a
randomized design space exploration.

D. Performance Overhead vs Collection Threshold

Figure 4 also shows it is best for our collector to run
continuously in the background rather than to minimize the
number of collection events. We find that our collector slows
the application less when it collects eagerly. Collection is
triggered when the number of free objects in any heap drops
the collection threshold. At a threshold of 5%, the collector
waits until the heap is nearly full, whereas a 95% threshold
leads to almost constant collection.

This result further demonstrates our collector’s “run-in-the-
background” character. This may seem counter-intuitive since



The Bandwidth benchmark: a memory-heavy app

Marking phase running on five heaps Marking pauses briefly Marking resumes

The MergeSort benchmark: a memory-light app

Marking phase on one heap Marking concludes Sweep phase begins on all heaps

Fig. 6. Memory accesses over time. (top) When the app memory utilization is high, GC proceeds more slowly, but it is still able to use gaps in application
memory accesses to make progress. (bottom) When there are more memory slots available the collector uses however many it needs, from just a few to all.

a higher threshold triggers more collections, but overhead from
the collector arises when the application has to wait for the
collector to free additional objects. When garbage collection
is eager, there is enough free memory for the application to
continue making progress while the garbage collector works in
the background. Triggering collection later, the application is
more likely to consume all of the available heap space before
the collector has reclaimed dead objects.

Our experiments show that above a certain size, the heaps
are large enough for our concurrent collector to achieve idyllic
behavior: collection is triggered early and often enough to
avoid application pauses due to an out-of-memory situation
and there is sufficient unused memory bandwidth to accom-
modate this larger-than-necessary number of collections. The
overhead never drops to exactly zero in these experiments
because there is a small cost for the memory barrier before
the roots are captured, but this cost is negligible.

Figure 5 shows the overhead of our collector for various
heap sizes of all the applications. Here, we selected a 25%
collection threshold to balance eagerness and excessive col-
lection. For all applications except TSP and Clustering our
collector quickly drops to having negligible overhead.

Clustering is our largest and most complicated application
with the heap divided among 19 data types. Its collection
overhead does eventually become negligible, but not until 6.8×
the maximum working set. The garbage collection overhead
on TSP is near zero, even at the minimum viable heap size,
because TSP is not memory-intensive due to the distance
matrix, which remains live for the duration of the application
dominating the working set. With little generated garbage, the
application never has to pause for the collector to catch up.

E. Memory Bandwidth Overhead

To verify that the collector is filling empty memory slots,
we collected the cycle-by-cycle memory usage traces shown
in Figure 6. Time runs from left to right, with each row
corresponding to a heap. White squares are unused memory
slots, black are the application, and green are the collector.

The top trace is our Bandwidth micro-benchmark, which
makes heavy use of memory. The collector is near the be-
ginning of the mark phase, it pauses briefly in the middle
of this trace, possibly because of a “bubble” in the arriving

roots, then resumes marking. The highly periodic pattern of
the application’s memory accesses is not interrupted during the
bubble, confirming that our collector is able to share memory
bandwidth with the application without interfering.

The bottom trace depicts our MergeSort benchmark at a
point where the application is using just two of the heaps
and the collector is transitioning from marking to sweeping.
The start of the trace (left) shows the mark phase finishing on
the top heap while the other heaps have completed marking
and are waiting to start sweeping. At about the halfway
point, all heaps begin sweeping, which saturates the unused
memory bandwidth. As with the memory-heavy benchmark,
this change does not interfere with the application’s progress
which continue their periodic behavior.

The previous experiment shows the garbage collector is able
to fill idle memory slots regardless of the application memory
utilization, but that application memory utilization effects the
collection overhead as the garbage collector can only operate
in the background if there are idle memory slots.

VI. CONCLUSION

We presented a synthesized concurrent hardware garbage
collector for FPGA-based accelerators. Our collector exploits
rapid synchronization to fill otherwise idle memory slots
on multiple, parallel memory heaps. We find that an eager
collector that runs early and often paired with reasonably pro-
visioned heaps allows the collector to run almost completely in
the background. This brings the benefits of automated memory
management to HLS, further reducing development time.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their time
and feedback. This work was supported by NSF Award Num-
ber 1162124 and Google and Qualcomm Faculty Awards.



REFERENCES

[1] P. Ranganathan, D. Stodolsky, J. Calow, J. Dorfman, M. Guevara,
C. W. S. Iv, A. Kuusela, R. Balasubramanian, S. Bhatia, P. Chauhan,
A. Cheung, I. suk Chong, N. Dasharathi, J. Feng, B. Fosco, S. Foss,
B. Gelb, S. J. Gwin, Y. Hase, D. He, C. R. Ho, R. W. Huffman,
E. Indupalli, I. Jayaram, P. Kongetira, C. M. Kyaw, A. Laursen, Y. Li,
F. Lou, K. A. Lucke, J. Maaninen, R. Macias, M. Mahony, D. A.
Munday, S. Muroor, N. Penukonda, E. Perkins-Argueta, D. Persaud,
A. Ramirez, V. M. Rautio, Y. Ripley, A. Salek, S. Sekar, S. N. Sokolov,
R. Springer, D. Stark, M. Tan, M. S. Wachsler, A. C. Walton, D. A.
Wickeraad, A. Wijaya, and H. Wu, “Warehouse-scale video acceleration:
co-design and deployment in the wild,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 600–615.

[2] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The yin and
yang of power and performance for asymmetric hardware and managed
software,” in 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2012, pp. 225–236.

[3] M. Maas, K. Asanović, and J. Kubiatowicz, “A hardware accelerator for
tracing garbage collection,” in 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2018, pp.
138–151.

[4] D. F. Bacon, P. Cheng, and S. Shukla, “And then there were none: A
stall-free real-time garbage collector for reconfigurable hardware,” ACM
SIGPLAN Notices, vol. 47, no. 6, pp. 23–34, 2012.

[5] J. Jang, J. Heo, Y. Lee, J. Won, S. Kim, S. J. Jung, H. Jang, T. J.
Ham, and J. W. Lee, “Charon: Specialized near-memory processing
architecture for clearing dead objects in memory,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 726–739.

[6] J. A. Joao, O. Mutlu, and Y. N. Patt, “Flexible reference-counting-based
hardware acceleration for garbage collection,” in Proceedings of the 36th
annual international symposium on computer architecture, 2009, pp.
418–428.

[7] R. Townsend, M. A. Kim, and S. A. Edwards, “From functional
programs to pipelined dataflow circuits,” in Proceedings of the 26th
International Conference on Compiler Construction, ser. CC 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
7686. [Online]. Available: https://doi.org/10.1145/3033019.3033027

[8] S. A. Edwards, R. Townsend, M. Barker, and M. A.
Kim, “Compositional dataflow circuits,” ACM Trans. Embed.
Comput. Syst., vol. 18, no. 1, Jan. 2019. [Online]. Available:
https://doi.org/10.1145/3274280

[9] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism,” in Proceedings of the 22nd
annual international symposium on Computer architecture, 1995, pp.
392–403.

[10] D. F. Bacon, P. Cheng, and S. Shukla, “Parallel real-time garbage
collection of multiple heaps in reconfigurable hardware,” ACM SIGPLAN
Notices, vol. 49, no. 11, pp. 117–127, 2014.

[11] R. Jones, A. Hosking, and E. Moss, The garbage collection handbook:
the art of automatic memory management. CRC Press, 2016.

[12] J. Tang, S. Liu, Z. Gu, X.-F. Li, and J.-L. Gaudiot, “Achieving
middleware execution efficiency: hardware-assisted garbage collection
operations,” The Journal of Supercomputing, vol. 59, no. 3, pp. 1101–
1119, 2012.

[13] W. Srisa-an, C.-T. Lo, and J.-M. Chang, “Active memory processor: A
hardware garbage collector for real-time java embedded devices,” IEEE
Transactions on Mobile Computing, vol. 2, no. 2, pp. 89–101, 2003.

[14] A. A. Garcı́a, D. May, and E. Nutting, “Integrated hardware garbage
collection,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5, jul 2021.
[Online]. Available: https://doi.org/10.1145/3450147

[15] M. Meyer, “An on-chip garbage collection coprocessor for embedded
real-time systems,” in 11th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA’05).
IEEE, 2005, pp. 517–524.

[16] W. J. Schmidt and K. D. Nilsen, “Performance of a hardware-assisted
real-time garbage collector,” ACM SIGPLAN Notices, vol. 29, no. 11,
pp. 76–85, 1994.

[17] C. Click, G. Tene, and M. Wolf, “The pauseless gc algorithm,” in
Proceedings of the 1st ACM/USENIX international conference on Virtual
execution environments, 2005, pp. 46–56.

[18] M. Meyer, “A true hardware read barrier,” in Proceedings of the 5th
international symposium on Memory management, 2006, pp. 3–16.

[19] B. Cao, K. A. Ross, M. A. Kim, and S. A. Edwards, “Implementing
latency-insensitive dataflow blocks,” in 2015 ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEM-
OCODE), 2015, pp. 179–187.

[20] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Transactions on Computer
Systems (TOCS), vol. 3, no. 1, pp. 63–75, 1985.


