
Cogswell and Segall [3] describe a binary-to-binary translation from the 68k to
C designed to preserve timing as well as functionality. It tracks the number of clock
cycles each basic block would have consumed on the original processor and periodi-
cally compares this with wall-clock time, delaying if the new code is getting ahead of
schedule. They describe only a few details of their techique.

Engblom and Nilsson [5] describe a simulation environment for multiple processors
running in parallel. Their goal is to run the simulation at the same speed as the target
hardware (possible because they assume a much more powerful simulator) and keep all
the pieces synchronized. Like Cogswell and Segall, they inserting cycle-counting code
and each simulated processor periodically relinquishes control if it gets too far ahead.
Their problem is more challenging because they attempt to keep multiple processors
operating in lockstep.

Steven Collins [4] describes the video hardware for the Atari 800, the Sinclair
Spectrum, and the Commodore 64 in loving, technical detail. The Atari 800 and
Commodore 64 were similar in that they had dedicated graphics hardware support for
sprites, characters, bitmaps, scrolling, and collision detection. Notable are the Atari
800’s display lists, which amount to little programs running in the graphics hardware.

Cifuentes PhD thesis [1] describes dcc, a 80286 binary-to-C translator for DOS
binaries. Her goal in the end is high-level C code. She makes the implicit assumption
that the binary was generated by a high-level language compiler.

Cifuentes, Lewis, and Ung [2] describe Walkabout, a regargetable binary transla-
tion framework. This is essentially a just-in-time compiler applied to actual machine
instructions instead of bytecode for a virtual machine. Their system operates as an
interpreter until it find a hot path, then recompiles then. They use the SLED machine
description language that is part of the New Jersey Machine Code toolkit (NJMC).

Ramsey and Fernández [6] describe the New Jersey Machine-Code Toolkit, and
environment capable of synthesizing assemblers and disassemblers from a description
of the machine. It is written in Icon.

In a later paper, Ramsey and Fernández [7] describe the SLED language portion of
the New Jersey Machine Code toolkit. It’s a clean description, but it only describes the
encoding, decoding, and printing of instructions and specifically does not attempt to
describe the semantics of the instructions.

References

[1] Cristina Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland
University of Technology, Brisbane, Australia, July 1994.

[2] Cristina Cifuentes, Brian Lewis, and David Ung. Walkabout — a retargetable
dynamic binary translation framework. In Fourth Workshop on Binary Translation,
Charlottesville, Virginia, September 2002.

[3] Bryce Cogswell and Zary Segall. Timing insensitive binary to binary translation
of real time systems. In Proceedings of the First Annual Rapid Prototyping of
Application Specific Signal Processors (RASSP) Conference, Arlington, Virginia,
August 1994.

1



[4] Steven Collins. Computer graphics during the 8-bit computer game era. Technical
Report TCD-CS-1998-15, Trinity College, Dublin, Ireland, September 1998.

[5] Jakob Engblom and Magnus Nilsson. Time-accurate simulation: Making a PC
behave like a 8-bit embedded CPU. Technical Report 2002-024, Department of
Information Technology, Uppsala Unversity, Sweden, July 2002.

[6] Norman Ramsey and Mary F. Fernandez. The new jersey machine-code toolkit. In
Proceedings of the USENIX Technical Conference, pages 289–302, New Orleans,
Louisiana, January 1995.

[7] Norman Ramsey and Mary F. Fernández. Specifying representations of ma-
chine instructions. ACM Transactions on Programming Languages and Systems,
19(3):492–524, May 1997.

2


