Adrian N Florea (anf2143), Alexander Ranschaert (anr2157), Brandon Vidal Cruz (bvc2106)

Sequencer: Design Document

Introduction

A step-sequencer is an essential part of every basic modular synthesizer setup. A fixed pattern
of a certain number of steps is repeated in a loop. The musician can decide whether to enable
or disable each step and which note to play at that step during the setup phase. He can also
change the number of steps/beats that are played per minute (BPM).

The embedded sequencer will have 2 modes: the recording mode and the playback mode.
During the recording mode, each step in the 16-step sequence can be configured to play notes
or a chord using a MIDI-keyboard. After all the steps have been recorded, the playback mode
can be enabled and the sequence will be fed to a speaker.

Block Diagram

The diagram below gives a high-level overview of the architecture of the embedded sequencer.
Each module will be discussed in more detail below.

__

| DE1-SoC |

(] = Peripheral ARM-Core !
() = SystemVerilog Module | E ibusp |_Nete Array (.] :
! 1bus - > evice vriver '

D = Software E Velocity array L |
i ‘ !

| [Avalon] i

i 4 i

E writedata [31:0] write chipselect clk i

[¢ e -) E v Y i
14T BB MIDI-USBE SMCS [el e] Avalon Interface i

& * > USB3300 '

l l l l i Interface |

| D_IN[23:0] User Interface !

! v Driver '

! MCLK [!

H Wolfson '

_ HPOUT | (WM8731 Audio [+—DACPAT CODEC |

Speakers T CODEC DACLRC Driver Push- 7-seg Switche |

1 (SLAVE) « BCLK \ buttons displays witches |

i |System Verilog i

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu

Adrian N Florea (anf2143), Alexander Ranschaert (anr2157), Brandon Vidal Cruz (bvc2106)

Modules & HW/SW Interfacing

WM8731 Setup

The CODEC driver will be responsible for setting up the Wolfson Audio Codec using the 12C
serial communication standard. The chip’s complete register map is shown below.

The chip will be configured as a slave mode device (R7, B6), so that it responds to
external clock signals (DACLRC and BCLK) to internally transfer the samples applied to
DACDAT.

The sample operation mode will be ‘normal’ (opposed to USB that can use the 12MHz
USB clock), so that the sampling rate can be set to 48 kHz, which requires a master input clock
(MCLK) of 12.288MHz. This clock signal will be derived by the CODEC driver module. The
skeleton code for this will be a tutorial that was provided by UToronto (see references).

An overview of what the registers are set to is also given below.

REGISTER (B (B |B (B (B |B |B B8 B7 B6 BS B4 B3 B2 B1 BO
15 (14 |13 [12 |11 |10 | 9

LRIN LIN

RO (00h) ofo|o|o0o|o 0|0 0 0 LINVOL
BOTH | MUTE
RLIN RIN

R1 (02h) ofo|o |0 |0 0|1 0 0 RINVOL
BOTH | MUTE
LRHP

R2 (04h) o|o|o|ofo|1]o0 LZCEN LHPVOL
BOTH

R3 (06h) ofofo oo |1 |1]|™ |recen RHPVOL

R4 (08h) 0 0 0 0 1 a 1] 0 SIDEATT [SDETONE [DAC SEL BY PASS | INSEL MTMC MIC BOOST
R5(@A) (o |olofof1lof1] o 0 0 0 |HPOR |pACMU| DEEMPH _ |ADCHPD
PWR | CLK
Re(@ch) |0 |0 |0 |0 |1 1|0 o OSCPD | OUTPD | DACPD |ADCPD | MICPD |LINENPD
OFF_|outPD
BCLK
R7(EN) |0 |0 |0 |0 |1 |1[1] o | M Rswae| RP ML FORMAT
CLKO CLKI
R8(10n) |0 oo |10 |ofo]| o SR BOSR [JSE/NORM
Divz2 Divz2
rRe(izh) [o oo l1]oo]1] o 0 0 o o [oo 0 |acrve
Ri5(1En) [0 [o Jo [1 [1]1[1 RESET
ADDRESS DATA
WM8731 Full Register Map
1its
BCLK ;
LEFT CHANNEL i RIGHT CHANNEL
ADCLRC
DSP DACLRC!
wmerst o NG Rl | |
CODEC DECODER ;
ADCDAT e L s T
DACDAT i
e L Y [l =] 5] [=[=]-]
Mate: The ADC and DAC can run &t different rates MSB LSB MsB LsSB

WM8731 in slave mode

Left Justified Mode (MSB First)

Register | Addr + Data (HEX) [Explanation
RO 0040 Mute (open switch to ADC)
R1 0240 “

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu

Adrian N Florea (anf2143), Alexander Ranschaert (anr2157), Brandon Vidal Cruz (bvc2106)

R2 047B Set output headphone volume to 0dB (left)

R3 067B “

R4 0802 Mute mic, disable bypass

R5 OAOE Enable 48kHz de-emphasis, DAC soft-mute

R6 0Ce67 Power down oscillator, clkout, ADC, mic in and bias, line in
R7 OE09 Slave mode, left justified MSB first, 24 bit input

R8 1000 Config. 48kHz sampling rate, 12.288MHz MCLK

R9 1201 Activate the Digital Audio Interface

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu

Adrian N Florea (anf2143), Alexander Ranschaert (anr2157), Brandon Vidal Cruz (bvc2106)

User Interface

p' e i'l i'- E'n
’l - - -
Push Button x4
When changing BPM, lefimost button will decrease
the BPM, and button next to it will increase the BPM
When changing the step, leftmost will go to previous

step, the button next to it will go to the next
Rightmost button will change the track

REEBRRRRRA
Slide Switch x10
Leftmost switch will change the mode
from playback to recording and back,

switch next to it will determine if BPM or
step is being changed

Ooooon
Juuguuuguuy
7-Segment Display x6

Left 3 7-Segment Displays will show the BPM
Right 3 7-Segment Displays will show the step

Avalon Interface

The user will provide several inputs from both the user interface using the buttons and switches,
as well as from the MIDI keyboard. The user interface will allow the user to determine the BPM,
step, channel, and mode (playback or record). When information about the BPM, step, and
channel change, it will be transferred from hardware to software using a device driver in order to
build the sequence that the user wishes to play. Moreover, the MIDI interface will provide the
notes that will be generated at the step. Once the user is finished creating the sequence, the
audio will be generated using information from the notes, as well the information from the user
interface. In order to send the generated audio from software to hardware to be used by the
CODEC, a driver will be used to send 24-bit messages corresponding to the step that is being
output. The sampling rate that we are using is 48kHz, and so a new 24-bit message must be
provided to the CODEC corresponding to the sampling rate. The vga_ball code and process will
provide a template for these drivers.

User Interface Driver Registers

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu

Adrian N Florea (anf2143), Alexander Ranschaert (anr2157), Brandon Vidal Cruz (bvc2106)

Register | Bit Width/ Data Explanation
Type
RO 16 (unsigned short) | BPM (supports a BPM of 50-300)
R1 8 (unsigned char) Channel (1-4 corresponding to the different wave types)
R2 8 (unsigned char) Step (1-16 corresponding to each step)
R3 8 (unsigned char) Mode (Playback or Recording)

CODEC Driver Registers

Register | Bit Width/ Data Explanation
Type
RO 32 (unsigned int) Current Sample (only bottom 24 bits will be used)
USB-MIDI

MIDI is a communication protocol established to communicate between MIDI devices such as
most digital electronic instruments. A majority of MIDI messages consist of multi-byte packets
beginning with a status byte followed by one or two data bytes. MIDI supports critical features
for musical instruments such as keypresses, releases, velocity, and aftertouch.

Most computers do not directly support MIDI without an audio interface or USB-MIDI converter.
Eventually, a MIDI specification was developed for USB that included the Audio class of devices
[3]. USB-MIDI supports baud rates much the 31.2k baud rate of MIDI in order to handle many
virtual cables worth of MIDI data [4]. We will use a baud rate of 115200 in our system.

Byte 0 Byte 1 Byte 2 Byte 3——
Code
Cable
Number | , Index MIDI_O MIDI_1 MIDI_2
Number

USB-MIDI transfers data continuously using 32-it USB-MIDI event packets illustrated in the
image above. The first byte is a packet header that contains a cable number and code index
number while the next three bytes contain the actual MIDI event. The three USB-MIDI event
packets virtually maintain the same information structure as the original MIDI events.The code
index number (CIN) indicates the classification of the bytes in the MIDI_x_fields. The following

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu

Adrian N Florea (anf2143), Alexander Ranschaert (anr2157), Brandon Vidal Cruz (bvc2106)

CIN | MIDI_x Size | Description

0x8 3 Note-off
0x9 3 Note-on
OxA 3 Poly-KeyPress

tables summarizes the three CIN codes we plan to decode in this project as well as the MIDI
messages.

When a step is recorded for the sequencer, our software will decode USB-MIDI messages to
record the note or notes played during the recording window as well as the velocity. These
messages will be stored as arrays that the user level program will use to generate sound
waveforms and control the sequence.

1000nnnn Okkkkkkk Ovvvvvvv Note Off n=channel* k=key # 0-127 (60=middle C) v=velocity (0-127)
1001nnnn Okkkkkkk Ovvwwvwy Note On n=channel k=key # 0-127(60=middle C) v=velocity (0-127)

1010nnnn Okkkkkkk Oppppppp Poly Key Pressure n=channel k=key # 0-127(60=middle C) p=pressure (0-127)

Algorithms

We plan to use 4 channels that the user can separately interact with to create a musical step
sequence. These channels will be controlled by the user space program and will generate the
output waveform in real time and send the waveform information to the avalon bus for the Audio
Codex to process. The channels will modulate a sine, square, triangle, and sawtooth waves
based on their respective note value and volume. The frequency of the waveform will be
determined by the pitch table shown below.

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu

Adrian N Florea (anf2143), Alexander Ranschaert (anr2157), Brandon Vidal Cruz (bvc2106)

MNote Hz MNote Hz MNote Hz MNote Hz MNaote Hz MNaote Hz

C1 327 C 65.4 C3 1308 c4 26186 LS 5233 LB 1046.5
Ci#1 348 CH#2 £9.3 CH#32 1338 CH#4 772 CH#5 LE44 CH#6 11087
01 367 D2 734 D3 146.2 D4 2937 D& EE7.3 D& 1174.7
D#1 g9 D42 778 D43 1556 Ditd 3111 D#5 6223 D6 1244.5
E1 41.2 E2 2.4 E3 1648 E4 3298 ES 659.3 EG 13185
F1 43.7 F2 87.3 F3 1746 Fd 3492 F& 698.5 F& 1396.9
Fil 45.2 Fi#2 92.5 Fi#3 185.0 Fi#d 3700 FH#5 74000 FH#& 14800
G1 49.0 G2 98.0 G3 196.0 Gd 3920 G5 Te4.0 GE 15620
Gl £1.9 G2 1038 G#3 wrT Gid 415.3 G#5 33086 G#E 1861.2
A1 o0 A2 110.0 A 2200 Ad 440.0 AL ggoao AB 1760.0
Al £8.3 A2 1165 A#3 2331 Al 466.2 A#5 9323 A#B 1864.7
Bl 61.7 B2 1238 B3 2469 B4 4939 ES 9878 BB 13765

Our user level program will calculate the waveform of the 4 channels and mix them via an
attenuator to prevent clipping and sum the channels into one stream that will be sent to the
avalon bus.

Frequency

V(sine)

Attenuation

[~

Vi{square)

writedata [23:0]

V(sawtooth)

—» | Attenuation

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu

Adrian N Florea (anf2143), Alexander Ranschaert (anr2157), Brandon Vidal Cruz (bvc2106)

Resource Management

Because the samples are not going to be transferred to the FPGA as a whole but rather as they
are needed, there will not be a significant amount of resources used and so this will not be a
concern for our project at the moment.

References

[1] Wolfson WM8731/WM8731L Audio CODEC

[2] UToronto DE1-SoC tutorial

[3]https://midi.org/basic-of-usb#:~:text=1n%201999%2C %20the%20MIDI1%?20specificatio
n.says%20USB%2DAudio%20devices%20connected.

[4] https://www.usb.org/sites/default/files/midi10.pdf

[5] https://cmtext.indiana.edu/MIDI/chapter3_channel_voice _messages.php

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu
https://www.cs.columbia.edu/~sedwards/classes/2008/4840/Wolfson-WM8731-audio-CODEC.pdf
https://www-ug.eecg.toronto.edu/msl/manuals/tutorial_DE1-SoC.v5.1.pdf
https://midi.org/basic-of-usb#:~:text=In%201999%2C%20the%20MIDI%20specification,says%20USB%2DAudio%20devices%20connected
https://midi.org/basic-of-usb#:~:text=In%201999%2C%20the%20MIDI%20specification,says%20USB%2DAudio%20devices%20connected
https://www.usb.org/sites/default/files/midi10.pdf
https://cmtext.indiana.edu/MIDI/chapter3_channel_voice_messages.php

