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1 Introduction

The Rust programming language is unique for the memory safety guarantees that it
offers. This is thanks to a sophisticated system of ownership, borrowing, and borrow
checking. We shall first briefly discuss those concepts, followed by a longer discussion
about lifetimes and lifetime annotations.

1.1 Ownership

Each variable in Rust owns the memory associated with the variable. Whenever a
variable goes out of scope, the compiler frees the associated memory—this feature
provides protection against memory leaks. Each resource/memory region can have
only one owner.

1.2 Borrowing

Variables can be accessed by borrowing, analogous to a reference in C. Depending on
whether the borrower can modify the borrowed value or not, borrows can be mutable
(&mut) or immutable (&), respectively. Rust has a Borrow Checker that decides at
compile time whether each borrow to a variable is permitted or not.

1.3 Lifetimes

Rust uses lifetimes, a construct that assists the borrow checker in verifying the validity
of each borrow. Lifetimes are similar to scopes, but subtly different1

1http://smallcultfollowing.com/babysteps/blog/2016/04/27/

non-lexical-lifetimes-introduction/
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The borrow checker ensures the following two rules :

Rule 1: The lifetime of a borrow cannot be longer than the lifetime of the borrowed
value. Such a rule ensures that memory safety issues like use-after-free or dangling
pointers cannot happen as it disallows any references that outlive the owner.
Rule 2: In a given scope, for a given variable, one can either have a single mutable
borrow or any number of immutable borrows. This is also implemented using lifetimes
- the compiler checks if the lifetimes of the borrows overlap.

Lifetime Annotations: Within a function, the compiler infers all lifetimes automat-
ically. But once a variable crosses function boundaries, in some cases the compiler
does not automatically assign a lifetime. Consider a function that takes two borrows
as inputs and returns one borrow.

fn foo(x: &String, y: &String) -> &String {/*..*/}

The returned borrow must use one of the two input borrows, but there is ambiguity
about which one. The two input borrows could have different lifetimes, in which case
an appropriate lifetime must be assigned to the returned borrow. Now although the
compiler could technically look at the body of the function and infer the lifetime of the
returned borrow, Rust makes a deliberate choice not to infer certain borrow lifetimes
in function signatures2. In this case, the lifetimes must be specified using lifetime
annotations.

fn foo<’a,’b>(x: &’a String, y: &’b String)

-> &’b String { y }

Here ’a and ’b are lifetime parameters. This function signature indicates that the
function takes two borrows, and returns another borrow with the lifetime of the second
input borrow. The implementation, i.e., the body of the function, must match its
signature.

At compile time, the compiler assigns concrete lifetimes to each lifetime parameter.3

If a borrow is annotated with lifetime parameter ’a, then the borrowed value remains
borrowed for the entire concrete lifetime associated with ’a. In conjunction with Rule
1, this gives us the following interpretation of lifetime annotations.
Rule 3: If a borrow is annotated with lifetime parameter ’a, then the borrowed value
must live longer than (must outlive) the concrete lifetime corresponding to ’a.
Throughout the rest of this report, we shall use “a borrow has lifetime ’a” as shorthand
for “a borrow is annotated with lifetime parameter ’a”.
Structures can also have lifetime annotations. If a structure Foo contains a borrow
with lifetime ’a, then the structure must be annotated with the same lifetime, like

2Except in some specific cases. See https://doc.rust-lang.org/nomicon/lifetime-elision.

html
3A recent reformulation of the borrow checker conceptualizes borrows as sets of loans, not regions.
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Foo<’a>. This means that all the “underlying” values of the structure outlive ’a. And
if a structure has no lifetime annotations, then it contains only owned values and no
borrows.

1.4 Raw Pointers and Unsafe Rust

Raw pointers (*const, mut) are similar to pointers in C - they obey none of the
guarantees that borrows are expected to obey. For example, one can have mutable and
immutable raw pointers to the same location. The values they point to need not live as
long as the pointer itself, which means that they are not guaranteed to point to valid
memory and can even be null. They also don’t have lifetime annotations. Although
creating a raw pointer is allowed in normal (safe) Rust, dereferencing a raw pointer
requires “unsafe” code.

1.5 Unsafe Code and Lifetime Annotations

Although raw pointers themselves don’t have lifetime annotations, they can be part of
an Algebraic Data Type (like a struct) with associated lifetime annotations. In Fig-
ure 1a, we return a structure containing a raw pointer, and the structure is annotated
with a lifetime of the input borrow x.

The key difference here is that Rust cannot automatically infer the lifetimes in the
function signature, because it does not track lifetimes through raw pointers. So it relies
on our provided annotations in the signature being compatible with the implementation
of the function. In Figure 1a, the signature now indicates that the returned structure
object has the lifetime of x, but the returned structure contains a pointer to y. As
shown in Figure 1b, this could cause a use-after-free error, which is an example of
Undefined Behavior (UB). In this project, I attempt to characterize such use-after-free
bugs occurring due to incorrect lifetime annotations on function signatures.
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struct Foo<’a> {

inner: *const String,

..

}

fn bar<’a,’b>(x: &’a String, y: &’b String) -> Foo<’a> {

Foo{inner: y as *const String, ..}

}

(a) The function returns a pointer to the first borrow, but the annotation indicates
that it uses the second borrow.

1  let v1 = "Hello".to_string();
2  let v2 = "World".to_string();
3  let bar_obj = bar(&v1, &v2);
4  drop(v2);
5  // Code that uses bar_obj

bar_obj is
used till here

v2 is borrowed
only till here

Code compiles, but potential memory safety error!

(b) The string v2 is dropped on Line 4, and bar obj will contain a pointer to freed
memory. This can cause a use-after-free error.

Figure 1: Incorrect lifetime annotations on functions can cause memory safety errors.

2 Characterizing Lifetime Annotation Errors

At any point in the program, if there is an active borrow or raw pointer that points to
de-allocated memory, then this is potentially dangerous and could cause a “use-after-
free error” when dereferenced. Let us focus on use-after-free errors for the rest of
this report.

Recall the meaning of lifetime annotations:
• If a borrow has lifetime annotation ’a, then the borrowed value lives for at least
’a.

• If a structure has a lifetime annotation <’a>, then it contains a borrow annotated
with lifetime ’a.

We are concerned with function signatures and the types appearing in them. We
notice that within a function, some values may be transferred between two arguments
or between an argument and returned value. When this transfer of values happens,
the lifetime annotations on the target of the transfer should be consistent with the
transferred value. This is analogous to taking an object out of one container and
placing it in another container - we want to make sure that the “label” on the second
container is consistent with what is being placed in it.

4



The goal of my report is to come up with a set of rules to check if the “labels” on
returned types are consistent with what we know about the values being transferred
to them from function arguments. In contrast to other works attempting to formalize
some subset of Rust, I do not try to reason about the statements in the function body.

Key Assumption: We assume that some all-knowing oracle exists that has told
us that there is a value that has been transferred from a particular argument to a
particular return type.

3 Algorithm

3.1 Notation

Grammar: These are the types that we work with, and lifetime annotations.

T :: &L mut T A mutable borrow to some type

| &L T An immutable borrow to some type

| O A structure or a primitive type

O :: S A struct or prim type not containing borrows

| S<L> A struct containing borrows

L :: ’id Lifetime names

S :: id

This surface syntax is almost identical to Rust. One important difference is that
we assume that all borrow lifetimes are explicitly specified, whereas Rust allows some
lifetimes to be inferred or elided. Further, we’ve deliberately considered only structures
with one lifetime annotation for simplicity, whereas Rust can have multiple.

Judgements:

O{T} “O contains a value of type T as one of its fields”

T → T ′ : L “T contains another type T’ that outlives lifetime L”

T → T ′ : ε “T contains another owned type T ′”

T → L1 : L2 “From T , we can infer that L1 is longer than L2”

3.2 Rules for Decomposing a Type

We want to take a type T and extract all of its contained types with their associated
lifetimes. We will do this using the following rules.

The simplest case - any owned type contains itself and owns itself.

O → O : ε
contains-self
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If there is a borrow to an owned type, then it has to live at least as long as the lifetime
of that borrow.

T → T1 : ε
&LT → T1 : L

borrow
T → T1 : ε

&L mut T → T1 : L
mut-borrow

If a structure has a field of type T , then anything that can be extracted from that T
can also be extracted from the structure.

O{T} T → T1 : L

O → T1 : L
field

O{T} T → T1 : ε

S → T1 : ε
field-eps

If an extracted type already has an associated lifetime, then any outer borrow lifetime
does not attach to it.

T → T1 : L1

&LT → T1 : L1
inner-lifetime

Implicit bounds between two Lifetimes:
From a type given to us, we can infer some things about that type: Any outer borrow
lifetime must be shorter than an inner borrow lifetime

T → T1 : L1

&LT → L1 : L
longer-lifetime

We can always conclude that a lifetime outlives itself.

T → L : L
outlives-self

Lifetime bounds can also be extracted from inner types.

T → T1 : T1 → L1 : L2

T → L1 : L2
extract-bounds

3.3 Checking Violations

Suppose an argument and return type are of types T1 and T2 respectively. Then for
all L1, L2 such that T1 → T ′ : L1 and T2 → T ′ : L2, T1 → L1 : L2 is not true, this is a
possible violation. In notation,

T1 → T ′ : L1 T2 → T ′ : L2 T1 9 L1 : L2

violation
violation

Here we are using the non-standard judgement T1 9 L1 : L2 to mean that we cannot
extract L1 : L2 from T1. This is not ideal, so it is just a stop-gap measure.
We report violations to our oracle that checks if there is actually a transfer of a value
of type T ′ between T1 and T2.
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3.4 In the Presence of Raw Pointers

In an ideal world, we want a structure’s annotation to be representative of what it
holds.

• If a structure is annotated with lifetime <’a>, then we would like everything
accessible from the structure to outlive ’a.

• If a structure has no lifetime annotation, then we would like everything accessible
from the structure to be owned by the structure object.

But raw pointers break that guarantee. A structure can have lifetime annotation <’a>,
but the thing pointed to by the raw pointer can live shorter than that. Our plan is to
enforce these guarantees.

Extending our Rules: If a structure with no lifetime annotations contains a raw
pointer, then the pointed-at type acts as though it is owned by the structure object.

S{*const T}
S → T : ε

raw-lifetime
S{*mut T}
S → T : ε

raw-mut-lifetime

If a structure with a lifetime annotation <’a> contains a raw pointer, then the data
that it points to must outlive ’a.

S{*const T}
S<L> → T : L

raw-owned
S{*mut T}
S → T : L

raw-mut-owned

Checking for violations is the same process, but with the extended set of inference
rules.

4 Implementation

I have implemented the algorithm described in this report using the Rust High-level IR
and Mid-level IR (code in footnote)4. This restricted set of types and syntax presented
in this report are unfortunately not general enough to capture the complexity of real-
world Rust code, so the tool is a lot more complicated than just this approach described
here. Nevertheless, the basic structure and principles are the same.

5 What is yet to be done

I hoped to show some examples of function signatures/types that fit the rules we
described here as well as some that didn’t, along with the derivations. I also hoped to
show some preliminary results of running my tool on Rust code to detect violations.

4https://github.com/vikramnitin9/Rudra
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However I do not have time to include all this in the report, so I am making this
submission before the deadline with the material that I currently have.

Post-deadline, I shall augment this report with more results and discussion.
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