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1 Abstract

We are interested in building an interpreter for the π-calculus, with session types and subtyping. Specif-
ically, we will be implementing the language specified in Subtyping for session types in the pi calculus from
the work of Simon Gay and Malcolm Hole (2005) [1].

We demonstrate through our implementation of the language how the structure of communication between
two sessions can be specified as a type, and their correctness be statically checked via a type system.

2 Brief Language Specification

We will describe the language with a simple example. Consider the following program:

1 (ν x: ^[str]) (x+!["ping"].x+?[s: str].end || x-?[s: str].x-!["pong"].end)

First, (ν x: ^[str]) adds a new string-typed bidirectional channel (named x) to the scope/environment.
Then, the two processes (x+!["ping"].x+?[s: str].end) and (x-?[s: str].x-!["pong"].end) (call them P1

and P2) are executed in parallel. Parallelism is indicated by the || operator.

At any moment, the two polarities of the channel x (written as x+ and x-) are said to be “owned” by exactly
one process each - although this is not evident from the syntax, the typing rules enforce that one process
cannot own both endpoints; this restriction only prohibits pathological programs which contain deadlocks.
Concurrently, P1 sends (marked by !) the string "ping" through x, and process P2 waits for and receives it
(marked by ?). P2 then sends "pong" through x, while P1 waits for and receives it. After that, both processes
terminate.

As mentioned in the beginning, channel x was a “regular” string-typed bidirectional channel. A better way
to enforce this protocol would be via a session-typed channel:

1 (ν x: ![str].?[str]) (x+!["ping"].x+?[s: str].end) || (x-?[s: str].x-!["pong"].end)

We say that x+ has the session type ![str].?[str].end for “sends a string, receives a string, then terminates,”
and x- has the ”dual” session type ?[str].![str].end, for “receives a string, sends a string, then terminates.”
In particular, the two communication protocols are compatible (no processes become stuck), and the program
is correct. It is worth noting that the types associated with names x+ and x- change as the communication
unfolds. Intuitively, each communication operation “consumes” the prefix of that respective endpoint’s type
so that, in the end, all channels should be completely “consumed” (i.e. should have type end).

This compatibility is enforced via the subtyping relationship. In general terms, it expresses what types of
communication are acceptable through a channel of a given type. For instance, a server which offers a large
set of choices should be able to communicate with a client which can only request a smaller set (given that
the channel through which they communicate has an appropriate type). So, the type system associated with
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this version of the pi-calculus is, in some sense, more general since it allows for subtyping. The subtyping
relationship defined in this paper can be checked algorithmically, which allows for efficient type checking.

If P1 attempted to communicate with an incompatible process, as in the following examples

1 (ν x: ![str].?[str]) (x+!["ping"].x+?[s: str].end) || (x-!["pong"].x-?[s: str].end)

2

3 (ν x: ![str].?[str]) (x+!["ping"].x+?[s: str].end) || (x-?[s1: str].x-!["pong"].x-?[s2: str].end)

4

5 (ν x: ![str].?[str]) (x+!["ping"].x+?[s: str].end) || (x-?[s: str].x-![123].end)

then the session types themselves would be incompatible, leading to a typing error.

Lastly, we note that, although our examples here differentiate between the two polarities of each channel
by using the superscripts +/-, this distinction need not be made explicitly; polarities can be inferred by the
type checking system. This idea will be reflected in our final grammar.

More formally, the language can be described by the following syntax rules. In the interest of time and
space, we omit the other specifications (operation semantics and typing rules) in the proposal.

Session Types S :: = X type variable

| end terminated session

| ?[T1, . . . , Tn].S input

| ![T1, . . . , Tn].S output

| &⟨ℓ1 : S1, . . . ℓn : Sn⟩ branch

| ⊕ ⟨ℓ1 : S1, . . . ℓn : Sn⟩ choice

| µX.T recursive session type

Types T :: = X type variable

| S session type

| [̂T1, . . . , Tn] standard channel type

| µX.T recursive channel type

Figure 1: Syntax of Types

P,Q :: = 0 terminated process

| P || Q parallel combination

| !P replication

| xp?[y1 : T1, . . . , yn : Tn].P input

| xp![yp1

1 , . . . , ypn
n ].P output

| (νx : T )P channel creation

| xp ▷ {ℓ1 : P1, . . . , ℓn : Pn} branch

| xp ◁ ℓ.P choice

Figure 2: Syntax of Processes
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3 Deliverables and Implementation

So far, we have implemented the communication-primitives for a simple π-calculus interpreter with the OCaml

language. The concurrency and channel communication primitives of the π-calculus language are taken care
of by our OCaml backend, using the Async library. We intend to either (a) use these primitives to simulate
parallel evaluation concurrently or (b) reduce all programs simultaneously in a single thread (similar to
the evaluation of the Lambda-calculus via beta-reductions). As for extending the π-calculus interpreter
with session types and subtyping, we have implemented the front-end (lexing, parsing), as well as the type
substitution and the duality/subtyping relations.

Our remaining steps are:

1. Complete the interpreter.

2. Implement session type checking.

3. Implement a more human-friendly programming language based on our π-calculus interpreter, whose
specifications are not yet thought-out thoroughly. We are considering integrating features of the
lambda-calculus.
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