TLC Project Proposal: Jambda

Eric Feng, Emily Sillars
ef2648, ems2331

We intend to design and implement an interpreter for our own toy language,
JambaJuice, and use it as a vehicle to demonstrate our modular type infer-
ence plugin. Our plugin would consist of three parts: a library written in the
host language to generate Hindley-Milner typing constraints, the constraints
generated by the library, and the constraint solver. Our plugin would take in
generated constraints and solve them on behalf of the source language’s com-
piler. The idea is to delegate type inference functionalities to a generic library
given some information about the language (such as built-in types, functions,
operators, etc) instead of having to implement a separate type inference inter-
face on a “per-compiler” basis. Instead, the programmer would only need to
specify information about their language through our library.

Type Inference Plugin

Constraint
‘==1 Language Constraint Solver
Plugin 0

Calls to
Jambaluice Lexer + Library to Haskell
source e generate / - Code
program (.jj) i
sotve Exectuion
constraints

Figure 1: JambaJuice Interpreter Architecture

For simplicity, JambdaJuice will have a limited set of supported types (e.g bool,
int) and we will interpret instead of compile it; these simplifications will allows
us to save on toy-language development time and focus more on the constraint
language/type inference part of our project.

We have two ideas for our plugin’s constraint solver. The first idea is to translate
our constraints to prolog and let prolog’s constraint solver handle them. The
second idea is to implement our own constraint solver from scratch using a
Hindley-Milner constraint solving algorithm like union-find. We are leaning
towards the first idea but may revert to the latter depending on time/difficulty.

Deliverables: Final Report, example JamdaJuice programs, JJ Interpreter.



