
Types, Languages, and Compilers

Stephen A. Edwards

Columbia University

Spring 2023

craiyon.com deepai.org hotpot.ai

Instructor

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu
http://www.cs.columbia.edu/~sedwards/
462 Computer Science Building
Email me for appointments, or just come by

The Hindley-Milner Type System
e ::= x | e e | � x . e | let x = e in e

� ::= � | C � . . . � | � → �

� ::= � | ∀ � . �

x ∶ � ∈ Γ
Γ ⊢ x ∶ � Var

Γ ⊢ e0 ∶ � → � ′ Γ ⊢ e1 ∶ �
Γ ⊢ e0 e1 ∶ � ′

App

Γ, x ∶ � ⊢ e ∶ � ′

Γ ⊢ � x.e ∶ � → � ′
Abs

Γ ⊢ e0 ∶ � Γ, x ∶ � ⊢ e1 ∶ �
Γ ⊢ let x = e0 in e1 ∶ �

Let

Γ ⊢ e ∶ � ′ � ′ ⊑ �
Γ ⊢ e ∶ � Inst

Γ ⊢ e ∶ � � ∉ free(Γ)
Γ ⊢ e ∶ ∀�.� Gen

Syllabus

Constructive Logic and Inductive De�nitions

Regular Expressions

Context-Free Grammars

The Lambda Calculus

The Simply-Typed Lambda Calculus

The Hindley-Milner Type System

Operational Semantics

Dependent Types, Proof Assistants, and the Curry-Howard Correspondence

Prerequisites

COMS 3203 Discrete Mathematics

Sets Functions Relations Theorems Proofs Induction Logic

COMS 3261 Computer Science Theory

Alphabets, Strings, & Languages Regular Langauges Context-Free Grammars

COMS 4115 Programming Languages and Translators

ASTs Context-Free Grammars Parsing Algorithms Type Checking

Experience with Haskell or another functional language

OCaml SML Scala Scheme

Assignments and Grading

30 % Homework assignments

70 % Final Project (in pairs)

Homework assignments will be a mix of Haskell and mathematics

Do the project in pairs

Recommended Texts

Robert Harper.
Practical Foundations for Programming Languages.
2nd ed. Cambridge University Press, 2016.

http://www.cs.cmu.edu/~rwh/pfpl.html

Harper is closest in scope to the class, but we will not follow it
slavishly. In particular, it has a lot of detail that will not be
discussed.

http://www.cs.cmu.edu/~rwh/pfpl.html

Recommended Texts

Benjamin C. Pierce.
Types and Programming Languages.
MIT Press, 2002.

Pierce is also an excellent reference for this course. As its
name suggests, it focuses almost exclusively on types. Unlike
Harper, it has extensive discussions of how to implement the
discussed ideas in code.

Recommended Texts

Miran Lipovača.
Learn You a Haskell for Great Good!
No Starch Press, 2001.

http://learnyouahaskell.com/

Excellent introductory text on Haskell

http://learnyouahaskell.com/

Recommended Texts

Graham Hutton.
Programming in Haskell.
Second Edition, Cambridge University Press, 2016.

http://www.cs.nott.ac.uk/~pszgmh/pih.html

http://www.cs.nott.ac.uk/~pszgmh/pih.html

Recommended Texts

Shriram Krishnamurthi.
Programming Languages: Application and Interpretation.
2nd ed. Self-Published, 2017.

https://cs.brown.edu/~sk/Publications/Books/
ProgLangs/2007-04-26/

Krishnamurthi uses Racket and is heavy on implementation
details. It has some discussion of types and dynamic checking
through contracts, but is closer to a compiler implementation
text than the others listed here.

https://cs.brown.edu/~sk/Publications/Books/ProgLangs/2007-04-26/
https://cs.brown.edu/~sk/Publications/Books/ProgLangs/2007-04-26/

Recommended Texts

Glynn Winskel. The Formal Semantics of Programming
Languages: An Introduction.
MIT Press, 1993.

Winskel is an older book that focuses, unsurprisingly, on
programming language semantics (operational, denotational,
and axiomatic), but also discusses types and the Lambda
Calculus.

