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There are various symbols

Symbols may be identical, even when drawn slightly di�erently
Other symbols are distinct

Symbols arranged in a horizontal sequence are “words,” “strings,” or “expressions”
Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols
The meaning of an expression with variables depends on the variables’ values
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Judgment
A judgment is an assertion about one or more things, typically membership in a set.

0 ∈ ℕ 0 is a member of the set of natural numbers
n nat n is a member of the set of natural numbers
1 + 2 expr 1 + 2 is in the set of expressions
� type � is in the set of types
e ∶ � Expression e has type �
sum(n1, n2, n3) Adding n1 and n2 gives n3
n1 + n2 = n3 Adding n1 and n2 gives n3

Pre�x; in�x; and su�x syntax



Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

Axiom →
0 ∈ ℕ zero

a ∈ ℕ
succ(a) ∈ ℕ successor

Judgments: a ∈ ℕ
Variables: a ← Sequences of symbols
Symbols: 0 succ( )

0 0
succ(0) 1

succ(succ(0)) 2
succ(succ(succ(0))) 3

succ(succ(succ(succ(0)))) 4
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Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

0 ∈ ℕ zero a ∈ ℕ
succ(a) ∈ ℕ successor ← Technically a scheme

Scheme: pattern with variables: replacing a consistently gives a rule

0 ∈ ℕ
succ(0) ∈ ℕ

succ(0) ∈ ℕ
succ(succ(0)) ∈ ℕ

true ∈ ℕ
succ(true) ∈ ℕ

Which are variables? Values constrained? Variable scope: a single rule

Consistent
replacement only:

foo ∈ ℕ
succ(bar) ∈ ℕ

is not a rule



Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)
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succ(a) ∈ ℕ successor

Is succ(succ(succ(0))) a.k.a. 3 a natural number? A forward derivation

zero
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successor
succ(0) ∈ ℕ successor
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Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

0 ∈ ℕ zero a ∈ ℕ
succ(a) ∈ ℕ successor

Is succ(succ(succ(0))) a.k.a. 3 a natural number? A forward derivation

zero
0 ∈ ℕ successor

succ(0) ∈ ℕ successor ← choose a = succ(0)
succ(succ(0)) ∈ ℕ

successor
succ(succ(succ(0))) ∈ ℕ



Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)
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The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

zeroIsN       ::  String  ->  Bool

successorIsN  ::  String  ->  Bool

String is ine�cient, but let’s focus on correctness �rst



The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

zeroIsN       ::  String  ->  Bool
zeroIsN  "0"  =  True
zeroIsN  _    =  False     -- Default case

successorIsN  ::  String  ->  Bool



The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

import  Data.List  (stripPrefix)  -- stripPrefix :: String -> String -> Maybe String
zeroIsN       ::  String  ->  Bool
zeroIsN  "0"  =  True
zeroIsN  _    =  False     -- Default case

successorIsN  ::  String  ->  Bool    -- Construct a Reverse Derivation
successorIsN  s  =  case  stripPrefix  "succ("  s  of   -- Of the form succ(...)?

   Just  aa@(_:_)  ->  last  aa  ==  ')'  &&            -- Prohibit the empty string
                    let  a  =  init  aa  in           -- Get all but last character
                    zeroIsN  a  ||  successorIsN  a  -- Try both
   _              ->  False



The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

import  Data.List  (stripPrefix)
zeroIsN       ::  String  ->  Bool
zeroIsN  "0"  =  True
zeroIsN  _    =  False

successorIsN  ::  String  ->  Bool
successorIsN  s  =  case  match  "succ("  ")"  s  of

  Just  a  ->  zeroIsN  a  ||  successorIsN  a
  _       ->  False

match  ::  String  ->  String  ->  String  ->  Maybe  String  -- Helper function
match  pre  suff  s  =  do  a'  <-  stripPrefix  pre  s        -- Stops at Nothing

                      reverse  <$>  stripPrefix  (reverse  suff)  (reverse  a')



The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

import  Data.List  (stripPrefix)

isNat  ::  String  ->  Bool                   -- Merge the two rules
isNat  "0"  =  True                          -- zero rule
isNat  s    =  case  match  "succ("  ")"  s  of   -- successor rule

  Just  a   ->  isNat  a                      -- Only one thing to check
  Nothing  ->  False

match  ::  String  ->  String  ->  String  ->  Maybe  String
match  pre  suff  s  =  do  a'  <-  stripPrefix  pre  s

                      reverse  <$>  stripPrefix  (reverse  suff)  (reverse  a')



The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

data  Nat  =  Zero  |  Succ  Nat   -- Algebraic data type: either “Zero” or “Succ n”

zeroIsN       ::  Nat  ->  Bool
zeroIsN  Zero  =  True
zeroIsN  _     =  False

successorIsN           ::  Nat  ->  Bool
successorIsN  (Succ  a)  =  zeroIsN  a  ||  successorIsN  a  -- Try both
successorIsN  _         =  False



The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

data  Nat  =  Zero  |  Succ  Nat

isNat           ::  Nat  ->  Bool
isNat  Zero      =  True        -- zero rule
isNat  (Succ  a)  =  isNat  a     -- successor rule

isNat is trivial; Haskell’s type system enforces it for us



Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal” ← a relation/a set of pairs
Variables: a b
Symbols: 0 succ( )

Is 3 = 3? A reverse derivation

equalzero

eq( 0 , 0 )
equal

eq( succ(0) , succ(0) )
equal

eq( succ(succ(0)) , succ(succ(0)) )
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?

eq( 0 , succ(0) )
equal

eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2
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Equality of Natural Numbers as an Inductive De�nition

equalzero
0 = 0

a = b
equal

succ(a) = succ(b)

Judgements: n1 = n2 “n1 and n2 are equal” ← a relation/a set of pairs
Variables: a b
Symbols: 0 succ( )

Is 3 = 3?
equalzero

0 = 0
equal

succ(0) = succ(0)
equal

succ(succ(0)) = succ(succ(0))
equal

succ(succ(succ(0))) = succ(succ(succ(0)))

Is 1 = 2?
0 = succ(0)

equal
succ(0) = succ(succ(0))

We are stuck: neither rule applies, so 1 ≠ 2



Equality of Natural Numbers as an Inductive De�nition

equalzero
0 = 0

a = b
equal

succ(a) = succ(b)

data  Nat  =  Zero  |  Succ  Nat

natEqual  ::  Nat  ->  Nat      ->  Bool
natEqual  Zero      Zero      =  True           -- equalzero rule
natEqual  (Succ  a)  (Succ  b)  =  natEqual  a  b   -- equal rule
natEqual  _         _         =  False

Again: single function because only one rule may ever match



Equality of Natural Numbers as an Inductive De�nition

equalzero
0 = 0

a = b
equal

succ(a) = succ(b)

data  Nat  =  Zero  |  Succ  Nat
  deriving  Eq

This Haskell’s default implementation of == for algebraic data types



Addition as an Inductive De�nition
b ∈ ℕ

addzero
sum(0, b, b)

sum(a, b, c)
add

sum(succ(a), b, succ(c))

Judgments: n ∈ ℕ sum(n1, n2, n3) ← a relation/a set of triples
Variables: a b c
Symbols: 0 succ( )
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b ∈ ℕ
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0 ∈ ℕ successor
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add

sum(succ(succ(0)), succ(0), succ(succ(succ(0))))
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Addition as an Inductive De�nition
b ∈ ℕ

addzero
0 + b = b

a + b = c
add

succ(a) + b = succ(c)

Judgments: n ∈ ℕ n1 + n2 = n3 ← a relation/a set of triples
Variables: a b c
Symbols: 0 succ( )

Is 2 + 1 = 3?

zero
0 ∈ ℕ successor

succ(0) ∈ ℕ
addzero

0 + succ(0) = succ(0)
add

succ(0) + succ(0) = succ(succ(0))
add

succ(succ(0)) + succ(0) = succ(succ(succ(0)))



Addition as an Inductive De�nition
b ∈ ℕ

addzero
0 + b = b

a + b = c
add

succ(a) + b = succ(c)

data  Nat  =  Zero  |  Succ  Nat
  deriving  Eq

sumsTo  ::  Nat  ->  Nat  ->  Nat     ->  Bool         -- Is a + b = c?
sumsTo  Zero      b  b'  |  b  ==  b'  =  True          -- addzero rule
sumsTo  (Succ  a)  b  (Succ  c)      =  sumsTo  a  b  c  -- add rule
sumsTo  _         _  _             =  False         -- E.g., (Succ a) _ Zero

No need to check whether b ∈ ℕ: the types enforce this
Haskell patterns can’t check for equality like sumsTo Zero b b, so I added guard b == ’b
Rather awkward to ask “is this it?”



Addition as an Inductive De�nition
b ∈ ℕ

addzero
0 + b = b

a + b = c
add

succ(a) + b = succ(c)

data  Nat  =  Zero  |  Succ  Nat
  deriving  (Eq,  Show)

addNat  ::  Nat  ->  Nat  ->  Nat             -- Given a and b, what c satisfies a+b = c?
addNat  Zero      b  =  b                   -- addzero rule
addNat  (Succ  a)  b  =  Succ  (addNat  a  b)   -- add rule

The data�ow makes this easy and it’s obviously a total function



Addition as an Inductive De�nition
b ∈ ℕ

addzero
0 + b = b

a + b = c
add

succ(a) + b = succ(c)

data  Nat  =  Zero  |  Succ  Nat
  deriving  (Eq,  Show)

subNat  ::  Nat  ->  Nat      ->  Maybe  Nat   -- Given c and a, what b satisfies a+b = c?
subNat  c         Zero      =  Just  c       -- addzero rule
subNat  (Succ  c)  (Succ  a)  =  subNat  c  a   -- add rule
subNat  Zero      (Succ  _)  =  Nothing      -- failure

Still straightforward data�ow, but the function is no longer total



A De�nition of Binary Trees

leaf
leaf tree

t1 tree t2 tree
branch

branch(t1,t2) tree

Judgments: t tree “t is a tree”
Variables: t1 t2 t1 and t2 may be equal
Symbols: leaf branch( , )
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A De�nition of Binary Trees

leaf
leaf tree

t1 tree t2 tree
branch

branch(t1,t2) tree

Judgments: t tree “t is a tree”
Variables: t1 t2 t1 and t2 may be equal
Symbols: leaf branch( , )

data  Tree  =  Leaf  |  Branch  Tree  Tree

isTree  ::  Tree  ->  Bool
isTree  Leaf          =  True
isTree  (Branch  l  r)  =  isTree  l  &&  isTree  r   -- Must test both branches

Trivially true because of Haskell’s types, but note two-way recursion


