
Judgments, Inference Rules, and Inductive De�nitions

Stephen A. Edwards

Columbia University

Spring 2023

There are various symbols

Symbols may be identical, even when drawn slightly di�erently
Other symbols are distinct

Symbols arranged in a horizontal sequence are “words,” “strings,” or “expressions”
Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols
The meaning of an expression with variables depends on the variables’ values

There are various symbols
Symbols may be identical, even when drawn slightly di�erently

Other symbols are distinct

Symbols arranged in a horizontal sequence are “words,” “strings,” or “expressions”
Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols
The meaning of an expression with variables depends on the variables’ values

There are various symbols
Symbols may be identical, even when drawn slightly di�erently
Other symbols are distinct

Symbols arranged in a horizontal sequence are “words,” “strings,” or “expressions”
Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols
The meaning of an expression with variables depends on the variables’ values

There are various symbols
Symbols may be identical, even when drawn slightly di�erently
Other symbols are distinct
Symbols arranged in a horizontal sequence are “words,” “strings,” or “expressions”

Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols
The meaning of an expression with variables depends on the variables’ values

There are various symbols
Symbols may be identical, even when drawn slightly di�erently
Other symbols are distinct
Symbols arranged in a horizontal sequence are “words,” “strings,” or “expressions”
Symbols may represent values, operations, or relationships

Some symbols are treated as variables that represent other symbols
The meaning of an expression with variables depends on the variables’ values

There are various symbols
Symbols may be identical, even when drawn slightly di�erently
Other symbols are distinct
Symbols arranged in a horizontal sequence are “words,” “strings,” or “expressions”
Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols

The meaning of an expression with variables depends on the variables’ values

There are various symbols
Symbols may be identical, even when drawn slightly di�erently
Other symbols are distinct
Symbols arranged in a horizontal sequence are “words,” “strings,” or “expressions”
Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols
The meaning of an expression with variables depends on the variables’ values

Judgment
A judgment is an assertion about one or more things, typically membership in a set.

0 ∈ ℕ 0 is a member of the set of natural numbers
n nat n is a member of the set of natural numbers
1 + 2 expr 1 + 2 is in the set of expressions
� type � is in the set of types
e ∶ � Expression e has type �
sum(n1, n2, n3) Adding n1 and n2 gives n3
n1 + n2 = n3 Adding n1 and n2 gives n3

Pre�x; in�x; and su�x syntax

Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

Axiom →
0 ∈ ℕ zero

a ∈ ℕ
succ(a) ∈ ℕ successor

Judgments: a ∈ ℕ
Variables: a ← Sequences of symbols
Symbols: 0 succ()

0 0
succ(0) 1

succ(succ(0)) 2
succ(succ(succ(0))) 3

succ(succ(succ(succ(0)))) 4

Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

0 ∈ ℕ zero a ∈ ℕ
succ(a) ∈ ℕ successor

Judgments: a ∈ ℕ
Variables: a ← Sequences of symbols
Symbols: 0 succ()

0 0
succ(0) 1

succ(succ(0)) 2
succ(succ(succ(0))) 3

succ(succ(succ(succ(0)))) 4

Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

0 ∈ ℕ zero a ∈ ℕ
succ(a) ∈ ℕ successor ← Technically a scheme

Scheme: pattern with variables: replacing a consistently gives a rule

0 ∈ ℕ
succ(0) ∈ ℕ

succ(0) ∈ ℕ
succ(succ(0)) ∈ ℕ

true ∈ ℕ
succ(true) ∈ ℕ

Which are variables? Values constrained? Variable scope: a single rule

Consistent
replacement only:

foo ∈ ℕ
succ(bar) ∈ ℕ

is not a rule

Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

0 ∈ ℕ zero a ∈ ℕ
succ(a) ∈ ℕ successor

Is succ(succ(succ(0))) a.k.a. 3 a natural number? A forward derivation

zero
0 ∈ ℕ

successor
succ(0) ∈ ℕ successor

succ(succ(0)) ∈ ℕ successor
succ(succ(succ(0))) ∈ ℕ

Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

0 ∈ ℕ zero a ∈ ℕ
succ(a) ∈ ℕ successor

Is succ(succ(succ(0))) a.k.a. 3 a natural number? A forward derivation

zero
0 ∈ ℕ successor ← choose a = 0

succ(0) ∈ ℕ

successor
succ(succ(0)) ∈ ℕ successor

succ(succ(succ(0))) ∈ ℕ

Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

0 ∈ ℕ zero a ∈ ℕ
succ(a) ∈ ℕ successor

Is succ(succ(succ(0))) a.k.a. 3 a natural number? A forward derivation

zero
0 ∈ ℕ successor

succ(0) ∈ ℕ successor ← choose a = succ(0)
succ(succ(0)) ∈ ℕ

successor
succ(succ(succ(0))) ∈ ℕ

Inference Rule
Premises: Judgments → J1 J2 ⋯ Jk

Conclusion: A Judgment → J
Rule-Name

“If all the premises hold, the conclusion follows”

The Natural Numbers De�ned Inductively by Two Inference Rules (Peano)

0 ∈ ℕ zero a ∈ ℕ
succ(a) ∈ ℕ successor

Is succ(succ(succ(0))) a.k.a. 3 a natural number? A forward derivation

zero
0 ∈ ℕ successor

succ(0) ∈ ℕ successor
succ(succ(0)) ∈ ℕ successor

succ(succ(succ(0))) ∈ ℕ

The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

zeroIsN :: String -> Bool

successorIsN :: String -> Bool

String is ine�cient, but let’s focus on correctness �rst

The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

zeroIsN :: String -> Bool
zeroIsN "0" = True
zeroIsN _ = False -- Default case

successorIsN :: String -> Bool

The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

import Data.List (stripPrefix) -- stripPrefix :: String -> String -> Maybe String
zeroIsN :: String -> Bool
zeroIsN "0" = True
zeroIsN _ = False -- Default case

successorIsN :: String -> Bool -- Construct a Reverse Derivation
successorIsN s = case stripPrefix "succ(" s of -- Of the form succ(...)?

 Just aa@(_:_) -> last aa == ')' && -- Prohibit the empty string
 let a = init aa in -- Get all but last character
 zeroIsN a || successorIsN a -- Try both
 _ -> False

The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

import Data.List (stripPrefix)
zeroIsN :: String -> Bool
zeroIsN "0" = True
zeroIsN _ = False

successorIsN :: String -> Bool
successorIsN s = case match "succ(" ")" s of

 Just a -> zeroIsN a || successorIsN a
 _ -> False

match :: String -> String -> String -> Maybe String -- Helper function
match pre suff s = do a' <- stripPrefix pre s -- Stops at Nothing

 reverse <$> stripPrefix (reverse suff) (reverse a')

The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

import Data.List (stripPrefix)

isNat :: String -> Bool -- Merge the two rules
isNat "0" = True -- zero rule
isNat s = case match "succ(" ")" s of -- successor rule

 Just a -> isNat a -- Only one thing to check
 Nothing -> False

match :: String -> String -> String -> Maybe String
match pre suff s = do a' <- stripPrefix pre s

 reverse <$> stripPrefix (reverse suff) (reverse a')

The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

data Nat = Zero | Succ Nat -- Algebraic data type: either “Zero” or “Succ n”

zeroIsN :: Nat -> Bool
zeroIsN Zero = True
zeroIsN _ = False

successorIsN :: Nat -> Bool
successorIsN (Succ a) = zeroIsN a || successorIsN a -- Try both
successorIsN _ = False

The Natural Numbers
zero

0 ∈ ℕ
a ∈ ℕ successor

succ(a) ∈ ℕ

data Nat = Zero | Succ Nat

isNat :: Nat -> Bool
isNat Zero = True -- zero rule
isNat (Succ a) = isNat a -- successor rule

isNat is trivial; Haskell’s type system enforces it for us

Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal” ← a relation/a set of pairs
Variables: a b
Symbols: 0 succ()

Is 3 = 3? A reverse derivation

equalzero

eq(0 , 0)
equal

eq(succ(0) , succ(0))
equal

eq(succ(succ(0)) , succ(succ(0)))
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?

eq(0 , succ(0))
equal

eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal”
Variables: a b
Symbols: 0 succ()

Is 3 = 3? A reverse derivation

equalzero

eq(0 , 0)
equal

eq(succ(0) , succ(0))
equal

eq(succ(succ(0)) , succ(succ(0)))
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?

eq(0 , succ(0))
equal

eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal”
Variables: a b
Symbols: 0 succ()

Is 3 = 3? A reverse derivation

equalzero

eq(0 , 0)
equal

eq(succ(0) , succ(0))
equal

eq(succ(succ(0)) , succ(succ(0)))
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?

eq(0 , succ(0))
equal

eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal”
Variables: a b
Symbols: 0 succ()

Is 3 = 3? A reverse derivation

equalzero

eq(0 , 0)
equal

eq(succ(0) , succ(0))
equal

eq(succ(succ(0)) , succ(succ(0)))
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?

eq(0 , succ(0))
equal

eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal”
Variables: a b
Symbols: 0 succ()

Is 3 = 3? A reverse derivation
equalzero

eq(0 , 0)
equal

eq(succ(0) , succ(0))
equal

eq(succ(succ(0)) , succ(succ(0)))
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?

eq(0 , succ(0))
equal

eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal”
Variables: a b
Symbols: 0 succ()

Is 3 = 3? A reverse derivation
equalzero

eq(0 , 0)
equal

eq(succ(0) , succ(0))
equal

eq(succ(succ(0)) , succ(succ(0)))
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?

eq(0 , succ(0))
equal

eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal”
Variables: a b
Symbols: 0 succ()

Is 3 = 3? A reverse derivation
equalzero

eq(0 , 0)
equal

eq(succ(0) , succ(0))
equal

eq(succ(succ(0)) , succ(succ(0)))
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?
eq(0 , succ(0))

equal
eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
eq(0,0)

eq(a,b)
equal

eq(succ(a),succ(b))

Judgements: eq(n1,n2) “n1 and n2 are equal”
Variables: a b
Symbols: 0 succ()

Is 3 = 3? A reverse derivation
equalzero

eq(0 , 0)
equal

eq(succ(0) , succ(0))
equal

eq(succ(succ(0)) , succ(succ(0)))
equal

eq(succ(succ(succ(0))),succ(succ(succ(0))))

Is 1 = 2?
eq(0 , succ(0))

equal
eq(succ(0),succ(succ(0)))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
0 = 0

a = b
equal

succ(a) = succ(b)

Judgements: n1 = n2 “n1 and n2 are equal” ← a relation/a set of pairs
Variables: a b
Symbols: 0 succ()

Is 3 = 3?
equalzero

0 = 0
equal

succ(0) = succ(0)
equal

succ(succ(0)) = succ(succ(0))
equal

succ(succ(succ(0))) = succ(succ(succ(0)))

Is 1 = 2?
0 = succ(0)

equal
succ(0) = succ(succ(0))

We are stuck: neither rule applies, so 1 ≠ 2

Equality of Natural Numbers as an Inductive De�nition

equalzero
0 = 0

a = b
equal

succ(a) = succ(b)

data Nat = Zero | Succ Nat

natEqual :: Nat -> Nat -> Bool
natEqual Zero Zero = True -- equalzero rule
natEqual (Succ a) (Succ b) = natEqual a b -- equal rule
natEqual _ _ = False

Again: single function because only one rule may ever match

Equality of Natural Numbers as an Inductive De�nition

equalzero
0 = 0

a = b
equal

succ(a) = succ(b)

data Nat = Zero | Succ Nat
 deriving Eq

This Haskell’s default implementation of == for algebraic data types

Addition as an Inductive De�nition
b ∈ ℕ

addzero
sum(0, b, b)

sum(a, b, c)
add

sum(succ(a), b, succ(c))

Judgments: n ∈ ℕ sum(n1, n2, n3) ← a relation/a set of triples
Variables: a b c
Symbols: 0 succ()

Addition as an Inductive De�nition
b ∈ ℕ

addzero
sum(0, b, b)

sum(a, b, c)
add

sum(succ(a), b, succ(c))

Judgments: n ∈ ℕ sum(n1, n2, n3)
Variables: a b c
Symbols: 0 succ()

Is 2 + 1 = 3?

zero

0 ∈ ℕ successor

succ(0) ∈ ℕ
addzero

sum(0 , succ(0), succ(0))
add

sum(succ(0) , succ(0), succ(succ(0)))
add

sum(succ(succ(0)), succ(0), succ(succ(succ(0))))

Addition as an Inductive De�nition
b ∈ ℕ

addzero
sum(0, b, b)

sum(a, b, c)
add

sum(succ(a), b, succ(c))

Judgments: n ∈ ℕ sum(n1, n2, n3)
Variables: a b c
Symbols: 0 succ()

Is 2 + 1 = 3?

zero

0 ∈ ℕ successor

succ(0) ∈ ℕ
addzero

sum(0 , succ(0), succ(0))
add

sum(succ(0) , succ(0), succ(succ(0)))
add

sum(succ(succ(0)), succ(0), succ(succ(succ(0))))

Addition as an Inductive De�nition
b ∈ ℕ

addzero
sum(0, b, b)

sum(a, b, c)
add

sum(succ(a), b, succ(c))

Judgments: n ∈ ℕ sum(n1, n2, n3)
Variables: a b c
Symbols: 0 succ()

Is 2 + 1 = 3?

zero

0 ∈ ℕ successor

succ(0) ∈ ℕ
addzero

sum(0 , succ(0), succ(0))
add

sum(succ(0) , succ(0), succ(succ(0)))
add

sum(succ(succ(0)), succ(0), succ(succ(succ(0))))

Addition as an Inductive De�nition
b ∈ ℕ

addzero
sum(0, b, b)

sum(a, b, c)
add

sum(succ(a), b, succ(c))

Judgments: n ∈ ℕ sum(n1, n2, n3)
Variables: a b c
Symbols: 0 succ()

Is 2 + 1 = 3?

zero

0 ∈ ℕ successor

succ(0) ∈ ℕ
addzero

sum(0 , succ(0), succ(0))
add

sum(succ(0) , succ(0), succ(succ(0)))
add

sum(succ(succ(0)), succ(0), succ(succ(succ(0))))

Addition as an Inductive De�nition
b ∈ ℕ

addzero
sum(0, b, b)

sum(a, b, c)
add

sum(succ(a), b, succ(c))

Judgments: n ∈ ℕ sum(n1, n2, n3)
Variables: a b c
Symbols: 0 succ()

Is 2 + 1 = 3?

zero

0 ∈ ℕ successor
succ(0) ∈ ℕ

addzero
sum(0 , succ(0), succ(0))

add
sum(succ(0) , succ(0), succ(succ(0)))

add
sum(succ(succ(0)), succ(0), succ(succ(succ(0))))

Addition as an Inductive De�nition
b ∈ ℕ

addzero
sum(0, b, b)

sum(a, b, c)
add

sum(succ(a), b, succ(c))

Judgments: n ∈ ℕ sum(n1, n2, n3)
Variables: a b c
Symbols: 0 succ()

Is 2 + 1 = 3?

zero
0 ∈ ℕ successor

succ(0) ∈ ℕ
addzero

sum(0 , succ(0), succ(0))
add

sum(succ(0) , succ(0), succ(succ(0)))
add

sum(succ(succ(0)), succ(0), succ(succ(succ(0))))

Addition as an Inductive De�nition
b ∈ ℕ

addzero
0 + b = b

a + b = c
add

succ(a) + b = succ(c)

Judgments: n ∈ ℕ n1 + n2 = n3 ← a relation/a set of triples
Variables: a b c
Symbols: 0 succ()

Is 2 + 1 = 3?

zero
0 ∈ ℕ successor

succ(0) ∈ ℕ
addzero

0 + succ(0) = succ(0)
add

succ(0) + succ(0) = succ(succ(0))
add

succ(succ(0)) + succ(0) = succ(succ(succ(0)))

Addition as an Inductive De�nition
b ∈ ℕ

addzero
0 + b = b

a + b = c
add

succ(a) + b = succ(c)

data Nat = Zero | Succ Nat
 deriving Eq

sumsTo :: Nat -> Nat -> Nat -> Bool -- Is a + b = c?
sumsTo Zero b b' | b == b' = True -- addzero rule
sumsTo (Succ a) b (Succ c) = sumsTo a b c -- add rule
sumsTo _ _ _ = False -- E.g., (Succ a) _ Zero

No need to check whether b ∈ ℕ: the types enforce this
Haskell patterns can’t check for equality like sumsTo Zero b b, so I added guard b == ’b
Rather awkward to ask “is this it?”

Addition as an Inductive De�nition
b ∈ ℕ

addzero
0 + b = b

a + b = c
add

succ(a) + b = succ(c)

data Nat = Zero | Succ Nat
 deriving (Eq, Show)

addNat :: Nat -> Nat -> Nat -- Given a and b, what c satisfies a+b = c?
addNat Zero b = b -- addzero rule
addNat (Succ a) b = Succ (addNat a b) -- add rule

The data�ow makes this easy and it’s obviously a total function

Addition as an Inductive De�nition
b ∈ ℕ

addzero
0 + b = b

a + b = c
add

succ(a) + b = succ(c)

data Nat = Zero | Succ Nat
 deriving (Eq, Show)

subNat :: Nat -> Nat -> Maybe Nat -- Given c and a, what b satisfies a+b = c?
subNat c Zero = Just c -- addzero rule
subNat (Succ c) (Succ a) = subNat c a -- add rule
subNat Zero (Succ _) = Nothing -- failure

Still straightforward data�ow, but the function is no longer total

A De�nition of Binary Trees

leaf
leaf tree

t1 tree t2 tree
branch

branch(t1,t2) tree

Judgments: t tree “t is a tree”
Variables: t1 t2 t1 and t2 may be equal
Symbols: leaf branch(,)

A De�nition of Binary Trees

leaf
leaf tree

t1 tree t2 tree
branch

branch(t1,t2) tree

Judgments: t tree “t is a tree”
Variables: t1 t2 t1 and t2 may be equal
Symbols: leaf branch(,)

Derivations are generally tree-structured

leaf

leaf tree

leaf

leaf tree
branch

branch(leaf,leaf) tree

leaf

leaf tree
branch

branch(branch(leaf,leaf),leaf) tree

A De�nition of Binary Trees

leaf
leaf tree

t1 tree t2 tree
branch

branch(t1,t2) tree

Judgments: t tree “t is a tree”
Variables: t1 t2 t1 and t2 may be equal
Symbols: leaf branch(,)

Derivations are generally tree-structured

leaf

leaf tree

leaf

leaf tree
branch

branch(leaf,leaf) tree

leaf

leaf tree
branch

branch(branch(leaf,leaf),leaf) tree

A De�nition of Binary Trees

leaf
leaf tree

t1 tree t2 tree
branch

branch(t1,t2) tree

Judgments: t tree “t is a tree”
Variables: t1 t2 t1 and t2 may be equal
Symbols: leaf branch(,)

Derivations are generally tree-structured

leaf

leaf tree

leaf

leaf tree
branch

branch(leaf,leaf) tree
leaf

leaf tree
branch

branch(branch(leaf,leaf),leaf) tree

A De�nition of Binary Trees

leaf
leaf tree

t1 tree t2 tree
branch

branch(t1,t2) tree

Judgments: t tree “t is a tree”
Variables: t1 t2 t1 and t2 may be equal
Symbols: leaf branch(,)

Derivations are generally tree-structured

leaf
leaf tree

leaf
leaf tree

branch
branch(leaf,leaf) tree

leaf
leaf tree

branch
branch(branch(leaf,leaf),leaf) tree

A De�nition of Binary Trees

leaf
leaf tree

t1 tree t2 tree
branch

branch(t1,t2) tree

Judgments: t tree “t is a tree”
Variables: t1 t2 t1 and t2 may be equal
Symbols: leaf branch(,)

data Tree = Leaf | Branch Tree Tree

isTree :: Tree -> Bool
isTree Leaf = True
isTree (Branch l r) = isTree l && isTree r -- Must test both branches

Trivially true because of Haskell’s types, but note two-way recursion

