Judgments, Inference Rules, and Inductive Definitions

Stephen A. Edwards

Columbia University

Spring 2023

There are various symbols

There are various symbols
Symbols may be identical, even when drawn slightly differently

There are various symbols
Symbols may be identical, even when drawn slightly differently Other symbols are distinct

There are various symbols
Symbols may be identical, even when drawn slightly differently Other symbols are distinct
Symbols arranged in a horizontal sequence are "words," "strings," or "expressions"

There are various symbols
Symbols may be identical, even when drawn slightly differently Other symbols are distinct
Symbols arranged in a horizontal sequence are "words," "strings," or "expressions" Symbols may represent values, operations, or relationships

There are various symbols
Symbols may be identical, even when drawn slightly differently Other symbols are distinct
Symbols arranged in a horizontal sequence are "words," "strings," or "expressions" Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols

There are various symbols
Symbols may be identical, even when drawn slightly differently
Other symbols are distinct
Symbols arranged in a horizontal sequence are "words," "strings," or "expressions" Symbols may represent values, operations, or relationships
Some symbols are treated as variables that represent other symbols
The meaning of an expression with variables depends on the variables' values

Judgment

A judgment is an assertion about one or more things, typically membership in a set.

$0 \in \mathbb{N}$	0 is a member of the set of natural numbers
n nat	n is a member of the set of natural numbers
$1+2$ expr	$1+2$ is in the set of expressions
τ type	τ is in the set of types
$e: \tau$	Expression e has type τ
$\operatorname{sum}\left(n_{1}, n_{2}, n_{3}\right)$	Adding n_{1} and n_{2} gives n_{3}
$n_{1}+n_{2}=n_{3}$	Adding n_{1} and n_{2} gives n_{3}

Prefix; infix; and suffix syntax

Inference Rule

Premises: Judgments \rightarrow

$\begin{array}{lllll}\mathcal{F}_{1} & \mathcal{F}_{2} & \cdots & \mathcal{F}_{k} \\ \text { Rule-Name }\end{array}$ Rusion: A Judgment \rightarrow
"If all the premises hold, the conclusion follows"

The Natural Numbers Defined Inductively by Two Inference Rules (Peano)

```
Axiom }->\mp@subsup{\mp@code{0\in\mathbb{N}}}{}{\mathrm{ zero}
```

Judgments: $\quad a \in \mathbb{N}$
Variables: $a \quad \leftarrow$ Sequences of symbols
Symbols: $\quad 0 \quad \operatorname{succ}(\quad)$
$0 \quad 0$

Judgments: $\quad a \in \mathbb{N}$
Variables: $a \leftarrow$ Sequences of symbols
Symbols: 0 succ ()

0	0
$\operatorname{succ}(0)$	1
$\operatorname{succ}(\operatorname{succ}(0))$	2
$\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0)))$	3
$\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0))))$	4

Inference Rule

"If all the premises hold, the conclusion follows"

The Natural Numbers Defined Inductively by Two Inference Rules (Peano)
$\frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}}$ successor

Judgments: $\quad a \in \mathbb{N}$
Variables: $a \leftarrow$ Sequences of symbols
Symbols: 0 succ ()

0	0
$\operatorname{succ}(0)$	1
$\operatorname{succ}(\operatorname{succ}(0))$	2
$\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0)))$	3
$\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0))))$	4

Inference Rule

$\begin{array}{lllll}\text { Premises: Judgments } \rightarrow & f_{1} & f_{2} & \cdots & f_{k} \\ \text { nclusion: A Judgment } \rightarrow & & & \\ \text { Rule-Name }\end{array}$
"If all the premises hold, the conclusion follows"
The Natural Numbers Defined Inductively by Two Inference Rules (Peano)
$0 \in \mathbb{N}^{\text {zero }}$
$\frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}}$ successor \leftarrow Technically a scheme

Scheme: pattern with variables: replacing a consistently gives a rule

$$
\frac{0 \in \mathbb{N}}{\operatorname{succ}(\theta) \in \mathbb{N}} \frac{\operatorname{succ}(0) \in \mathbb{N}}{\operatorname{succ}(\operatorname{succ}(\theta)) \in \mathbb{N}} \quad \frac{\operatorname{true} \in \mathbb{N}}{\operatorname{succ}(\operatorname{true}) \in \mathbb{N}}
$$

Which are variables? Values constrained? Variable scope: a single rule

Consistent replacement only:
foo $\in \mathbb{N}$ $\operatorname{succ}(b a r) \in \mathbb{N}$ is not a rule

Inference Rule
Premises: Judgments \rightarrow
nclusion: A Judgment \rightarrow $\begin{array}{lllll}\mathcal{F}_{1} & \mathcal{F}_{2} & \cdots & \mathfrak{F}_{k} \\ \text { Rule-Name }\end{array}$
"If all the premises hold, the conclusion follows"

The Natural Numbers Defined Inductively by Two Inference Rules (Peano)

$$
0 \in \mathbb{N}^{\text {zero }} \quad \frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}} \text { successor }
$$

Is succ $(\operatorname{succ}(\operatorname{succ}(0)))$ a.k.a. 3 a natural number? A forward derivation

$$
\overline{0 \in \mathbb{N}}^{\text {zero }}
$$

Inference Rule
$\begin{array}{lllll}\text { Premises: Judgments } \rightarrow & f_{1} & f_{2} & \cdots & f_{k} \\ \text { nclusion: A Judgment } \rightarrow & & & \\ \text { Rule-Name }\end{array}$
"If all the premises hold, the conclusion follows"
The Natural Numbers Defined Inductively by Two Inference Rules (Peano)

$$
0 \in \mathbb{N}^{\text {zero }} \quad \frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}} \text { successor }
$$

Is succ $(\operatorname{succ}(\operatorname{succ}(0)))$ a.k.a. 3 a natural number? A forward derivation

$$
{\frac{\overline{\operatorname{succ}}(0)^{\mathrm{N}}}{} \text { zero }}_{\text {se }}^{\text {successor }} \leftarrow \text { choose } a=0
$$

Inference Rule
$\begin{array}{lllll}\text { Premises: Judgments } \rightarrow & f_{1} & f_{2} & \cdots & f_{k} \\ \text { nclusion: A Judgment } \rightarrow & & & \\ \text { Rule-Name }\end{array}$
"If all the premises hold, the conclusion follows"
The Natural Numbers Defined Inductively by Two Inference Rules (Peano)

$$
0 \in \mathbb{N}^{\text {zero }} \quad \frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}} \text { successor }
$$

Is $\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0)))$ a.k.a. 3 a natural number? A forward derivation

$$
\frac{{\frac{\overline{\operatorname{suct}}^{\text {zero }}}{} \text { (0) } \in \mathbb{N}}_{\text {successor }}^{\operatorname{succ}(\operatorname{succ}(0)) \in \mathbb{N}} \text { successor } \leftarrow \text { choose } a=\operatorname{succ}(0)}{}
$$

Inference Rule
Premises: Judgments \rightarrow
nclusion: A Judgment \rightarrow $\begin{array}{llll}f_{1} & f_{2} & \cdots & f_{k} \\ \text { Rule-Name }\end{array}$
"If all the premises hold, the conclusion follows"
The Natural Numbers Defined Inductively by Two Inference Rules (Peano)

$$
0 \in \mathbb{N}^{\text {zero }} \quad \frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}} \text { successor }
$$

Is $\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0)))$ a.k.a. 3 a natural number? A forward derivation

$$
\begin{gathered}
{\frac{\overline{\operatorname{succ}}^{\text {succ }(0) \in \mathbb{N}}}{} \text { successor }}_{\frac{\operatorname{succ}(\operatorname{succ}(0)) \in \mathbb{N}}{}^{\text {successor }}}^{\text {succ }(\operatorname{succ}(\operatorname{succ}(0))) \in \mathbb{N}}
\end{gathered}
$$

The Natural Numbers

$$
\overline{0 \in \mathbb{N}}^{\text {zero }} \quad \frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}}
$$

```
zeroIsN :: String -> Bool
```

successorIsN :: String -> Bool

String is inefficient, but let's focus on correctness first

The Natural Numbers

$$
\begin{aligned}
& \text { zero } \\
& \overline{0} \in \mathbb{N} \\
& \frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}} \text { successor }
\end{aligned}
$$

```
zeroIsN :: String -> Bool
zeroIsN "0" = True
zeroIsN _ = False -- Default case
successorIsN :: String -> Bool
```


The Natural Numbers

$$
\begin{aligned}
& \text { zero } \\
& 0 \in \mathbb{N}
\end{aligned}
$$

```
import Data.List (stripPrefix) -- stripPrefix :: String -> String -> Maybe String
zeroIsN :: String -> Bool
zeroIsN "0" = True
zeroIsN _ = False -- Default case
successorIsN :: String -> Bool -- Construct a Reverse Derivation
successorIsN s = case stripPrefix "succ(" s of -- Of the form succ(...)?
    Just aa@(_:_) -> last aa == ')' && -- Prohibit the empty string
    let a = init aa in -- Get all but last character
    zeroIsN a || successorIsN a -- Try both
    -
        -> False
```


The Natural Numbers

$$
\overline{0 \in \mathbb{N}}^{\text {zero }}
$$

$\frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}}$ successor

```
import Data.List (stripPrefix)
zeroIsN :: String -> Bool
zeroIsN "0" = True
zeroIsN _ = False
successorIsN :: String -> Bool
successorIsN s = case match "succ(" ")" s of
    Just a -> zeroIsN a || successorIsN a
    -> False
match :: String -> String -> String -> Maybe String -- Helper function
match pre suff s = do a' <- stripPrefix pre s -- Stops at Nothing
    reverse <$> stripPrefix (reverse suff) (reverse a')
```


The Natural Numbers

$$
\overline{0 \in \mathbb{N}}^{\text {zero }}
$$

$$
\frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}} \text { successor }
$$

```
import Data.List (stripPrefix)
isNat :: String -> Bool
-- Merge the two rules
isNat "0" = True
-- zero rule
isNat s = case match "succ(" ")" s of -- successor rule
    Just a -> isNat a
-- Only one thing to check
    Nothing -> False
match :: String -> String -> String -> Maybe String
match pre suff s = do a' <- stripPrefix pre s
    reverse <$> stripPrefix (reverse suff) (reverse a')
```

The Natural Numbers

$$
\frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}} \text { successor }
$$

data Nat = Zero | Succ Nat -- Algebraic data type: either "Zero" or "Succ n"
zeroIsN :: Nat -> Bool
zeroIsN Zero = True
zeroIsN _ False

```
successorIsN :: Nat -> Bool
successorIsN (Succ a) = zeroIsN a || successorIsN a -- Try both
successorIsN _ = False
```

The Natural Numbers

$$
\overline{0 \in \mathbb{N}}^{\text {zero }}
$$

$$
\frac{a \in \mathbb{N}}{\operatorname{succ}(a) \in \mathbb{N}} \text { successor }
$$

data Nat $=$ Zero | Succ Nat

isNat	$::$ Nat $->$ Bool	
isNat Zero	$=$ True	-- zero rule
isNat (Succ a)	$=$ isNat a	-- successor rule

isNat is trivial; Haskell's type system enforces it for us

Equality of Natural Numbers as an Inductive Definition

$$
\overline{\mathrm{eq}(0,0)}^{\text {equalzero }} \quad \frac{\mathrm{eq}(a, b)}{\mathrm{eq}(\operatorname{succ}(a), \operatorname{succ}(b))} \text { equal }
$$

Judgements: eq $\left(n_{1}, n_{2}\right) \quad$ " n_{1} and n_{2} are equal" \leftarrow a relation/a set of pairs Variables: $a b$
Symbols: 0 succ()
Is $3=3$? A reverse derivation
eq(succ (succ (succ(0))), $\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0))))$

Equality of Natural Numbers as an Inductive Definition

$$
\frac{\mathrm{eq}(a, b)}{\mathrm{eq}(0,0)} \text { equalzero } \quad \frac{\mathrm{eq}(\operatorname{succ}(a), \operatorname{succ}(b))}{\text { equal }}
$$

Judgements: eq $\left(n_{1}, n_{2}\right) \quad$ " n_{1} and n_{2} are equal" Variables: $a b$
Symbols: 0 succ ()

Is $3=3$? A reverse derivation

```
eq( succ(\operatorname{succ}(0)), succ(\operatorname{succ}(0)))
```

Equality of Natural Numbers as an Inductive Definition

$$
\frac{\mathrm{eq}(a, b)}{\mathrm{eq}(0,0)} \text { equalzero } \quad \frac{\mathrm{eq}(\operatorname{succ}(a), \operatorname{succ}(b))}{\text { equal }}
$$

Judgements: eq $\left(n_{1}, n_{2}\right) \quad$ " n_{1} and n_{2} are equal"
Variables: $a b$
Symbols: 0 succ ()

Is $3=3$? A reverse derivation

Equality of Natural Numbers as an Inductive Definition

$$
\frac{\mathrm{eq}(0,0)}{} \text { equalzero } \quad \frac{\mathrm{eq}(a, b)}{\mathrm{eq}(\operatorname{succ}(a), \operatorname{succ}(b))} \text { equal }
$$

Judgements: eq $\left(n_{1}, n_{2}\right) \quad$ " n_{1} and n_{2} are equal" Variables: $a b$
Symbols: 0 succ ()

Is $3=3$? A reverse derivation

Equality of Natural Numbers as an Inductive Definition

$$
\frac{\mathrm{eq}(a, b)}{\mathrm{eq}(0,0)} \text { equalzero } \quad \frac{\mathrm{eq}(\operatorname{succ}(a), \operatorname{succ}(b))}{\text { equal }}
$$

Judgements: eq $\left(n_{1}, n_{2}\right) \quad$ " n_{1} and n_{2} are equal"
Variables: $a b$
Symbols: 0 succ ()

Is $3=3$? A reverse derivation

Equality of Natural Numbers as an Inductive Definition

$$
\frac{\mathrm{eq}(0,0)}{} \text { equalzero } \quad \frac{\mathrm{eq}(a, b)}{\mathrm{eq}(\operatorname{succ}(a), \operatorname{succ}(b))} \text { equal }
$$

Judgements: eq $\left(n_{1}, n_{2}\right) \quad$ " n_{1} and n_{2} are equal" Variables: $a b$
Symbols: 0 succ ()
Is $3=3$? A reverse derivation

Is $1=2$?
eq(succ(0), $\operatorname{succ}(\operatorname{succ}(0)))$

Equality of Natural Numbers as an Inductive Definition

$$
\frac{\mathrm{eq}(0,0)}{} \text { equalzero } \quad \frac{\mathrm{eq}(a, b)}{\mathrm{eq}(\operatorname{succ}(a), \operatorname{succ}(b))} \text { equal }
$$

Judgements: eq $\left(n_{1}, n_{2}\right) \quad$ " n_{1} and n_{2} are equal" Variables: $a b$
Symbols: 0 succ ()

Is $3=3$? A reverse derivation

Is $1=2$?
$\frac{\mathrm{eq}(\quad 0, \quad \operatorname{succ}(\theta))}{\mathrm{eq}(\operatorname{succ}(\theta), \operatorname{succ}(\operatorname{succ}(\theta)))}$ equal

Equality of Natural Numbers as an Inductive Definition

$$
\frac{\mathrm{eq}(a, b)}{\mathrm{eq}(0,0)} \text { equalzero } \quad \frac{\mathrm{eq}(\operatorname{succ}(a), \operatorname{succ}(b))}{\text { equal }}
$$

Judgements: eq $\left(n_{1}, n_{2}\right) \quad$ " n_{1} and n_{2} are equal" Variables: $a b$
Symbols: 0 succ ()

Is $3=3$? A reverse derivation

eq(0	,	0) equalzero
eq($\operatorname{succ}(0)$,	$\operatorname{succ}(0)$	$)$ equal
eq($\operatorname{succ}(\operatorname{succ}(0))$		$\operatorname{succ}(\operatorname{succ}(0))$	$){ }^{\text {e }}$

Is $1=2$?
$\frac{\mathrm{eq}(\quad 0, \quad \operatorname{succ}(0))}{\mathrm{eq}(\operatorname{succ}(\theta), \operatorname{succ}(\operatorname{succ}(\theta)))}$ equal

Equality of Natural Numbers as an Inductive Definition

$$
\frac{a=b}{0=0} \text { equalzero } \quad \frac{a}{\operatorname{succ}(a)=\operatorname{succ}(b)} \text { equal }
$$

Judgements: $\quad n_{1}=n_{2} \quad$ " n_{1} and n_{2} are equal" \leftarrow a relation/a set of pairs
Variables: $a b$
Symbols: 0 succ ()
Is $3=3$?

Is $1=2$?
$\frac{0=\operatorname{succ}(\theta)}{\operatorname{succ}(\theta)=\operatorname{succ}(\operatorname{succ}(\theta))}$ equal
We are stuck: neither rule applies, so $1 \neq 2$

Equality of Natural Numbers as an Inductive Definition

$$
\frac{a=b}{0=0} \text { equalzero } \quad \frac{a}{\operatorname{succ}(a)=\operatorname{succ}(b)} \text { equal }
$$

```
data Nat = Zero | Succ Nat
natEqual :: Nat -> Nat -> Bool
natEqual Zero Zero = True -- equalzero rule
natEqual (Succ a) (Succ b) = natEqual a b -- equal rule
natEqual _ _ False
```

Again: single function because only one rule may ever match

Equality of Natural Numbers as an Inductive Definition

$$
\overline{0}^{0=0} \text { equalzero } \quad \frac{a=b}{\operatorname{succ}(a)=\operatorname{succ}(b)} \text { equal }
$$

data Nat = Zero | Succ Nat
deriving Eq
This Haskell's default implementation of $==$ for algebraic data types

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{\operatorname{sum}(0, b, b)} \text { addzero } \quad \frac{\operatorname{sum}(a, b, c)}{\operatorname{sum}(\operatorname{succ}(a), b, \operatorname{succ}(c))} \text { add }
$$

Judgments: $\quad n \in \mathbb{N} \quad \operatorname{sum}\left(n_{1}, n_{2}, n_{3}\right) \leftarrow$ a relation/a set of triples
Variables: $a \quad b \quad c$
Symbols: 0 succ ()

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{\operatorname{sum}(0, b, b)} \text { addzero }
$$

$$
\frac{\operatorname{sum}(a, b, c)}{\operatorname{sum}(\operatorname{succ}(a), b, \operatorname{succ}(c))} \text { add }
$$

Judgments: $\quad n \in \mathbb{N} \quad \operatorname{sum}\left(n_{1}, n_{2}, n_{3}\right)$
Variables: $a b c$
Symbols: 0 succ ()
Is $2+1=3$?
$\operatorname{sum}(\operatorname{succ}(\operatorname{succ}(0)), \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0))))$

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{\operatorname{sum}(0, b, b)} \text { addzero }
$$

$$
\frac{\operatorname{sum}(a, b, c)}{\operatorname{sum}(\operatorname{succ}(a), b, \operatorname{succ}(c))} \text { add }
$$

Judgments: $\quad n \in \mathbb{N} \quad \operatorname{sum}\left(n_{1}, n_{2}, n_{3}\right)$
Variables: $a b c$
Symbols: 0 succ ()
Is $2+1=3$?

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{\operatorname{sum}(0, b, b)} \text { addzero }
$$

$$
\frac{\operatorname{sum}(a, b, c)}{\operatorname{sum}(\operatorname{succ}(a), b, \operatorname{succ}(c))} \text { add }
$$

Judgments: $\quad n \in \mathbb{N} \quad \operatorname{sum}\left(n_{1}, n_{2}, n_{3}\right)$
Variables: $a \quad b \quad c$
Symbols: 0 succ ()
Is $2+1=3$?

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{\operatorname{sum}(0, b, b)} \text { addzero }
$$

$$
\frac{\operatorname{sum}(a, b, c)}{\operatorname{sum}(\operatorname{succ}(a), b, \operatorname{succ}(c))} \text { add }
$$

Judgments: $\quad n \in \mathbb{N} \quad \operatorname{sum}\left(n_{1}, n_{2}, n_{3}\right)$
Variables: $a \quad b \quad c$
Symbols: 0 succ ()
Is $2+1=3$?

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{\operatorname{sum}(0, b, b)} \text { addzero }
$$

$$
\frac{\operatorname{sum}(a, b, c)}{\operatorname{sum}(\operatorname{succ}(a), b, \operatorname{succ}(c))} \text { add }
$$

Judgments: $\quad n \in \mathbb{N} \quad \operatorname{sum}\left(n_{1}, n_{2}, n_{3}\right)$
Variables: $a b c$
Symbols: 0 succ ()
Is $2+1=3$?

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{\operatorname{sum}(0, b, b)} \text { addzero }
$$

$$
\frac{\operatorname{sum}(a, b, c)}{\operatorname{sum}(\operatorname{succ}(a), b, \operatorname{succ}(c))} \text { add }
$$

Judgments: $\quad n \in \mathbb{N} \quad \operatorname{sum}\left(n_{1}, n_{2}, n_{3}\right)$
Variables: $a b c$
Symbols: 0 succ ()
Is $2+1=3$?

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{0+b=b} \text { addzero }
$$

$$
\frac{a+b=c}{\operatorname{succ}(a)+b=\operatorname{succ}(c)} \text { add }
$$

Judgments: $\quad n \in \mathbb{N} \quad n_{1}+n_{2}=n_{3} \leftarrow$ a relation/a set of triples
Variables: $a \quad b \quad c$
Symbols: 0 succ ()
Is $2+1=3$?

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{0+b=b} \text { addzero }
$$

$$
\frac{a+b=c}{\operatorname{succ}(a)+b=\operatorname{succ}(c)} \text { add }
$$

data Nat = Zero | Succ Nat deriving Eq

```
sumsTo :: Nat -> Nat -> Nat -> Bool -- Is }a+b=c\mathrm{ ?
sumsTo Zero b b' | b == b' = True -- addzero rule
sumsTo (Succ a) b (Succ c) = sumsTo a b c -- add rule
sumsTo _ _ _ False -- E.g., (Succ a) _ Zero
```

No need to check whether $b \in \mathbb{N}$: the types enforce this
Haskell patterns can't check for equality like sumsTo Zero b b, so I added guard b == 'b Rather awkward to ask "is this it?"

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{0+b=b} \text { addzero } \quad \frac{a+b=c}{\operatorname{succ}(a)+b=\operatorname{succ}(c)} \text { add }
$$

```
data Nat = Zero | Succ Nat
    deriving (Eq, Show)
addNat :: Nat -> Nat -> Nat
addNat Zero b = b -- addzero rule
addNat (Succ a) b = Succ (addNat a b) -- add rule
```

The dataflow makes this easy and it's obviously a total function

Addition as an Inductive Definition

$$
\frac{b \in \mathbb{N}}{0+b=b} \text { addzero } \quad \frac{a+b=c}{\operatorname{succ}(a)+b=\operatorname{succ}(c)} \text { add }
$$

```
data Nat = Zero | Succ Nat
    deriving (Eq, Show)
subNat :: Nat -> Nat -> Maybe Nat -- Given c and a, what b satisfies }a+b=c\mathrm{ ?
subNat c Zero = Just c -- addzero rule
subNat (Succ c) (Succ a) = subNat c a -- add rule
subNat Zero (Succ _) = Nothing -- failure
```

Still straightforward dataflow, but the function is no longer total

A Definition of Binary Trees

$$
\overline{\text { leaf tree }}^{\text {leaf }}
$$

Judgments: t tree " t is a tree"
Variables: $\quad t_{1} \quad t_{2} \quad t_{1}$ and t_{2} may be equal
Symbols: leaf branch(,)

A Definition of Binary Trees

$$
\overline{\text { leaf tree }}^{\text {leaf }} \quad \frac{t_{1} \text { tree } t_{2} \text { tree }}{\operatorname{branch}\left(t_{1}, t_{2}\right) \text { tree }} \text { branch }
$$

```
Judgments: \(t\) tree " \(t\) is a tree"
Variables: \(\quad t_{1} \quad t_{2} \quad t_{1}\) and \(t_{2}\) may be equal
Symbols: leaf branch( , )
```


Derivations are generally tree-structured

A Definition of Binary Trees

$$
\varlimsup_{\text {leaf tree }} \text { leaf } \quad \frac{t_{1} \text { tree } t_{2} \text { tree }}{\operatorname{branch}\left(t_{1}, t_{2}\right) \text { tree }} \text { branch }
$$

```
Judgments: \(t\) tree " \(t\) is a tree"
Variables: \(\quad t_{1} \quad t_{2} \quad t_{1}\) and \(t_{2}\) may be equal
Symbols: leaf branch( , )
```


Derivations are generally tree-structured

branch(leaf,leaf) tree leaf tree branch(branch(leaf, leaf), leaf) tree branch

A Definition of Binary Trees

$$
\varlimsup_{\text {leaf tree }} \text { leaf } \quad \frac{t_{1} \text { tree } t_{2} \text { tree }}{\operatorname{branch}\left(t_{1}, t_{2}\right) \text { tree }} \text { branch }
$$

```
Judgments: \(t\) tree " \(t\) is a tree"
Variables: \(\quad t_{1} \quad t_{2} \quad t_{1}\) and \(t_{2}\) may be equal
Symbols: leaf branch( , )
```


Derivations are generally tree-structured

$\frac{\frac{\text { leaf tree }}{\frac{\text { leaf tree }}{\text { branch(leaf,leaf) tree }} \text { branch }} \frac{\text { leaf tree }}{\text { leaf }}}{\text { branch(branch(leaf,leaf), leaf) tree }}$ branch

A Definition of Binary Trees

$$
\varlimsup_{\text {leaf tree }} \text { leaf } \quad \frac{t_{1} \text { tree } t_{2} \text { tree }}{\operatorname{branch}\left(t_{1}, t_{2}\right) \text { tree }} \text { branch }
$$

Judgments: t tree " t is a tree"
Variables: $\quad t_{1} \quad t_{2} \quad t_{1}$ and t_{2} may be equal
Symbols: leaf branch(,)

Derivations are generally tree-structured

A Definition of Binary Trees

$$
\varlimsup_{\text {leaf tree }} \text { leaf } \quad \frac{t_{1} \text { tree } t_{2} \text { tree }}{\operatorname{branch}\left(t_{1}, t_{2}\right) \text { tree }} \text { branch }
$$

```
Judgments: t tree "t is a tree"
Variables: trer tre
Symbols: leaf branch( , )
data Tree = Leaf | Branch Tree Tree
isTree :: Tree -> Bool
isTree Leaf = True
isTree (Branch l r) = isTree l && isTree r -- Must test both branches
```

Trivially true because of Haskell's types, but note two-way recursion

