Dependent Types

Stephen A. Edwards

Columbia University

Spring 2023

Andres Löh, Conor McBride and Wouter Swierstra A Tutorial Implementation of a Dependently Typed Lambda Calculus Fundamenta Informaticae, 102(2):117–207, April 2010 https://www.andres-loeh.de/LambdaPi/

Stephanie Weirich Implementing Dependent Types in pi-forall https://github.com/sweirich/pi-forall See doc/oplss.pdf. August 15, 2022

Simply-Typed $\lambda \rightarrow$ Lambda Calculus

Terms depend on terms Functions with Arguments

System	Term	Туре
$\lambda \rightarrow$	λx : bool . x	$bool \rightarrow bool$

Base types and functions from type to type

Binder arguments annotated with a type

No polymorphism: λx . x must have a specific type

System	Term	Туре
$\lambda \rightarrow$	λx : bool . x	$\texttt{bool} \to \texttt{bool}$
System F	$\Lambda \alpha . \lambda x : \alpha . \alpha$	$\forall \alpha \ . \ \alpha \longrightarrow \alpha$

Polymorphic functions: (terms may depend on types)

Type variables, ∀ types

A term Λ binds a type argument to a type variable α

Type variables are untyped

System	Term	Туре
$\lambda \rightarrow$	$\lambda x : \texttt{bool} \cdot x$	$bool \rightarrow bool$
System F	$\Lambda \alpha . \lambda x : \alpha . \alpha$	$\forall \alpha \ . \ \alpha \longrightarrow \alpha$
System F _a	$\Lambda lpha: st . \lambda h: lpha . \lambda t: \mathtt{List} lpha$	$\forall \alpha : \mathbf{*} . \alpha \rightarrow \mathbf{List} \ \alpha \rightarrow \mathbf{List} \ \alpha$

Polymorphic types: (types may depend on types)

The type of a type is a kind. ***** is a simple type, ***** \rightarrow ***** is a type constructor like **List**. This is the "cons" function for the polymorphic list type **List** α It takes a simple type α , an object of type α , and a list of α 's, and produces a list of α 's

System	Term	Туре
$\lambda \rightarrow$	$\lambda x : \texttt{bool} \cdot x$	$bool \rightarrow bool$
System F	$\Lambda \alpha . \lambda x : \alpha . \alpha$	$\forall \alpha . \alpha \to \alpha$
System F _a	$\lambda_{\alpha} \cdot \star \cdot \lambda h : \alpha \cdot \lambda t : \mathtt{List} \alpha \cdot$	$\forall \alpha : \star . \alpha \to \mathbf{List} \alpha \to \mathbf{List} \alpha$
$\lambda \Pi$	Identity on <i>n</i> -element vectors	$(\alpha : \star) \longrightarrow (n : Nat) \longrightarrow (v : Vec \ \alpha \ n) \longrightarrow Vec \ \alpha \ n$

Types may depend on ordinary terms such as natural numbers

You can define a polymorphic ${\sf Vec}$ type parameterized by a type α and a natural number length n

You can define an identity function on such vectors

Aside: Types as Terms: Tuples as Type Lists in Haskell (System F_{ω})

\$ ghci > :set -XTypeOperators -- Infix type constructor syntax > data Nil = Nil deriving Show -- Empty list > data tail :. head = tail :. head deriving Show -- List of types (wrong associativity) > x = Nil :. (5::Int) :. 'a' -- :. as data constructor > :t x x :: (Nil :. Int) :. Char -- :. as type constructor: Char, Int "pairs" Aside: Types as Terms: Tuples as Type Lists in Haskell (System F_{ω})

```
$ ghci
> :set -XTvpeOperators
                                              -- Infix type constructor syntax
> data Nil = Nil deriving Show -- Empty list
> data tail :. head = tail :. head deriving Show -- List of types (wrong associativity)
> x = Nil :. (5::Int) :. 'a' -- :. as data constructor
> :t x
x :: (Nil :. Int) :. Char -- :. as type constructor: Char, Int "pairs"
> myhd (t :. h) = h
                               -- Head of list
> :t myhd
myhd :: (tail :. head) -> head -- myhd on a "Cons" type returns the type of its head
> mytl (t :. h) = t
                              -- Tail of list
> :t mvtl
mvtl :: (tail :. head) -> tail -- mvtl on a "Cons" type returns the type of its tail
```

Aside: Types as Terms: Tuples as Type Lists in Haskell (System F_{ω})

```
$ ghci
> :set -XTvpeOperators
                                                -- Infix type constructor syntax
> data Nil = Nil deriving Show -- Empty list
> data tail :. head = tail :. head deriving Show -- List of types (wrong associativity)
> x = Nil :. (5::Int) :. 'a' -- :. as data constructor
> :t x
x :: (Nil :. Int) :. Char -- :. as type constructor: Char, Int "pairs"
> myhd (t :. h) = h
                                -- Head of list
> :t myhd
myhd :: (tail :. head) -> head -- myhd on a "Cons" type returns the type of its head
> mytl (t :. h) = t
                               -- Tail of list
> :t mytl
mytl :: (tail :. head) -> tail -- mytl on a "Cons" type returns the type of its tail
> myhd x
'a'
> mytl x
Nil :. 5
> :t mvtl x
mytl x :: Nil :. Int
                                -- Type of Int singletons
> myhd (mytl x)
5
                                -- WORKS. BUT CAN'T USE LIST MACHINERY
```

$\lambda \rightarrow$ Types and Expressions		
$\tau ::= \alpha$	base type	
$\tau \rightarrow \tau$	function type	
$e ::= e : \tau$	annotated term	
x	variable	
e e	application	
λx . e	lambda abstraction	

 $\lambda \rightarrow \text{Values}$ $v ::= n \qquad \text{neutral term}$ $\lambda x \cdot v \qquad \text{lambda abstraction}$ $n ::= x \qquad \text{variable}$ $n v \qquad \text{application}$

Another Simply Typed Lambda Calculus

Base types α are, e.g., **Bool**, **Nat**

Type annotations on expressions instead of variables in λ terms. Not a significant change

Values (normal forms of evaluation): e.g., x, $\lambda x \cdot x$, $x y (\lambda z \cdot z)$. No redexes allowed

Löh et al. write $e :: \tau$ for $e : \tau$ and $\lambda x \to e$ for $\lambda x \cdot e$

$\lambda \rightarrow$ Types and Expressions	$\lambda \rightarrow$ Values
$\tau ::= \alpha$ base type $\tau \to \tau$ function type $e ::= e : \tau$ annotated term	v ::= n neutral term $\lambda x \cdot v$ lambda abstraction
x variable $e e$ application $\lambda x \cdot e$ lambda abstraction	n ::= x variable n v application
$\lambda \rightarrow$ Big-Step Evaluation Rules	
$\frac{e \Downarrow v}{e: \tau \Downarrow v} e \Downarrow \lambda x \cdot v v[x:=$	$\frac{e \not e'] \Downarrow v'}{e e' \Downarrow nv'} \frac{e \Downarrow n}{\lambda x \cdot e \Downarrow \lambda x \cdot v}$

Strongly normalizing; normal form always exists; reduce to a value in a single step "Ignore type annotations" "Stop at variables" "Apply a λ value by substituting" "Applying a neutral term, just reduce argument" "Reduce the body of a λ " $((\lambda x . x) : (\alpha \to \alpha)) y \downarrow y ((\lambda x . \lambda y . x) : (\beta \to \beta) \to \alpha \to \beta \to \beta) (\lambda z . z) y \downarrow (\lambda z . z)$

$\lambda \rightarrow$ Types and Expressions		
$\tau ::= \alpha$	base type	
$\tau \rightarrow \tau$	function type	
$e ::= e \ : \ \tau$	annotated term	
x	variable	
e e	application	
λx . e	lambda abstraction	

 $\lambda \longrightarrow \text{Values}$ $v ::= n \qquad \text{neutral term}$ $\lambda x \cdot v \qquad \text{lambda abstraction}$ $n ::= x \qquad \text{variable}$ $n v \qquad \text{application}$

Contexts

$::=\epsilon$	empty context
$\Gamma, \alpha : \star$	adding a type identifier
$\Gamma, x : \tau$	adding a term identifier

"*****" means "base type"; vacuous for now

Valid Co	ontexts		
$\overline{\text{uolid}(c)}$	$\frac{\text{valid}(\Gamma)}{\text{valid}(\Gamma \ \alpha \ \cdot \ \star)}$	$\frac{\text{valid}(\Gamma)}{\text{valid}(\Gamma)}$	$\frac{\Gamma \vdash \tau : \star}{\Gamma \cdot \tau : \tau}$
$vand(\epsilon)$	valid(1, α : *)	vand()	$(, x : \tau)$

"The empty context is valid" "A base type may be in context" "An identifier in context has a base type"

$\lambda \rightarrow$ Types and Expressions		
$\tau ::= \alpha$	base type	
$\tau \longrightarrow \tau$	function type	
$e ::= e : \tau$	annotated term	
x	variable	
e e	application	
λ <i>x</i> . e	lambda abstraction	

 $\lambda \rightarrow$ Values

v ::= n	neutral term
$\lambda x \cdot v$	lambda abstraction
n ::= x $n v$	variable application

$\frac{\lambda \rightarrow \text{Type Rules in Bidirectional Style}}{\Gamma \vdash \alpha : \star} \frac{\Gamma \vdash \tau : \star \quad \Gamma \vdash \tau' : \star}{\Gamma \vdash \tau \rightarrow \tau' : \star} \text{fun} \qquad \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \uparrow \tau} \text{var2} \qquad \frac{\Gamma \vdash \tau : \star \quad \Gamma \vdash e : \downarrow \tau}{\Gamma \vdash (e : \tau) : \uparrow \tau} \text{ann} \\ \frac{\Gamma \vdash e : \uparrow \tau \rightarrow \tau' \quad \Gamma \vdash e' : \downarrow \tau}{\Gamma \vdash e' : \uparrow \tau'} \text{app} \qquad \frac{\Gamma \vdash e : \uparrow \tau}{\Gamma \vdash e : \downarrow \tau} \text{chk} \qquad \frac{\Gamma, x : \tau \vdash e : \downarrow \tau'}{\Gamma \vdash (\lambda x \cdot e) : \downarrow \tau \rightarrow \tau'} \text{lam}$

Type checked: ": τ "Is this τ right?"Type inferred: ": τ " "Found type is τ ""Context: base type""Function: base type""Variable's type""Confirm type annotation""Infer result of application""Inferred type checks out""Check type of lambda"

$\lambda \rightarrow$ Types and Expressions		
$\tau ::= \alpha$	base type	
$\tau \rightarrow \tau$	function type	
$e ::= e : \tau$	annotated term	
x	variable	
e e	application	
$\lambda x \cdot e$	lambda abstraction	

 $\lambda \rightarrow$ Values

v ::= n	neutral term
$\lambda x \cdot v$	lambda abstraction
n ::= x $n v$	variable application

$\lambda \rightarrow$ Type Rules in Bidirectional Style $\frac{\Gamma(\alpha) = \star}{\Gamma \vdash \alpha : \star} \operatorname{var1} \quad \frac{\Gamma \vdash \tau : \star}{\Gamma \vdash \tau \to \tau' : \star} \operatorname{fun} \quad \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \uparrow \tau} \operatorname{var2} \quad \frac{\Gamma \vdash \tau : \star}{\Gamma \vdash (e : \tau) : \uparrow \tau} \operatorname{ann} \\ \frac{\Gamma \vdash e : \uparrow \tau \to \tau'}{\Gamma \vdash e' : \downarrow \tau'} \operatorname{app} \quad \frac{\Gamma \vdash e : \uparrow \tau}{\Gamma \vdash e : \downarrow \tau} \operatorname{chk} \quad \frac{\Gamma, x : \tau \vdash e : \downarrow \tau'}{\Gamma \vdash (\lambda x . e) : \downarrow \tau \to \tau'} \operatorname{lam}$ $\epsilon, \alpha : \star, y : \alpha \vdash \left(\left((\lambda x \cdot x) : (\alpha \to \alpha) \right) y \right) : \alpha$ $\epsilon, \alpha: \star, y: \alpha, \beta: \star \vdash \left(\left((\lambda x . \lambda y . x) : (\beta \to \beta) \to \alpha \to \beta \to \beta \right) (\lambda z . z) y \right) : \beta \to \beta$

λΠ (Dependently Typed) Syntax			
$e, \rho ::= e : \rho$ annotated term			
	*		the type of types
	$(x: \rho$	$) \rightarrow \rho$	dependent function
	x	variable	
	e e		application
	$\lambda x \cdot e$		lambda abstraction

In $\lambda \Pi$, *everything* is an expression, including type "expressions" ρ and kinds $(x : \rho) \rightarrow \rho'$ is the type of a function from ρ to ρ' Weirich writes $(x : \rho) \rightarrow \rho'$; Löh et al. write $\forall x :: \rho \cdot \rho'$; $\Pi x : \rho \cdot \rho'$ is traditional This is where $\lambda \Pi$, the dependently typed lambda calculus, gets its Π $\Pi x : \rho \cdot \rho'$ parallels $\lambda x \cdot e$ x is made available to the body ρ'

$\lambda \Pi$ (Dependently Typed) Syntax			
$e, \rho ::= e : \rho$ annotated term			
	*	the type of types	
	$(x:\rho) \to \rho$	dependent function	
	x	variable	
	e e	application	
	λx . e	lambda abstraction	

An example: the type of the identity function on *n*-element vectors of α 's

$$(\alpha : \star) \rightarrow (n : \operatorname{Nat}) \rightarrow (\nu : \operatorname{Vec} \alpha n) \rightarrow \operatorname{Vec} \alpha n$$

The type variable v isn't used

All (Dependently Typed) Syntax				
e, ρ ::=	e : <mark>ρ</mark>	annotated term		
	*	the type of types		
$(x:\rho) \rightarrow \rho$		dependent function		
	x	variable		
	e e	application		
	λx.e	lambda abstraction		

1) 0

. .

1- 1-

$\lambda\Pi$ (Dependently Typed) Values

$v, \tau ::= n$	neutral term	
*	the type of types	
$(x : \tau) \rightarrow \tau$	dependent function	
$\lambda x \cdot v$	lambda abstraction	
n ::= x	variable	
nν	application	

"Types" τ are now just particular values The kind ***** is just a particular value

All (Dependentity Typed) Syntax			
$e, \rho ::= e : \rho$	annotated term		
*	the type of types		
$(x:\rho) \rightarrow \rho$	dependent function		
x	variable		
e e	application		
λx . e	lambda abstraction		

II (Donondontly Typed) Syntax

$\lambda\Pi$ (Dependently Typed) Values

$v, \tau ::= n$	neutral term	
*	the type of types	
$(x: \tau) \rightarrow \tau$	dependent function	
λ <i>x</i> . ν	lambda abstraction	
n ::= x	variable	
n v	application	

Contexts

$::=\epsilon$	empty context	
$\Gamma, x : \tau$	adding a variable	

No distinction between values and types makes this simple

Valid Contexts
$$valid(\epsilon)$$
 $valid(\Gamma)$ $\Gamma \vdash \tau$ $\downarrow \star$ $valid(\epsilon)$ $valid(\Gamma, x : \tau)$

The "type" of a variable in context must check as the type of a type

$\lambda \Pi$ (Dependently Typed) Syntax		$\lambda\Pi$ (Dependently Typed) Values		
$e, \rho ::= e : \rho$ $(x : \rho) \rightarrow \rho$ x	annotated term the type of types dependent function variable		$ \begin{array}{c} \nu, \tau ::= n \\ $	neutral term the type of types dependent function lambda abstraction
e e λx . e	application lambda abstraction		n ::= x $n v$	variable application

$\lambda \Pi \text{ Big-Step Evaluation Rules}$ $\frac{e \Downarrow v}{e: \tau \Downarrow v} \xrightarrow{\bullet \Downarrow \bullet} \left(\begin{array}{c} \rho \Downarrow \tau & \rho' \Downarrow \tau' \\ \hline (x:\rho) \rightarrow \rho' \Downarrow (x:\tau) \rightarrow \tau' \end{array} \right) \xrightarrow{\bullet} \left(\begin{array}{c} x \Downarrow x \\ \hline x \Downarrow x \end{array} \right)$ $\frac{e \Downarrow \lambda x \cdot v \quad v[x:=e'] \Downarrow v'}{e e' \Downarrow v'} \xrightarrow{\bullet} \left(\begin{array}{c} e \Downarrow n & e' \Downarrow v' \\ \hline e e' \Downarrow nv' \end{array} \right) \xrightarrow{\bullet} \left(\begin{array}{c} e \Downarrow v \\ \hline \lambda x \cdot e \Downarrow \lambda x \cdot v \end{array} \right)$

Type expressions (ρ) in function type terms are evaluated to types (τ); the types remain

$$e, \rho ::= e : \rho \mid \star \mid (x : \rho) \to \rho \mid x \mid e e \mid \lambda x . e \quad v, \tau ::= n \mid \star \mid (x : \tau) \to \tau \mid \lambda x . v \quad n ::= x \mid n v$$

Type checked: ": $\downarrow \tau$ " Type inferred: ": $\uparrow \tau$ "

$\lambda \Pi$ Type Rules

$$\frac{\Gamma \vdash \rho : \downarrow \star \rho \Downarrow \tau}{\Gamma \vdash (e : \rho) : \uparrow \tau} \xrightarrow{\Gamma \vdash e : \downarrow \tau}_{\operatorname{ann}}$$

Checking that ρ is a ***** now uses "regular" type rules

 ρ is now a type expression, so it is reduced to a type τ before checking the type of body e

Type checking now requires *executing* type expressions

 $e, \rho ::= e : \rho \mid \star \mid (x : \rho) \to \rho \mid x \mid ee \mid \lambda x . e \quad v, \tau ::= n \mid \star \mid (x : \tau) \to \tau \mid \lambda x . v \quad n ::= x \mid nv$ Type checked: ": τ " Type inferred: ": τ "

The single var rule now handles values, types, and kinds

The kind ***** is of type *****

This simple choice leaves the type system unsound (allows a kind of Russell's paradox) Choosing $\star : \star_1, \star_1 : \star_2, \star_2 : \star_3$, etc. solves the soundness problem $e, \rho ::= e : \rho \mid \star \mid (x : \rho) \to \rho \mid x \mid ee \mid \lambda x . e \quad v, \tau ::= n \mid \star \mid (x : \tau) \to \tau \mid \lambda x . v \quad n ::= x \mid nv$ Type checked: ": τ " Type inferred: ": τ "

This replaces the *fun* rule in $\lambda \rightarrow$, which concluded $\tau \rightarrow \tau' : *$

For functions from ρ to ρ' , both ρ and ρ' must have kind *****

However, ρ is reduced to type τ and passed to ρ' through the context (dependency)

 $e, \rho ::= e : \rho \mid \star \mid (x : \rho) \to \rho \mid x \mid e e \mid \lambda x . e \quad v, \tau ::= n \mid \star \mid (x : \tau) \to \tau \mid \lambda x . v \quad n ::= x \mid n v$ Type checked: ": τ " Type inferred: ": τ "

The $\lambda \rightarrow$ version checked ($\lambda x \cdot e$) : $\tau \rightarrow \tau'$; this checks an equivalent term

 $e, \rho ::= e : \rho \mid \star \mid (x : \rho) \to \rho \mid x \mid ee \mid \lambda x . e \quad v, \tau ::= n \mid \star \mid (x : \tau) \to \tau \mid \lambda x . v \quad n ::= x \mid nv$ Type checked: ": τ " Type inferred: ": τ "

Instead of $\tau \to \tau'$, we infer $(x : \tau) \to \tau'$

 $(x : \tau) \rightarrow \tau'$ provides the type variable *x* to τ' via a substitution

 $e, \rho ::= e : \rho \mid \star \mid (x : \rho) \to \rho \mid x \mid ee \mid \lambda x . e \quad v, \tau ::= n \mid \star \mid (x : \tau) \to \tau \mid \lambda x . v \quad n ::= x \mid nv$ Type checked: ": τ " Type inferred: ": τ "

This says "given a type τ , we can conclude *e* has that type if we can infer type τ for *e*"