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System Term Type

�→ �x ∶ bool . x bool → bool

System F Λ� . �x ∶ � . � ∀� . � → �

System F! Λ� ∶ * . �h ∶ � . �t ∶ List � . … ∀� ∶ * . � → List � → List �

�Π Identity on n-element vectors (� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

Base types and functions from type to type

Binder arguments annotated with a type

No polymorphism: �x . x must have a speci�c type



System Term Type

�→ �x ∶ bool . x bool → bool

System F Λ� . �x ∶ � . � ∀� . � → �

System F! Λ� ∶ * . �h ∶ � . �t ∶ List � . … ∀� ∶ * . � → List � → List �

�Π Identity on n-element vectors (� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

Polymorphic functions: (terms may depend on types)

Type variables, ∀ types

A term Λ binds a type argument to a type variable �

Type variables are untyped



System Term Type

�→ �x ∶ bool . x bool → bool

System F Λ� . �x ∶ � . � ∀� . � → �

System F! Λ� ∶ * . �h ∶ � . �t ∶ List � . … ∀� ∶ * . � → List � → List �

�Π Identity on n-element vectors (� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

Polymorphic types: (types may depend on types)

The type of a type is a kind. * is a simple type, * → * is a type constructor like List.

This is the “cons” function for the polymorphic list type List �

It takes a simple type � , an object of type � , and a list of � ’s, and produces a list of � ’s



System Term Type

�→ �x ∶ bool . x bool → bool

System F Λ� . �x ∶ � . � ∀� . � → �

System F! Λ� ∶ * . �h ∶ � . �t ∶ List � . … ∀� ∶ * . � → List � → List �

�Π Identity on n-element vectors (� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

Types may depend on ordinary terms such as natural numbers

You can de�ne a polymorphic Vec type parameterized by a type � and a natural number
length n

You can de�ne an identity function on such vectors



Aside: Types as Terms: Tuples as Type Lists in Haskell (System F!)
$ ghci
> :set -XTypeOperators -- Infix type constructor syntax
> data Nil = Nil deriving Show -- Empty list
> data tail :. head = tail :. head deriving Show -- List of types (wrong associativity)
> x = Nil :. (5::Int) :. 'a' -- :. as data constructor
> :t x
x :: (Nil :. Int) :. Char -- :. as type constructor: Char, Int "pairs"

> myhd (t :. h) = h -- Head of list
> :t myhd
myhd :: (tail :. head) -> head -- myhd on a "Cons" type returns the type of its head
> mytl (t :. h) = t -- Tail of list
> :t mytl
mytl :: (tail :. head) -> tail -- mytl on a "Cons" type returns the type of its tail
> myhd x
'a'
> mytl x
Nil :. 5
> :t mytl x
mytl x :: Nil :. Int -- Type of Int singletons
> myhd (mytl x)
5 -- WORKS, BUT CAN'T USE LIST MACHINERY
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�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

Another Simply Typed Lambda Calculus

Base types � are, e.g., Bool, Nat

Type annotations on expressions instead of variables in � terms. Not a signi�cant change

Values (normal forms of evaluation): e.g., x, �x . x, x y (�z . z). No redexes allowed

Löh et al. write e :: � for e ∶ � and �x → e for �x . e



�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

�→ Big-Step Evaluation Rules
e ⇓ v

e ∶ � ⇓ v x ⇓ x
e ⇓ �x . v v[x := e′] ⇓ v′

e e′ ⇓ v′
e ⇓ n e′ ⇓ v′

e e′ ⇓ nv′
e ⇓ v

�x . e ⇓ �x . v

Strongly normalizing; normal form always exists; reduce to a value in a single step

“Ignore type annotations” “Stop at variables” “Apply a � value by substituting”

“Applying a neutral term, just reduce argument” “Reduce the body of a �”

(
(�x . x) ∶ (� → �)

)
y ⇓ y

(
(�x . �y . x) ∶ (� → �)→ � → � → �

)
(�z . z) y ⇓ (�z . z)



�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

Contexts
Γ ::= � empty context

Γ, � ∶ * adding a type identi�er
Γ, x ∶ � adding a term identi�er

“*” means “base type”; vacuous for now

Valid Contexts

valid(�)
valid(Γ)

valid(Γ, � ∶ *)
valid(Γ) Γ ⊢ � ∶ *

valid(Γ, x ∶ � )

“The empty context is valid”
“A base type may be in context”
“An identi�er in context has a base type”



�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

�→ Type Rules in Bidirectional Style
Γ(�) = * var1
Γ ⊢ � ∶ *

Γ ⊢ � ∶ * Γ ⊢ �
′
∶ *

fun
Γ ⊢ � → �

′
∶ *

Γ(x) = � var2
Γ ⊢ x ∶

↑
�

Γ ⊢ � ∶ * Γ ⊢ e ∶
↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ ⊢ e ∶
↑
� → �

′
Γ ⊢ e′ ∶

↓
� app

Γ ⊢ e e′ ∶
↑
�
′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
� → �

′

Type checked: “∶
↓
�” “Is this � right?” Type inferred: “∶

↑
�” “Found type is �”

“Context: base type” “Function: base type” “Variable’s type” “Con�rm type annotation”
“Infer result of application” “Inferred type checks out” “Check type of lambda”



�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

�→ Type Rules in Bidirectional Style
Γ(�) = * var1
Γ ⊢ � ∶ *

Γ ⊢ � ∶ * Γ ⊢ �
′
∶ *

fun
Γ ⊢ � → �

′
∶ *

Γ(x) = � var2
Γ ⊢ x ∶

↑
�

Γ ⊢ � ∶ * Γ ⊢ e ∶
↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ ⊢ e ∶
↑
� → �

′
Γ ⊢ e′ ∶

↓
� app

Γ ⊢ e e′ ∶
↑
�
′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
� → �

′

�, � ∶ *, y ∶ � ⊢
((

(�x . x) ∶ (� → �)
)
y
)
∶ �

�, � ∶ *, y ∶ �, � ∶ * ⊢
((

(�x . �y . x) ∶ (� → �)→ � → � → �
)
(�z . z) y

)
∶ � → �



�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ � )→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

In �Π, everything is an expression, including type “expressions” � and kinds

(x ∶ �)→ �
′ is the type of a function from � to �′

Weirich writes (x ∶ �)→ �
′; Löh et al. write ∀x :: � . �′; Πx ∶ � . �′ is traditional

This is where �Π, the dependently typed lambda calculus, gets its Π

Πx ∶ � . �′ parallels �x . e x is made available to the body �′



�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ � )→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

An example: the type of the identity function on n-element vectors of � ’s

(� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

The type variable v isn’t used



�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ � )→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

“Types” � are now just particular values

The kind * is just a particular value



�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ � )→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

Contexts
Γ ::= � empty context

Γ, x ∶ � adding a variable

No distinction between values and
types makes this simple

Valid Contexts

valid(�)
valid(Γ) Γ ⊢ � ∶

↓
*

valid(Γ, x ∶ � )

The “type” of a variable in context must
check as the type of a type



�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ � )→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

�Π Big-Step Evaluation Rules

e ⇓ v
e ∶ � ⇓ v * ⇓ *

� ⇓ � �
′
⇓ �

′

(x ∶ �)→ �
′
⇓ (x ∶ � )→ �

′ x ⇓ x

e ⇓ �x . v v[x := e′] ⇓ v′

e e′ ⇓ v′
e ⇓ n e′ ⇓ v′

e e′ ⇓ nv′
e ⇓ v

�x . e ⇓ �x . v

Type expressions (�) in function type terms are evaluated to types (� ); the types remain



e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ � )→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ � )→ �

′

Γ ⊢ e ∶
↑
(x ∶ � )→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

Checking that � is a * now uses “regular” type rules

� is now a type expression, so it is reduced to a type � before checking the type of body e

Type checking now requires executing type expressions



e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ � )→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ � )→ �

′

Γ ⊢ e ∶
↑
(x ∶ � )→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

The single var rule now handles values, types, and kinds



e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ � )→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ � )→ �

′

Γ ⊢ e ∶
↑
(x ∶ � )→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

The kind * is of type *

This simple choice leaves the type system unsound (allows a kind of Russell’s paradox)

Choosing * ∶ *1, *1 ∶ *2, *2 ∶ *3, etc. solves the soundness problem



e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ � )→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ � )→ �

′

Γ ⊢ e ∶
↑
(x ∶ � )→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

This replaces the fun rule in �→, which concluded � → �
′
∶ *

For functions from � to �′, both � and �′ must have kind *

However, � is reduced to type � and passed to �′ through the context (dependency)



e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ � )→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ � )→ �

′

Γ ⊢ e ∶
↑
(x ∶ � )→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

The �→ version checked (�x . e) ∶ � → �
′; this checks an equivalent term



e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ � )→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ � )→ �

′

Γ ⊢ e ∶
↑
(x ∶ � )→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

Instead of � → �
′, we infer (x ∶ � )→ �

′

(x ∶ � )→ �
′ provides the type variable x to � ′ via a substitution



e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ � )→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ � ) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ � )→ �

′

Γ ⊢ e ∶
↑
(x ∶ � )→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

This says “given a type � , we can conclude e has that type if we can infer type � for e”


