
Dependent Types

Stephen A. Edwards

Columbia University

Spring 2023

Andres Löh, Conor McBride and Wouter Swierstra
A Tutorial Implementation of a Dependently Typed Lambda Calculus
Fundamenta Informaticae, 102(2):117–207, April 2010
https://www.andres-loeh.de/LambdaPi/

Stephanie Weirich
Implementing Dependent Types in pi-forall
https://github.com/sweirich/pi-forall
See doc/oplss.pdf. August 15, 2022

https://www.andres-loeh.de/LambdaPi/
https://github.com/sweirich/pi-forall

Lambda (Barendregt) Cube

�! �Π!

�2 �Π2

�! �Π!

�→ �Π

Simply-
Typed
Lambda
Calculus

Calculus of
Constructions

Terms
depend on

terms Functions with
Arguments

Lambda (Barendregt) Cube

�! �Π!

�2 �Π2

�! �Π!

�→ �Π

Simply-
Typed
Lambda
Calculus

System F

Calculus of
Constructions

Terms
depend on

terms Functions with
Arguments

Terms
depend on

types

Polymorphism

Lambda (Barendregt) Cube

�! �Π!

�2 �Π2

�! �Π!

�→ �Π

Simply-
Typed
Lambda
Calculus

System F

System F!

Calculus of
Constructions

Terms
depend on

terms Functions with
Arguments

Terms
depend on

types

Polymorphism

Types
depend on

types

Polymorphic
Types

Lambda (Barendregt) Cube

�! �Π!

�2 �Π2

�! �Π!

�→ �Π

Simply-
Typed
Lambda
Calculus

System F

System F!

Dependent
Types

Calculus of
Constructions

Terms
depend on

terms Functions with
Arguments

Terms
depend on

types

Polymorphism

Types
depend on

types

Polymorphic
Types

Types
depend on

terms

Lambda (Barendregt) Cube

�! �Π!

�2 �Π2

�! �Π!

�→ �Π

Simply-
Typed
Lambda
Calculus

System F

System F!

Dependent
Types

Calculus of
Constructions

Terms
depend on

terms Functions with
Arguments

Terms
depend on

types

Polymorphism

Types
depend on

types

Polymorphic
Types

Types
depend on

terms

System Term Type

�→ �x ∶ bool . x bool → bool

System F Λ� . �x ∶ � . � ∀� . � → �

System F! Λ� ∶ * . �h ∶ � . �t ∶ List � . … ∀� ∶ * . � → List � → List �

�Π Identity on n-element vectors (� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

Base types and functions from type to type

Binder arguments annotated with a type

No polymorphism: �x . x must have a speci�c type

System Term Type

�→ �x ∶ bool . x bool → bool

System F Λ� . �x ∶ � . � ∀� . � → �

System F! Λ� ∶ * . �h ∶ � . �t ∶ List � . … ∀� ∶ * . � → List � → List �

�Π Identity on n-element vectors (� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

Polymorphic functions: (terms may depend on types)

Type variables, ∀ types

A term Λ binds a type argument to a type variable �

Type variables are untyped

System Term Type

�→ �x ∶ bool . x bool → bool

System F Λ� . �x ∶ � . � ∀� . � → �

System F! Λ� ∶ * . �h ∶ � . �t ∶ List � . … ∀� ∶ * . � → List � → List �

�Π Identity on n-element vectors (� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

Polymorphic types: (types may depend on types)

The type of a type is a kind. * is a simple type, * → * is a type constructor like List.

This is the “cons” function for the polymorphic list type List �

It takes a simple type � , an object of type � , and a list of � ’s, and produces a list of � ’s

System Term Type

�→ �x ∶ bool . x bool → bool

System F Λ� . �x ∶ � . � ∀� . � → �

System F! Λ� ∶ * . �h ∶ � . �t ∶ List � . … ∀� ∶ * . � → List � → List �

�Π Identity on n-element vectors (� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

Types may depend on ordinary terms such as natural numbers

You can de�ne a polymorphic Vec type parameterized by a type � and a natural number
length n

You can de�ne an identity function on such vectors

Aside: Types as Terms: Tuples as Type Lists in Haskell (System F!)
$ ghci
> :set -XTypeOperators -- Infix type constructor syntax
> data Nil = Nil deriving Show -- Empty list
> data tail :. head = tail :. head deriving Show -- List of types (wrong associativity)
> x = Nil :. (5::Int) :. 'a' -- :. as data constructor
> :t x
x :: (Nil :. Int) :. Char -- :. as type constructor: Char, Int "pairs"

> myhd (t :. h) = h -- Head of list
> :t myhd
myhd :: (tail :. head) -> head -- myhd on a "Cons" type returns the type of its head
> mytl (t :. h) = t -- Tail of list
> :t mytl
mytl :: (tail :. head) -> tail -- mytl on a "Cons" type returns the type of its tail
> myhd x
'a'
> mytl x
Nil :. 5
> :t mytl x
mytl x :: Nil :. Int -- Type of Int singletons
> myhd (mytl x)
5 -- WORKS, BUT CAN'T USE LIST MACHINERY

Aside: Types as Terms: Tuples as Type Lists in Haskell (System F!)
$ ghci
> :set -XTypeOperators -- Infix type constructor syntax
> data Nil = Nil deriving Show -- Empty list
> data tail :. head = tail :. head deriving Show -- List of types (wrong associativity)
> x = Nil :. (5::Int) :. 'a' -- :. as data constructor
> :t x
x :: (Nil :. Int) :. Char -- :. as type constructor: Char, Int "pairs"
> myhd (t :. h) = h -- Head of list
> :t myhd
myhd :: (tail :. head) -> head -- myhd on a "Cons" type returns the type of its head
> mytl (t :. h) = t -- Tail of list
> :t mytl
mytl :: (tail :. head) -> tail -- mytl on a "Cons" type returns the type of its tail

> myhd x
'a'
> mytl x
Nil :. 5
> :t mytl x
mytl x :: Nil :. Int -- Type of Int singletons
> myhd (mytl x)
5 -- WORKS, BUT CAN'T USE LIST MACHINERY

Aside: Types as Terms: Tuples as Type Lists in Haskell (System F!)
$ ghci
> :set -XTypeOperators -- Infix type constructor syntax
> data Nil = Nil deriving Show -- Empty list
> data tail :. head = tail :. head deriving Show -- List of types (wrong associativity)
> x = Nil :. (5::Int) :. 'a' -- :. as data constructor
> :t x
x :: (Nil :. Int) :. Char -- :. as type constructor: Char, Int "pairs"
> myhd (t :. h) = h -- Head of list
> :t myhd
myhd :: (tail :. head) -> head -- myhd on a "Cons" type returns the type of its head
> mytl (t :. h) = t -- Tail of list
> :t mytl
mytl :: (tail :. head) -> tail -- mytl on a "Cons" type returns the type of its tail
> myhd x
'a'
> mytl x
Nil :. 5
> :t mytl x
mytl x :: Nil :. Int -- Type of Int singletons
> myhd (mytl x)
5 -- WORKS, BUT CAN'T USE LIST MACHINERY

�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

Another Simply Typed Lambda Calculus

Base types � are, e.g., Bool, Nat

Type annotations on expressions instead of variables in � terms. Not a signi�cant change

Values (normal forms of evaluation): e.g., x, �x . x, x y (�z . z). No redexes allowed

Löh et al. write e :: � for e ∶ � and �x → e for �x . e

�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

�→ Big-Step Evaluation Rules
e ⇓ v

e ∶ � ⇓ v x ⇓ x
e ⇓ �x . v v[x := e′] ⇓ v′

e e′ ⇓ v′
e ⇓ n e′ ⇓ v′

e e′ ⇓ nv′
e ⇓ v

�x . e ⇓ �x . v

Strongly normalizing; normal form always exists; reduce to a value in a single step

“Ignore type annotations” “Stop at variables” “Apply a � value by substituting”

“Applying a neutral term, just reduce argument” “Reduce the body of a �”

(
(�x . x) ∶ (� → �)

)
y ⇓ y

(
(�x . �y . x) ∶ (� → �)→ � → � → �

)
(�z . z) y ⇓ (�z . z)

�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

Contexts
Γ ::= � empty context

Γ, � ∶ * adding a type identi�er
Γ, x ∶ � adding a term identi�er

“*” means “base type”; vacuous for now

Valid Contexts

valid(�)
valid(Γ)

valid(Γ, � ∶ *)
valid(Γ) Γ ⊢ � ∶ *

valid(Γ, x ∶ �)

“The empty context is valid”
“A base type may be in context”
“An identi�er in context has a base type”

�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

�→ Type Rules in Bidirectional Style
Γ(�) = * var1
Γ ⊢ � ∶ *

Γ ⊢ � ∶ * Γ ⊢ �
′
∶ *

fun
Γ ⊢ � → �

′
∶ *

Γ(x) = � var2
Γ ⊢ x ∶

↑
�

Γ ⊢ � ∶ * Γ ⊢ e ∶
↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ ⊢ e ∶
↑
� → �

′
Γ ⊢ e′ ∶

↓
� app

Γ ⊢ e e′ ∶
↑
�
′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
� → �

′

Type checked: “∶
↓
�” “Is this � right?” Type inferred: “∶

↑
�” “Found type is �”

“Context: base type” “Function: base type” “Variable’s type” “Con�rm type annotation”
“Infer result of application” “Inferred type checks out” “Check type of lambda”

�→ Types and Expressions
� ::= � base type

� → � function type
e ::= e ∶ � annotated term

x variable
e e application
�x . e lambda abstraction

�→ Values
v ::= n neutral term

�x . v lambda abstraction

n ::= x variable
n v application

�→ Type Rules in Bidirectional Style
Γ(�) = * var1
Γ ⊢ � ∶ *

Γ ⊢ � ∶ * Γ ⊢ �
′
∶ *

fun
Γ ⊢ � → �

′
∶ *

Γ(x) = � var2
Γ ⊢ x ∶

↑
�

Γ ⊢ � ∶ * Γ ⊢ e ∶
↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ ⊢ e ∶
↑
� → �

′
Γ ⊢ e′ ∶

↓
� app

Γ ⊢ e e′ ∶
↑
�
′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
� → �

′

�, � ∶ *, y ∶ � ⊢
((

(�x . x) ∶ (� → �)
)
y
)
∶ �

�, � ∶ *, y ∶ �, � ∶ * ⊢
((

(�x . �y . x) ∶ (� → �)→ � → � → �
)
(�z . z) y

)
∶ � → �

�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ �)→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

In �Π, everything is an expression, including type “expressions” � and kinds

(x ∶ �)→ �
′ is the type of a function from � to �′

Weirich writes (x ∶ �)→ �
′; Löh et al. write ∀x :: � . �′; Πx ∶ � . �′ is traditional

This is where �Π, the dependently typed lambda calculus, gets its Π

Πx ∶ � . �′ parallels �x . e x is made available to the body �′

�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ �)→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

An example: the type of the identity function on n-element vectors of � ’s

(� ∶ *)→ (n ∶ Nat)→ (v ∶ Vec � n)→ Vec � n

The type variable v isn’t used

�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ �)→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

“Types” � are now just particular values

The kind * is just a particular value

�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ �)→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

Contexts
Γ ::= � empty context

Γ, x ∶ � adding a variable

No distinction between values and
types makes this simple

Valid Contexts

valid(�)
valid(Γ) Γ ⊢ � ∶

↓
*

valid(Γ, x ∶ �)

The “type” of a variable in context must
check as the type of a type

�Π (Dependently Typed) Syntax
e, � ::= e ∶ � annotated term

* the type of types
(x ∶ �)→ � dependent function
x variable
e e application
�x . e lambda abstraction

�Π (Dependently Typed) Values
v, � ::= n neutral term

* the type of types
(x ∶ �)→ � dependent function
�x . v lambda abstraction

n ::= x variable
n v application

�Π Big-Step Evaluation Rules

e ⇓ v
e ∶ � ⇓ v * ⇓ *

� ⇓ � �
′
⇓ �

′

(x ∶ �)→ �
′
⇓ (x ∶ �)→ �

′ x ⇓ x

e ⇓ �x . v v[x := e′] ⇓ v′

e e′ ⇓ v′
e ⇓ n e′ ⇓ v′

e e′ ⇓ nv′
e ⇓ v

�x . e ⇓ �x . v

Type expressions (�) in function type terms are evaluated to types (�); the types remain

e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ �)→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ �)→ �

′

Γ ⊢ e ∶
↑
(x ∶ �)→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

Checking that � is a * now uses “regular” type rules

� is now a type expression, so it is reduced to a type � before checking the type of body e

Type checking now requires executing type expressions

e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ �)→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ �)→ �

′

Γ ⊢ e ∶
↑
(x ∶ �)→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

The single var rule now handles values, types, and kinds

e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ �)→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ �)→ �

′

Γ ⊢ e ∶
↑
(x ∶ �)→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

The kind * is of type *

This simple choice leaves the type system unsound (allows a kind of Russell’s paradox)

Choosing * ∶ *1, *1 ∶ *2, *2 ∶ *3, etc. solves the soundness problem

e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ �)→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ �)→ �

′

Γ ⊢ e ∶
↑
(x ∶ �)→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

This replaces the fun rule in �→, which concluded � → �
′
∶ *

For functions from � to �′, both � and �′ must have kind *

However, � is reduced to type � and passed to �′ through the context (dependency)

e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ �)→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ �)→ �

′

Γ ⊢ e ∶
↑
(x ∶ �)→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

The �→ version checked (�x . e) ∶ � → �
′; this checks an equivalent term

e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ �)→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ �)→ �

′

Γ ⊢ e ∶
↑
(x ∶ �)→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

Instead of � → �
′, we infer (x ∶ �)→ �

′

(x ∶ �)→ �
′ provides the type variable x to � ′ via a substitution

e, � ::= e ∶ � | * | (x ∶ �)→ � | x | e e | �x . e v, � ::= n | * | (x ∶ �)→ � | �x . v n ::= x | n v
Type checked: “∶

↓
�” Type inferred: “∶

↑
�”

�Π Type Rules

Γ ⊢ � ∶
↓
* � ⇓ � Γ ⊢ e ∶

↓
� ann

Γ ⊢ (e ∶ �) ∶
↑
�

Γ(x) = � var
Γ ⊢ x ∶

↑
�

star
Γ ⊢ * ∶

↑
*

Γ ⊢ � ∶
↓
* � ⇓ � Γ, x ∶ � ⊢ �

′
∶
↓
*

pi
Γ ⊢ (x ∶ �)→ �

′
∶
↑
*

Γ, x ∶ � ⊢ e ∶
↓
�
′

lam
Γ ⊢ (�x . e) ∶

↓
(x ∶ �)→ �

′

Γ ⊢ e ∶
↑
(x ∶ �)→ �

′
Γ ⊢ e′ ∶

↓
� �

′
[x := e′] ⇓ � ′′ app

Γ ⊢ e e′ ∶
↑
�
′′

Γ ⊢ e ∶
↑
�

chk
Γ ⊢ e ∶

↓
�

This says “given a type � , we can conclude e has that type if we can infer type � for e”

