
CSEE 4840 Embedded Systems Design Project — Tetris

Zain Merchant (ztm2105)
Malik Hubbard (jmh2329)

Max Parson-Scherban (map2331)
Eva Gupta (eg3207)

Spring 2023



Contents

1) Introduction

2) System Block Diagram

3) Algorithms

3.1) Tetromino Rotation

3.2) Bottom Background Addition

3.3) Block Fall/Move

3.4) Row Clear

3.5) Next Tetromino

4) Audio

5) Hardware Design

5.1) Graphics

5.2) Background

5.3) Block

5.4) Numbers

6) Software Design

6.1) User Input

6.2) Game Logic

7) Hardware and Software Interface

8) Problems Encountered and individual contributions

8.1) Hardware

8.2) Software

8.3) Audio



1 Introduction
Our Embedded Systems Design project is to develop the hardware and software for the classic game of Tetris
on the DE1-SoC FPGA. Tetris is an originally Soviet-developed game where 7 4-block shapes, called
Tetrominoes, fall into a playing field. The player controls the orientation of the Tetriminoes as they fall, through
some mechanism of user input. Once a horizontal row of Tetromino blocks is complete, the line is deleted,
higher blocks fall, and the user obtains a number of points for clearing the row. Upon a specified number of row
clearings, the user ”levels-up”, and the rate of the descending Tetrominoes increases. The game ends when
there is no additional space for a falling Tetromino to appear and descend. Our project will utilize the
DE1-Soc FPGA, a USB NES controller, headphone, and a VGA monitor to recreate this classic game in
SystemVerilog and the C programming language.

2 System Block Diagram
Figure 1 contains our System Block Diagram. It is expanded upon in later sections of this report.

Figure 1: This is the block diagram of our Tetris system. A USB NES controller provides the input to our
software drivers, which are responsible for our overall game logic. The drivers communicate with our VGA

and GPIO logic on the FPGA to drive game output to a display.



3 Algorithms

3.1 Tetromino Rotation
We will use sprites to display each tetromino. A dual-ported memory unit will be utilized
in hardware to save the sprites. Each sprite represents a tetromino and its orientation,
thus for the 7 different tetrominoes each with 4 different orientations, there will be 28
different sprites to save. However, because the square tetromino is the same no matter
how it is oriented and the 4x1 tetromino is the same for two of its states, we will actually
only need to store 24 different sprites. When a falling tetromino is rotated we will simply
change the sprite being shown on the VGA screen. A rotation of the sprite will occur
using checks in software if it is allowed to do so by superimposing the currently rotating
tetromino on a 2d array containing our game board state to match up if the resulting
rotation would be allowed to fit within the confined of your current position and other
tetrominos already placed on the board.

3.2 Bottom Background Addition

Our entire game space, a 10 by 20 block grid, will be represented in software as a two
dimensional table. Each entry in the table is a block in the game space. Each entry will
hold a numeric value that represents the color in that block. Every time the
updateBottom function is called we will scan this array coloring each block in the game
space the appropriate color based upon the array’s value. Each block in the game
space will be numbered from 0 to 255, which will correspond to the index of the 2D
array. When a falling tetromino hits the top of the bottom background, based upon
which sprite is being displayed the 2D array will be updated to color in the appropriate
squares in the games space. The 2D array color values will then be pushed to the VGA
display.

3.3 Block Fall/Move

The falling tetromino will exist independently of the bottom background. Similar to Lab 3,
the center of each falling tetromino will exist in software and be communicated to the
peripheral. Based upon the falling speed, the vertical center of the tetromino will be
incrementing (moving down the screen). Similarly, when the appropriate keycode is
received from the NES controller, the horizontal center of the block will be incremented
or decremented appropriately while ensuring that it stays aligned with the columns of
the game space.

3.4 Row Clear

Clearing rows will take advantage of the software 2D array describing the bottom
background. When a row is completed, it will first flash by updating the colors in the
corresponding blocks in the 2D array. These changes will be pushed to the VGA
display quickly to show the flash. To clear a row, we will update the 2D array then
push the update to the VGA display. The 2D array will be updated as follows for row
clears: the row that is cleared will take all the colors of the row above it and each row
above the cleared row will take the colors of the row above it. This will represent the



blocks falling after a row has been cleared. Every row below the cleared row will
remain unchanged.

3.5 Next Tetromino

The next tetromino will be created using a random number generator. This generator
will develop both the shape of the tetromino and the starting orientation of it. Based
upon this randomly generated number, the next tetromino will be clearly defined.

4 Audio Generator

The DE1-SoC FPGA board is equipped with three audio jacks – a line out, line in, and a microphone
jack. These jacks are linked to a Wolfson WM8731 audio CODEC chip, which generates ADCs and
DACs to interface with analog jacks and the FPGA through a digital connection. To enable effective
communication between Nios II processor and Audio CODEC, an audio core circuit is employed. This
circuit simplifies the process of transmitting and receiving sound samples to and from the LINEOUT/MIC
by incorporating two pairs of FIFOs, each containing 128 entries. These pairs correspond to the left and
right channels and produce stereo sound. The circuit is below:

Figure2: Schematic Diagram

For the sound implementation, the team first downloaded tetris theme song from the internet, then
sampled it at 8KHz through an online converter. Then we convert this file to 16 bit mono PCM.wav as
WM8731 is left justified mode, meaning, the information at the left side is same as the right side of the



channel. Once this was done, the team made sure that the bit rate was 128Kbps. Then convert this .wav
file to a .mif file. But when we were implementing the sound using a .mif file there were some errors so we
decided to convert this .mif file to a .hex to have a proper implementation.

Figure3: Final Qsys Connections



Figure4: audio_pll_0

Figure5: audio_0



Figure6: audio_and_video_config_0



5 Hardware Design

5.1 Graphics

5.2 Background

The background of the game space was maintained in hardware as a 2D array of
characters, with each character communicating the color of that block. Each color
could be blue, white, or red, each with a unique sprite. In a loop, the software would
send a 32-bit integer whose top 20 bits encoded the color of each of the 10 blocks on
that row. Once the data was written to the appropriate register for a certain row, the
the register was demultiplexed to determine what color each block should be. Then,
for each pixel in a particular block rangethe hardware determines which block it is in,
using hcount to determine the block and hcount and vcount to determine where the
sprite pixel lies. The hardware then consults the block CLUT for that pixel and writes
the appropriate value to the screen.



5.3 Block

The falling block is communicated through software using an integer and is saved into
the falling_reg register in hardware. The bottom 8 bits of the falling_reg register are
used to determine 1 of the 25 tetromino sprites by selecting which tetromino sprite
memory data signal is fed into the tetromino CLUT. As the tetromino falls, the falling_h
and falling_v registers are updated. These values are used to determine where the
tetromino is on the screen in hardware and draw the sprite around the tetromino falling
values top-left corner.

5.4 Numbers

Numbers are used to communicate to the player the number of lines they have
cleared. This value is updated by communicated through the background register.
Based upon the value in this register, the sprites for the numbers are updated.

6 Software Design

6.1 User Input

User input is done through a USB NES controller, similar to how it was implemented
in Lab 2. The user can use pointer keys to select tetromino movement in all directions
except up. Multiple characters cannot be input at once on the keys, and they key
selection triggers the game logic functions that determine if a move is possible or not
before acting on it. The A and B keys rotate the block clockwise or counterclockwise if
possible and stop at rotating a specific direction if it cannot pass that rotation state. We
used libusb for interacting with the USB peripheral.

6.2 Game Logic

The software is designed to have two threads, one for the input from the
controller and the other for handling game logic and pushing changes to hardware.
Each loop is one frame of the game, with a fixed delay between each one. The input
keys data gets sent to the screen thread, where its motion is processed. The game
contains an internal ascii representation of what is going on which greatly aided in
debugging. Each move possibility is superimposed on this underlying game state to see
if it is possible before making it. We add in the additional movement for the gravity of the
game. Next we check if we’re in a game over state and handle that accordingly. We
then check for any complete rows and shift down the game board accordingly to tackle



that. Lastly we update with a new tetromino and restart the loop. All of these functions
correspond to the ascii representation and update the screen.

7 Hardware and Software Interface

State of Unmoving Tetrominos

Background Row 0 - Address 0 - 30 bit int that will describe the color (7 possible) of the 10
blocks in row 0 (the bottom row).

Background Row 1 - Address 1 - 30 bit int that will describe the color (7 possible) of the 10
blocks in row 1 (second from the bottom).

...

Background Row 19 - Address 19 - 30 bit int that will describe the color (7 possible) of the
10 blocks in row 19 (the top row).

Background Next - 3 bit int that will select which tetromino sprite will be displayed as next

State of Falling Tetromino

Falling Sprite - Address 22 - 3 bit int that will select the sprite for the falling tetromino.

Falling Vertical - Address 20 - 10 bit int that will set the vertical position for the falling tetromino.

Falling Horizontal - Address 21 - 10 bit int that will set the horizontal position for the falling
tetromino. This is just selecting one of 10 columns.

Falling Ori - Address 28 - 2 bit int that will control the orientation of the falling tetromino. The
default orientation is 00, but when the block is turned, this value will be updated.

State of Score

Current Score - Address 24 - 32 bit int that will communicate the player’s score.

High Score - Address 25 - 32 bit int that will communicate the high score for the Tetris session.

State of Music

Music Enable - Address 27 - 1 bit that will signal for the sound indicated by Music Sound to
be played.

Music Sound - Address 26 - 4 bits that will select which sound to play.

8 Problems Faced and Individual contributions



8.1) Hardware

Max and Malik worked on the hardware part of the project and faced challenges with the falling
terominos (falling_h and falling_v). One other issue they faced was the multiplexing of the sprite during
the implementation.

8.2) Software

Zain was working with the game logic and setting up the software part of this project. And faced some
challenges in software that were faced include the initial representation of the game state in ASCII and
the implementation of the logic of the aforementioned rotation and movement functions. Additionally, we
had some issues with the controller input handling being delayed from when it was actually expected.
Zain also had challenges interacting with the lower level hardware and helped debugging that with Max
and Malik.

8.3) Audio

Eva faced the challenge of setting up Qsys initially as the documentation online was not clear enough.
She then ended up referring to previous year’s projects for setting up Qsys and converting the audio
files. Using Audacity software was not possible as it couldn’t be opened so she used an online
converter to convert .mp3 file to .wav file and then wrote a python script to convert this .wav file to .mif
file. But during the compilation process the .mif file was throwing an error of syntax error. Hence, we
decided to convert the .mif file to .hex file.


