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1. Introduction
Our project is motivated by the research paper titled "Systimator: A Design Space
Exploration Methodology for Systolic Array based CNNs Acceleration on the
FPGA-based Edge Nodes [1]." The paper inspired us to develop a real-time system for
handwriting number recognition using a Systolic Array-Based LeNet-1 Convolutional
Neural Network (CNN) Accelerator on a DE-1 SoC FPGA + HPS (Hard Processor
System). LeNet-1, which is a variant of the LeNet CNN, is a highly effective algorithm for
recognizing patterns in handwritten data. However, its computational demands can be a
challenge when running on traditional computing systems.
To address this, we harness the parallel processing capabilities of the FPGA, alongside
the processing power of the HPS, to significantly reduce processing time. The result is
an efficient and effective system for recognizing handwritten digits. This system has a
wide range of potential real-world applications, including automated data entry,
digitization of handwritten documents, and the creation of interactive educational tools.
Our proposal aims to develop a U-net accelerator that employs a Max Pooling layer to
reduce the input data size, followed by an Upsampling layer that increases the output
size to match that of the input. Despite successful synthesis of the U-net accelerator,
the number of required Programmable Logic Elements exceeded the DE1-SoC's
capacity. To address this, we redesigned the accelerator's architecture by removing the
Upsampling layers and reducing the input data width from 32 to 8 bits, allowing for
successful deployment on the DE1-SoC.
In general, in this project, we first use a camera to capture a real-time image. Then this
image will be processed to a suitable size and sent to the CNN model to handle and do
the recognition. After that, the recognition result will be sent to the 7 segment display
and shown to the user in the FPGA board.

2. LeNet
LeNet-1 is a simple convolutional neural network architecture introduced by Yann
LeCun in 1988. It was designed for the purpose of recognizing hand-written digits and
was one of the earliest applications of convolutional networks, helping pave the way for
the advancements in deep learning.
The LeNet-1 architecture comprises of several layers including convolutional layers,
subsampling (or average pooling) layers, and a fully connected layer at the end, all
designed to reduce the complexity of the input and extract meaningful features.



2.1. LeNet Parameters
The training dataset is MNIST. The input of the data is a 28*28 image of a written
number. We use the tensorflow to train the LeNet model and get the value of weights
and bias. These parameters are finally converted to a 8-bit binary representation.

2.2. LeNet Data Flow
The data flow in LeNet-1 is as follows:

1. Input Layer: The LeNet-1 network receives a 28x28 grayscale image as input.
Each pixel in this image is represented by a numerical value that indicates its
intensity on a grayscale.

2. Convolutional Layer 1: The first layer is a convolutional layer, which uses 6
filters of size 5x5. Each of these filters is applied to the input image, and they
effectively scan the image in a sliding window fashion, identifying various
low-level features like edges, lines, gradients, etc. The result is 6 feature maps,
each of size 24x24. Each feature map is essentially a transformed representation
of the original image, with the filter's specific features highlighted. The
convolution operation introduces local receptive fields, spatial parameter sharing
and translation invariance.

3. Activation Function: After the convolutional layer, an activation function is
applied elementwise. This is usually a non-linear function, which in this case is



the ReLU (Rectified Linear Unit) function. The purpose of the activation function
is to introduce non-linearity into the network, which allows it to learn more
complex patterns.

4. Average Pooling Layer 1: The next layer is an average pooling layer, which
performs a down-sampling operation that reduces the dimensionality of the
feature maps, resulting in size reduction to 12x12. This is done to decrease the
computational complexity for the following layers, and to provide a form of
translation invariance.

5. Convolutional Layer 2: The pooled feature maps are then passed through a
second convolutional layer. This layer has 12 filters, each of size 5x5, and each
filter is applied to all the feature maps from the previous layer. This results in 12
new feature maps of size 8x8. These new feature maps represent more complex
features in the image, identified by combining the lower-level features from the
previous layers.

6. Activation Function: Again, the ReLU activation function is applied to these
feature maps.

7. Average Pooling Layer 2: Another average pooling operation is then applied,
further reducing the dimensionality of the feature maps from 8x8 to 4x4.

8. Fully Connected Layer: The resulting 4x4x12 (192) feature maps are then
flattened into a single vector and passed through a fully connected layer. This
layer is a traditional Multi-Layer Perceptron that uses a softmax activation
function in its output layer to return probabilities. The fully connected layer has 10
neurons, corresponding to the 10 possible classes (0-9) of the digit recognition
problem. Each neuron in this layer outputs the probability that the digit in the
image belongs to its class.

The overall flow of data through the LeNet-1 network thus involves a combination of
convolutional layers, activation functions, pooling layers, and a fully connected layer at
the end, all designed to progressively transform and reduce the complexity of the input
image, while extracting and highlighting the features that are most relevant for the digit
recognition task.

3. Hardware
3.1. Top Level Module
The top module (LeNet) takes in a clock and reset signal and produces an output called
LeNet_Out. The module reads the input and weight values from external DRAM and
uses a layer control block to manage each layer. It assigns the weights and inputs to the
Conv3D module, which is then followed by an accumulation module. Next, it assigns the
weights and inputs to a Full Connected module. Finally, the output is obtained from the
LeNet_Out signal, with the last four digits indicating the identified numbers.

3.2 Conv3D.v



Conv3D module includes multiple blocks designed to handle different tasks such as
address generation, convolution completion, filter indexing, reset control, and an
instantiated PE array to efficiently process the data.
The inputs of this module include a clock and reset signal, input data 'a', a select signal
'S_in' for input data slices, the number of input data channels 'N_ch', five convolutional
inputs 'I10, I11, I12, I13, I14', and thirty convolutional weight inputs. The outputs include
five control signals 'Ai0-Ai4' used for selection and address generation and six output
values 'P01-P06' used for activation and pooling.
The core of this convolution layer is a PE array comprising five rows and six columns.
Each filter of the PE array shares the same input 'I10, I11, I12, I13, I14' but has different
weight inputs, which generates a convolutional output signal. Ultimately, the module
produces six output values for activation and pooling.
The figure below shows the structure of convolution layer.



3.2.1 PE and PE_array Module
PE array module is one of the key submodules of the Conv3D module. The PE module
takes in four input signals: `rst`, `clk`, `W`, and `Ii`. The `rst` signal is used to reset the
module, `clk` is the clock signal, `W` is the weight value, and `Ii` is the input value. The
module also has two output signals: `Po` and `Io`. `Po` represents the product of `W`
and `Ii` added to a previous value `Pi`, and `Io` represents the input value `Ii`. It
performs multiplication between the input data and weights, adds the result to the
previous output, and produces the output sum and output data. The calculations occur
on the positive edge of the clock signal when the reset signal is inactive.
The `always` block in the module is triggered on the rising edge of the clock signal.
When the reset signal is asserted, the output `Io` is set to the input `Ii`, and `Po` is set to
the sum of the input `Pi` and the product `P` calculated in the multiplication block.
This process is repeated multiple times to process all the rows of the PE. Once the
partial sums through each column of the PE array are available at the output of its last
row, they are fed into the accumulation block.
The figure below shows the structure of PE module.

3.3 Fully Connected (FC) Module
The input ports of FC module include the clock signal, reset signal, weight matrices, and
the input image. The output ports include the output matrices and the output digit value.
There are 10 Po signals, which are the output signals from each of the 10 MACC
(Multiply-Accumulate) modules. These signals are then input to the softmax module to
calculate the probability of each digit. There are 10 MACC modules in total, each with its
own weight matrix, input, and output signals. The FC module also includes several
control signals and registers to manage the operation of the MACC and softmax
modules. The Fi and FCi signals are used to control the column and row index of the



weight and input matrices, respectively. Finally, the output digit value is calculated using
the 10 Ps signals, which represent the probability of each digit. The value of LeNet_Out
is set to -1 if the finish signal is not high, indicating that the computation is not yet
complete.
The figure below shows the structure of Fully Connected layer.

3.3.2 Softmax Module
Softmax module is the most significant submodule of The FC Module. It takes in 10
input values `A0` to `A9`. These input values are compared with each other to find the
maximum value, which is then used to calculate the output signals `O0` to `O9`.
The parameter M determines the width of the input values. There are 9 `max2`
sub-modules, each of which compares two inputs and outputs the maximum value. The
outputs of these `max2` sub-modules are then used as inputs to other `max2`
sub-modules in order to calculate the maximum value of all 10 input values. The output
of the last `max2` sub-module is compared with each of the 10 input values, and the
output signals `O0` to `O9` are set to 1 if the corresponding input value is equal to the
maximum value, and 0 otherwise.
The figure below shows the structure of Softmax layer.



3.4 Simulation Results
The simulation results presented below demonstrate LeNet's ability to recognize
different input images. We tested the model's performance by feeding it with input
images of numbers ranging from 0 to 9 and monitored the output signal LeNet_Out. Our
results indicate that LeNet was able to correctly recognize numbers 0, 1, 2, 3, 4, 6, 7,
and 9. However, it misclassified number 5 as 3 and number 8 as 1, resulting in an
accuracy rate of approximately 80%.





Moreover, all the aforementioned components have been subjected to rigorous
simulation testing. The simulation outcomes of crucial elements such as the convolution
layer and the fully connected layer demonstrate their functionality and are provided in
the subsequent sections.

Simulation result for conv3D layer



Simulation result for fully connected layer

3.5 Camera 2 VGA module
We use a D8M(ov8865) camera to capture real-time image, the D8M provides the
Camera Module with high speed MIPI interface, which contributes to the simple 10Bit
Parallel Bayer Data solution after the MIPI Decoder conversation. There are also lot of
functions like auto-focus, zoom in and out provided by Terasic(http://www.terasic.com)
3.5.1 Camera module

The diagram illustrates the clock tree for the D8M board. The MIPI Decoder Phase
Locked Loop (PLL) accepts the FPGA Reference Clock (MIPI_REFCLK) and sends a
clock signal to the camera sensor (MCLK). Concurrently, the MIPI Decoder PLL also
generates a parallel port clock (MIPI_PIXEL_CLK) that is sent back to the FPGA for
managing parallel data operations.

3.5.2 Overview of diagram(Top level)

http://www.terasic.com


The figure below shows the block diagram from D8M camera to VGA monitor:

The captured D8M data will be first written into SDRAM. When the frame buffer is filled,
SDRAM_control module will read out the data from SDRAM to RAW2RGB module, the
RAW2RGB module as it is named will convert RAW data to RGB data. VGA_controller
will generate the signal timing to allow the output from the former module to display on
the VGA monitor.

3.5.3 Modules
MIPI_BRIDGE_CAMERA_Config: The D8M I2C setting controller, which is employed
to configure the D8M to deliver output at a resolution of 640x480 pixels with a refresh
rate of 60Hz. This operation primarily involves writing corresponding I2C parameters
into the registers of the D8M MIPI decoder IC and the Camera Sensor IC, utilizing their
individual I2C buses.
The MIPI_I2C bus is utilized to transmit data to the MIPI decoder IC, which has an I2C
slave address of 0x1c. Similarly, the CAMERA_I2C bus is used for communication with
the Camera Sensor, which has an I2C slave address of 0x6c.
SDRAM_control: This module can  general external SDRAM Memory and read/write
image data. We create two write and read FIFOs, after finishing writing a frame,
sdram_control will read out data from SDRAM to the next module. This part is quite
significant but also complicated, we have references from the demo provided by Terasic
and write emails to get technical support from support@terasic.com.
RAW2RGB：This module is responsible for converting raw sensor data into an RGB
format. Sensors often output data in a format known as a Bayer pattern, which is a grid
of pixels where each pixel only captures one color component: red, green, or blue.
The RAW2RGB module would interpolate the missing color components for each pixel,
resulting in an image where each pixel has red, green, and blue components.

mailto:support@terasic.com


VGA_Controler: This module is a VGA signal timing generator. It is specifically
designed to generate a signal timing pattern suitable for a 640x480 resolution display
operating at a refresh rate of 60Hz.
The VGA signal timing involves specific timing parameters to ensure proper display
functioning. These parameters include horizontal sync, vertical sync, front porch, back
porch, and display area for both horizontal and vertical directions.
FpsMonitor: This module is designed to tally the pulses from the D8M MIPI_PIXEL_VS
signal over a one-second interval, representing the frames per second (fps) count. It
then transforms this tally into a decimal number, which is subsequently displayed on a
pair of seven-segment LEDs.

3.5.4 Results

We successfully accomplished the functionality of real-time camera capture and VGA
monitor display. Hex[0] and Hex[1] show the frame rate of our frame steaming, there’s a
‘60’ shown on fpga since we set that in the SDRAM module and could fluctuate a bit
due to jitter. Press key[0] can send reset signal that sleep the camera and monitor for a
sec. LED[0] and LED[1] light up imply that camera_config and MIPI_bridge function
well.

3.6 Data Transfer



Directory memory access (DMA) is a feature of computer system which allows data to
be transferred between device. We use the DMA to transfer data from HPS to FPGA.
The AXI slave on the HPS is able to access the HPS address space and retrieve the
image data. For the DMA controller part, the read-master port is connected to the
AXI-slave and the write-master port is connected to the on-chip memory block. The
h2f_lw_axi_master in hps block is connected to the control port in the DMA block to set
up the DMA transfer.
In the software part, a memory mapping (mmap) is first created, establishing a virtual
memory address range for the HW_REGS spanning a specific size HW_REGS_SPAN.
`void *virtual_base = mmap( NULL, HW_REGS_SPAN, ( PROT_READ | PROT_WRITE
), MAP_SHARED, fd, HW_REGS_BASE );`The memory region is set to be both read
and write. Then the lw_dma_addr is set to the calculated address by adding the offset
ALT_LWFPGASLVS_OFST and the DMA_0_BASE value to the virtual_base address.
`void *virtual_base = mmap( NULL, HW_REGS_SPAN, ( PROT_READ | PROT_WRITE
), MAP_SHARED, fd, HW_REGS_BASE );` The ALT_LWFPGASLVS_OFST is set as
the 0xff200000 based on the document for the Cyclone V HPS Register Address Map.
The DMA_0_BASE is accessed in hps_0.h file, which is generated through run the
command `sopc-create-header-files "soc_system.sopcinfo" --single hps_0.h --module
hps_0`.
Then the status, read, write, length, and control registers of DMA are configured to the
corresponding value to prepare for the transfer. For example, for the DMA read address,
we do `#define _DMA_REG_READ_ADDR(BASE_ADDR) *((uint32_t
*)BASE_ADDR+1)` and`_DMA_REG_READ_ADDR(lw_dma_addr) = physical_addr; `.



After all image data is successfully write to the on-chip memory, we set the start_read
signal to 1. ` void *start_read = virtual_base+((unsigned
long)(ALT_LWFPGASLVS_OFST +IMAGE_READ_START_BASE)&( unsigned
long)(HW_REGS_MASK));*((uint32_t *)start_read) = 1;`.

4. 7 Segment display the result:
4.1. Implementation of a 7-Segment Block in Quartus Platform Designer for an
Electrical Engineering Project
In this section, we will discuss the steps taken to implement a 7-segment block in
Quartus Platform Designer for an electrical engineering project. The goal of this project
was to create a functional 7-segment display using FPGA technology.
4.2. Component Creation
The first step in the implementation process was to create a component in Quartus
Platform Designer to represent the 7-segment block. And the block signals and
interfaces are shown in figure 1. Once the component was created, a related TCL file
was generated.



Fig1: The signals and interfaces of the 7-segment block.
4.3. Block Connection
After creating the component, it was added to the system contents and connected with
the clock and hps. Specifically, the avalon_slave was connected with h2f_axi_master in
hps0, clock_sink was connected with clk in clk_0, and clock_sink_reset was connected
with clk_reset in clk_0. After successful connection, the system contents looked like
figure 2.

Fig2: QSys System Components and Connections of 7 segment block

4.4. Top SV File Assignment and Definition
According to this project’s requirement, it only need to display a hexadecimal number in
one of the 7 segment displays. So HEX0 has been chosen. Thus, the other 7 segment
displays’ default active has been set as 0 ( which will not display any light) by using the
code below:

soc_system soc_system0(
.seg7_if_conduit_end_export ({ HEX1,HEX2,HEX3,HEX4,HEX5}),

)
Then, read the result from LeNet using the code below:

LeNet LeNet_1 (.clk(CLOCK_50), .rst(rst), .LeNet_Out(LeNet_Out1));



Next, using these code to send the last 4 bits of LeNet as the input to the model
hex7seg:

hex7seg h1(.a(LeNet_Out1[3:0]), .y(HEX0));
The last 4 bits of LeNet_Out stored the binary type of final result needed to be output.
The code of model hex7seg is shown below. In this model, the binary type input will be
translated to the related array represents the array that can display the result in
hexadecimal type on FPGA board.

case(a)
4'b0000: y = 7'h40;
4'b0001: y = 7'h79;
4'b0010: y = 7'h24;
4'b0011: y = 7'h30;
4'b0100: y = 7'h19;
4'b0101: y = 7'h12;
4'b0110: y = 7'h02;
4'b0111: y = 7'h78;
4'b1000: y = 7'h00;
4'b1001: y = 7'h10;
default: y = 7'd00;

endcase
To give more details about how to define these output numbers, here will introduce the
principle of the DE1-SoC 7 segment displays. The example of how 7 segments consists
of a “HEX” is shown in figure3 below. Each segment is linked to an individual pin. These
segment signals have active-low behavior, meaning that a "0" activates them. The
rightmost bit (bit 0) in each 7-bit segment vector corresponds to the "a" segment, bit 1
corresponds to the "b" segment, and so on, with the leftmost bit (bit 6) controlling the "g"
segment.

Fig 3: a hex module in DE1-SoC board consists of 7 segments.



Since the result could only be an integer from 0 to 9, the SV was written in 9 cases.
Depending on the input binary numbers, the corresponding case was used to give the
hexadecimal values for HEX0. This generated the correct result in the FPGA 7-segment
screen.
4.5. The result:
By implement these in real FPGA board, its output is shown as below:

Fig 4: The FPGA hex output example.

4.6. Future improvement on the 7 segment display
Based on the 4.2 and 4.3, the hardware (HPS-FPGA) architecture has already been
connected in the qsys file. In the future work, the controlling of the 7 segment display
can be implemented in the C program(software part). It can be done by using a related
bridge to map the SEG7_IF block’s port.Then create a thread and write the related
function so that the content of the src address can be copied to dest and then put in
use. Also, it modularizes the 7 segment part, so that it is easier for future work if it is
needed to be wired up with any other part of the FPGA i.e. memory, dma and so on.
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