Memory in SystemVerilog

Prof. Stephen A. Edwards

Columbia University

Spring 2023
Implementing Memory
Memory = Storage Element Array + Addressing

Bits are expensive
They should be dumb, cheap, small, and tightly packed

Bits are numerous
Can’t just connect a long wire to each one
Williams Tube

CRT-based random access memory, 1946.
Used on the Manchester Mark I. 2048 bits.
Mercury acoustic delay line

Used in the EDASC, 1947.

32×17 bits
Selectron Tube

RCA, 1948.

2×128 bits

Four-dimensional addressing

A four-input AND gate at each bit for selection
Magnetic Core

IBM, 1952.
Magnetic Drum Memory

1950s & 60s. Secondary storage.
Modern Memory Choices

<table>
<thead>
<tr>
<th>Family</th>
<th>Programmed</th>
<th>Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask ROM</td>
<td>at fabrication</td>
<td>∞</td>
</tr>
<tr>
<td>PROM</td>
<td>once</td>
<td>∞</td>
</tr>
<tr>
<td>EPROM</td>
<td>1000s, UV erase</td>
<td>10 years</td>
</tr>
<tr>
<td>FLASH</td>
<td>1000s, block erase</td>
<td>10 years</td>
</tr>
<tr>
<td>EEPROM</td>
<td>1000s, byte erase</td>
<td>10 years</td>
</tr>
<tr>
<td>NVRAM</td>
<td>∞</td>
<td>5 years</td>
</tr>
<tr>
<td>SRAM</td>
<td>∞</td>
<td>while powered</td>
</tr>
<tr>
<td>DRAM</td>
<td>∞</td>
<td>64 ms</td>
</tr>
</tbody>
</table>
Implementing ROMs

Z: “not connected”

Add. Data

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>011</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>010</td>
<td></td>
</tr>
</tbody>
</table>

2-to-4 Decoder

Wordline 0
- 0
- 1
- 2
- 3

Bitline 2
- 0
- 1
- 2
- 3

Bitline 1
- 0
- 1
- 2
- 3

Bitline 0
- 0
- 1
- 2
- 3
Implementing ROMs

Z: “not connected”

Add. Data

<table>
<thead>
<tr>
<th></th>
<th>D0</th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Implementing ROMs

<table>
<thead>
<tr>
<th>Add. Data</th>
<th>00</th>
<th>011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>010</td>
</tr>
</tbody>
</table>

Z: “not connected”
Implementing ROMs

Add. Data

<table>
<thead>
<tr>
<th>00</th>
<th>011</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>110</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>010</td>
</tr>
</tbody>
</table>

Z: “not connected”
A Floating Gate MOSFET

Cross section of a NOR FLASH transistor. Kawai et al., ISSCC 2008 (Renesas)
Floating Gate n-channel MOSFET

Floating gate uncharged; Control gate at 0V: Off
Floating Gate n-channel MOSFET

Floating gate uncharged; Control gate positive: On
Floating Gate n-channel MOSFET

Floating gate negative; Control gate at 0V: Off
Floating Gate n-channel MOSFET

Floating gate negative; Control gate positive: Off
EPROMs and FLASH use Floating-Gate MOSFETs
Static Random-Access Memory Cell

![Diagram of a static random-access memory cell showing bit lines and a word line. The diagram includes capacitors and transistors connected in a specific configuration.]
Layout of a 6T SRAM Cell

Weste and Harris. *Introduction to CMOS VLSI Design*. Addison-Wesley, 2010.
Intel’s 2102 SRAM, 1024×1 bit, 1972
2102 Block Diagram
Toshiba TC55V16256J 256K × 16

A17
A16
A2
A1 256K × 16 : SRAM
A0
UB
LB
WE
OE
CE

[Diagram of the Toshiba TC55V16256J 256K × 16 SRAM chip with labeled pins and connections]
Dynamic RAM Cell
Ancient (c. 1982) DRAM: 4164 64K × 1
Basic DRAM read and write cycles

- **RAS**
- **CAS**
- **Addr**
- **WE**
- **Din**
- **Dout**

- Row
- Col
- Row
- Col
- to write
- read
Page Mode DRAM read cycle
SDRAM: Control Signals

<table>
<thead>
<tr>
<th>RAS</th>
<th>CAS</th>
<th>WE</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>NOP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Load mode register</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Active (select row)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Read (select column, start burst)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Write (select column, start burst)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Terminate Burst</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Precharge (deselect row)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Auto Refresh</td>
</tr>
</tbody>
</table>

Mode register: selects 1/2/4/8-word bursts, CAS latency, burst on write
SDRAM: Timing with 2-word bursts
Using Memory in SystemVerilog
Synchronous SRAM

- Clock
- Address A0
- Data In
- Write
- Data Out D0

Diagram:

- Memory
- Address A0
- Data In
- Write
- Clock
- Data Out D0

Read A0
Synchronous SRAM

Clock

Address

Data In

Write

Data Out

Memory

A0

A1

D1

D0

Write A1

old D1
Synchronous SRAM

Clock
Address A0 A1 A1
Data In D1 D1
Write
Data Out D0 old D1 D1

Read A1
Memory: A Fundamental Bottleneck

Plenty of bits, but
You can only see a small window each clock cycle
Using memory = scheduling memory accesses
Software hides this from you: sequential programs naturally schedule accesses
In hardware, you must schedule memory accesses
module memory(
 input logic clk ,
 input logic write ,
 input logic [3:0] address ,
 input logic [7:0] data_in ,
 output logic [7:0] data_out);

logic [7:0] mem [15:0];

always_ff @(posedge clk)
begin
 if (write)
 mem[address] <= data_in;
 data_out <= mem[address];
end
endmodule
M10K Blocks in the Cyclone V

- 10 kilobits per block
- Dual ported: two addresses, write enable signals
- Data busses can be 1–20 bits wide
- Our Cyclone 5CSEMA5 has 397 = 496 KB
Memory in Quartus: the Megafuction Wizard

Which megafuction would you like to customize?
Select a megafuction from the list below

- DSP
- Gates
- I/O
- Interfaces
- JTAG-accessible Extensions
- Memory Compiler
 - ALTOTP
 - ALTUFM_I2C
 - ALTUFM_NONE
 - ALTUFM_PARALLEL
 - ALTUFM_SPI
 - FIFO
 - LPM_SHIFTREG
 - RAM initializer
 - RAM: 1-PORT
 - RAM: 2-PORT
 - ROM: 1-PORT
 - ROM: 2-PORT
 - Shift register (RAM-based)
- PLL

Which device family will you be using?
Cyclone V

Which type of output file do you want to create?
- AHDL
- VHDL
- Verilog HDL

What name do you want for the output file?
/home/sedwards/svn/classes/2014/4840/dummy/memory

Output files will be generated using the classic file structure.

Return to this page for another create operation.

Note: To compile a project successfully in the Quartus II software, your design files must be in the project directory, in a library specified in the Libraries page of the Options dialog box (Tools menu), or a library specified in the Libraries page of the Settings dialog box (Assignments menu).

Your current user library directories are:
Memory: Single- or Dual-Ported
Memory: Select Port Widths

RAM: 2-PORT

- How many bits of memory?
 - 8192

- Use different data widths on different ports

- Read/Write Ports
 - How wide should the 'q_a' output bus be?
 - 1
 - How wide should the 'data_a' input bus be?
 - 1
 - How wide should the 'q_b' output bus be?
 - 16

- Note: You could enter arbitrary values for width and depth

- What should the memory block type be?
 - M10K
 - Auto
 - MLAB
 - M144K
 - LCs

- Set the maximum block depth to Auto words

Block Type: M10K
Memory: One or Two Clocks
Memory: Output Ports Need Not Be Registered
This generates the following SystemVerilog module:

```verilog
module memory ( // Port A:
    input logic [12:0] address_a, // 8192 1-bit words
    input logic clock_a,
    input logic [0:0] data_a,
    input logic wren_a, // Write enable
    output logic [0:0] q_a,
    // Port B:
    input logic [8:0] address_b, // 512 16-bit words
    input logic clock_b,
    input logic [15:0] data_b,
    input logic wren_b, // Write enable
    output logic [15:0] q_b);
```

Instantiate like any module; Quartus treats specially
Two Ways to Ask for Memory

1. Use the Megafunction Wizard
 + Warns you in advance about resource usage
 − Awkward to change

2. Let Quartus infer memory from your code
 + Better integrated with your code
 − Easy to inadvertently ask for garbage
module twoport(
 input logic clk,
 input logic [8:0] aa, ab,
 input logic [19:0] da, db,
 input logic wa, wb,
 output logic [19:0] qa, qb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
 if (wa) mem[aa] <= da;
 qa <= mem[aa];
 if (wb) mem[ab] <= db;
 qb <= mem[ab];
end
endmodule
module twoport2(
 input logic clk,
 input logic [8:0] aa, ab,
 input logic [19:0] da, db,
 input logic wa, wb,
 output logic [19:0] qa, qb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
 if (wa) mem[aa] <= da;
 qa <= mem[aa];
end

always_ff @(posedge clk) begin
 if (wb) mem[ab] <= db;
 qb <= mem[ab];
end
endmodule

Failure

Still didn’t work:

RAM logic “mem” is uninferred due to unsupported read-during-write behavior
The Perils of Memory Inference

module twoport3(
 input logic clk,
 input logic [8:0] aa, ab,
 input logic [19:0] da, db,
 input logic wa, wb,
 output logic [19:0] qa, qb);
logic [19:0] mem [511:0];
always_ff @(posedge clk) begin
 if (wa) begin
 mem[aa] <= da;
 qa <= da;
 end else qa <= mem[aa];
end
always_ff @(posedge clk) begin
 if (wb) begin
 mem[ab] <= db;
 qb <= db;
 end else qb <= mem[ab];
end
endmodule

Finally!
Took this structure from a template:
Edit→Insert Template→Verilog HDL→Full Designs→RAMs and ROMs→True Dual-Port RAM (single clock)
The Perils of Memory Inference

Also works: separate read and write addresses

Conclusion:
Inference is fine for single port or one read and one write port.
Use the Megafunction Wizard for anything else.