Parallel Branch-and-Cut Integer Program Solver

Weixi Zhuo (wz2603)
(ParBnC)
Columbia University
(Dated: 21 December 2022)

I. OVERVIEW

This project aims to implement a parallel Haskell program that solves general integer linear programs (ILP) using the branch-and-cut algorithm. We shall implement both sequential and parallel versions and compare their run-time performances. The source project can be found on my github.

II. INTRODUCTION

A. Background

It is known that general integer linear programming problems (ILP) are NP-hard. A maximization ILP without mixing constraints can be formulated in the following mathematical notations.

\[
\begin{align*}
\text{max} & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \geq 0, x_i \in \mathbb{Z}, \forall i \\
& \quad b \geq 0
\end{align*}
\]

where \(A \) and \(b \) describe the linear constraints on variable vector \(x \) and \(c \) represents the cost/reward on each variable. To obtain heuristic-based integral solutions of an ILP, branch-and-bound search algorithm was developed. This can already benefit from parallelism as different branches can be processed separately. To make branch-and-bound more efficient, branch-and-cut algorithm introduces a better method to fathom subproblems by including Gomory’s cut constraints. This is also the standard way to solve mixed-integer programs (MIP) in most solvers, which is how GLPK solves ILP in particular.

B. Linear-Relaxed Problems

One of the most repeated tasks in this project is the process of solving linear subprogram by relaxing the integral constraints on the original ILP. This is not well supported in Haskell as there is no available module that can solve linear programs without calling an external solver. Moreover, external solver usually only provides solution and optimal value without a crucial intermediate simplex tableau, which is the source of cutting plane computations. We implement a two-phase simplex LP solver in native Haskell for this project to enable the branch-and-cut algorithm.
C. Branch-and-Cut Algorithm

The branch-and-cut algorithm is a hybrid method between branch-and-bound and cutting-plane methods. In a typical branch-and-bound algorithm, binary branching constraints are added to the relaxed linear program to force the simplex solver to consider integral solutions. Such a branching process terminates when the solution is entirely integral, thus, resulting in a leaf node. Overall, a branch-and-bound algorithm is a binary tree model. The general branch-and-bound algorithm is shown in figure 1a along with a search tree example in figure 1b. On the other hand, the cut that we are interested in is Gomory’s cut, which is adding a cutting plane constraint on the non-integral solution so that the linear program does not lose feasible integral points while reducing the feasible region to make the process converge. Individually, both approaches deteriorate quickly as the dimension of the program grows, number of variables and number of constraints. Branch-and-bound potentially can yield \(O(2^N)\) nodes where \(N\) is the number of variables and Gomory’s cut can lead to numerical errors when applied repetitively. For our project, the branch-and-cut algorithm performs Gomory’s cut to reduce the feasible region and branch on an non-integral variable to create a branch-and-bound tree. The algorithm is described in Algorithm:1
Algorithm 1 Construct Branch-and-Cut Tree

1: function BnC(A, b, c) ▷ some integral threshold ϵ
2: $(x, T, v) \leftarrow$ simplex(A, b, c) ▷ generate solution, a tableau, and objective value
3: if inIntegral(x) then
4: return Node($(x, v), Nil, Nil)$
5: else
6: $T' \leftarrow$ addGomoryCut(T)
7: $(A_l, b_l, c_l), (A_r, b_r, c_r) \leftarrow$ getBranches(T')
8: return Node($(x, v), BnC(A_l, b_l, c_l), BnC(A_r, b_r, c_r))$
9: end if
10: end function

III. SEQUENTIAL IMPLEMENTATION

A. Two-Phase Simplex Algorithm

The most naive simplex method is fact quite easy to implement with the assumption that $b \geq 0$. However, a single-phase simplex method will fail if we have mixed constraints with some $b_j < 0$. As we were implementing the solver, it is inevitable to have such scenario since for each branching process, we need to include $x_i \leq \lfloor x_i^* \rfloor$ and $x_i \leq \lceil x_i^* \rceil$ as branching constraints to the left and right branches respectively, where x^* is the current non-integral solution. Two-phase simplex algorithm is quite robust in this context. The first phase manipulate the simplex tableau such that it only has non-negative bounds b and check for potential program infeasibility to fathom the branch early, this is primarily handled by updateMixedTab.

1 %-- update tableau till ready for naive simplex
2 updateMixedTab :: LA.Matrix R -> Int -> LA.Matrix R
3 updateMixedTab tab counter
4 | not \not isImprovableMixed tab = tab
5 | counter == 0 = LA.fromLists [[]]
6 | otherwise = updateMixedTab newTab (counter - 1) where
7 pivotPos = getPivotPositionMixed tab
8 newTab = pivotStep tab pivotPos

If feasible, we proceed to phase two by applying a naive simplex algorithm handled by updateTab. For the purpose of this project, we assume ObjectiveType to be Maximization by default but it can be easily changed by maximizing the negative cost in case of a minimization problem.

1 %-- update tableau till a solution found
2 updateTab :: ObjectiveType -> LA.Matrix R -> Int -> LA.Matrix R
3 updateTab obj tab counter
4 | not \not isImprovable obj tab = tab
5 | counter == 0 = LA.fromLists [[]]
6 | otherwise = updateTab obj newTab (counter - 1) where
7 pivotPos = getPivotPosition obj tab
Furthermore, we store simplex tableau in hmatrix’s matrices and solutions in vectors.

B. Gomory’s Cut

For a given simplex tableau, we select a non-integral variable’s corresponding pivot row. Then, construct an additional constraint following Gomory’s cut approach. Our implementation follows the procedure shown by Dr. Shokoufeh Mirzaei. It is implemented by the following function.

```haskell
getGomoryCut :: Vector R -> Vector R
getGomoryCut rowVec = gomoryCons where
    [varPart, constPart] = takesV [LA.size rowVec - 1, 1] rowVec
    posDec num = -posFrac where
        (intPart, fracPart) = properFraction num
        posFrac = if fracPart >= 0.0 then fracPart else 1.0 + fracPart
    gomoryCons = vjoin [cmap posDec varPart, vector [1::R], cmap posDec constPart]
```

C. Branch-and-Cut Algorithm

We construct the branch-and-cut tree and fathom infeasible branches following the same logic in Algorithm:1. In particular, maxDepth controls the depths of the tree to construct. For low-dimension problem with less than 10 variables, we can set it to the same number of variables. But for high-dimensions, the performance still deteriorates and it might be preferable to set a reasonable depth and obtain a candidate solution instead of the global optimal solution.

```haskell
constructBranchAndCut :: ObjectiveType -> Matrix R -> Vector Bool -> Vector R
    -> Int -> Tree BranchProblem
constructBranchAndCut obj tab intMask costVec maxDepth
    | maxDepth == 0 = Nil
    | infeasible = Nil
    | and $ integerSolved intList solMask = currProb Nil Nil
    | otherwise = currProb leftTree rightTree where
        (y, currSol, newTab) = simplexWithMixedTab obj tab
        infeasible = y == (-infinity)
        candVal = costVec <.> LA.subVector 0 (LA.size costVec) currSol
        currProb = Node BranchProblem { solution = currSol, value = candVal }
        intList = LA.toList intMask
        solMask = map (isInt . roundSolution) $ LA.toList currSol
```
nextIdx = findNonIntIndex intList solMask

cutTab = addGomoryCut tab $ getGomoryCut $ newTab ! nextIdx

(leftTab, rightTab) = getBranches cutTab currSol nextIdx

leftTree = constructBranchAndCut obj leftTab intMask costVec (maxDepth - 1)

rightTree = constructBranchAndCut obj rightTab intMask costVec (maxDepth - 1)

D. Tree Solution Search

After the tree is constructed, we traverse the tree to prune and search for final optimal solution.

We perform testing on various ILPs with different dimensions. It is apparent that the performance varies potentially among different problems even if they are of comparable sizes. We obtain two hard ILP questions from the MIPLIB 2017 benchmark, one naive demonstration problem, and one medium-size problem. As we can see from Figure:2

IV. PARALLEL IMPLEMENTATION

Unfortunately, the two-phase simplex method cannot be easily parallelized as the tableau is updated sequentially and dependent on the previous iteration. Thus, we want to parallelize the algorithm at each node level. However, as we have seen in class, creating a spark at every single node might not be desirable. We include an additional parDepth parameter to control the number of sparks to create while handling these smaller branches sequentially.
The most important part is to write `NFData` for the local data structures and apply `rparWith` strategies to each fully evaluated sub-tree to speed up until we reach the `parDepth` level to finish the program sequentially on those sub-trees. As we can observe in the Figure:3, each processor has relatively balanced workload for the majority of the run, which shows signs of successful speed-ups. Even though threadscope shows promising signs of speed-up, the speed-ups are material with 2 or 3 cores. One potential source of problem was the increasing size of memory needed to store large simplex tableau since the dimension of the tableau grows as the algorithm branches, which leads more work spent on garbage collection. We have also tried tuning the `parDepth` to obtain optimal run time for a given number of cores. For this particular problem, depth of 8 is optimal in Figure:4. Additionally, to tackle the memory allocation problem, we have also tried adding `-A256M` when compiling, which led to less garbage collections but the performance improvements seemed non-material.
FIG. 3: gen-ip054.mps from MIPLIB 2017 benchmark7 with 30 variables and 24 constraints, \texttt{maxDepth} = 20 and \texttt{parDepth} = 8

FIG. 4: gen-ip054.mps from MIPLIB 2017 benchmark7 with 30 variables and 24 constraints, \texttt{maxDepth} = 20 and 4 cores
V. CONCLUSION

By simply applying one layer of parallelism we can speed up a traditionally computationally intensive branch-and-cut algorithm. Moreover, we have built a library to solve linear sub-problems in native Haskell, which can be extended to develop other heuristics on speeding up the integer solving program algorithmically.

REFERENCES

2. Weixi Zhuo’s github: https://github.com/WeixiSilhouetteZed/ParBnC.
6. S. Mirzaei, “How to solve an integer programming problem using cutting-plane method,”.

APPENDIX A: USAGE

In fact, our implementation does provide both branch-and-bound and branch-and-cut solvers. There are 4 test cases stored in JSON format. To execute these test cases, please use the following commands.

a. Sequential Branch-and-Bound with tree output

 stack exec ParBnC-exe <json_filename> <maxDepth> seq b tree

b. Sequential Branch-and-Bound with only solution

 stack exec ParBnC-exe <json_filename> <maxDepth> seq b solution

c. Sequential Branch-and-Cut with tree output

 stack exec ParBnC-exe <json_filename> <maxDepth> seq c tree
d. **Sequential Branch-and-Cut with only solution**

 stack exec ParBnC-exe <json_filename> <maxDepth> seq c solution

e. **Parallel Branch-and-Bound with tree output**

 stack exec ParBnC-exe <json_filename> <maxDepth> par b tree

f. **Parallel Branch-and-Bound with only solution**

 stack exec ParBnC-exe <json_filename> <maxDepth> par b solution

g. **Parallel Branch-and-Cut with tree output**

 stack exec ParBnC-exe <json_filename> <maxDepth> par c tree

h. **Parallel Branch-and-Cut with only solution**

 stack exec ParBnC-exe <json_filename> <maxDepth> par c solution

APPENDIX B: SOURCE CODE

A. app/Main.hs

```haskell
1 %
2 {-# LANGUAGE DeriveGeneric #-}
3 module Main (main) where
4
5 import ParBnC ( ObjectiveType (Maximization, Minimization),
6   BranchProblem, toTableau,
7   addSlackMatrix, constructBranchAndBound,
8   constructParBranchAndBound, constructBranchAndCut,
9   constructParBranchAndCut, searchBBTreeMax)
10 import Data.Aeson ( (.:), object,
11   FromJSON(parseJSON),
12   Value(Object),
13   KeyValue((.=)),
14   toJSON, eitherDecode
```
import Data.Text (Text)
import qualified Data.ByteString.Lazy as B
import GHC.Generics
import System.Exit (die)
import System.Environment (getArgs, getProgName)
import Numeric.LinearAlgebra as LA
 (fromLists, fromList, Matrix, R, Vector, size)

data IP = IP {
 name :: !Text,
 costC :: [Double],
 matA :: [[Double]],
 boundB :: [Double]
} deriving (Show, Generic)

instance FromJSON IP
instance ToJSON IP

jsonData :: FilePath
jsonData = "test/medium_ip.json"

getJson :: IO B.ByteString
getJson = B.readFile jsonData

obj :: ObjectiveType
obj = Maximization

main :: IO ()
main = do
 args <- getArgs
 case args of
 -- Sequential
 [fileName, maxDepth, "seq", bc, to] -> do
 let jsonFile = fileName
 let getJson = B.readFile jsonFile
 let md = read maxDepth :: Int
 d <- (eitherDecode <$> getJson) :: IO (Either String IP)
 case d of
 Left err -> putStrLn $ "Failed to load test case" ++ err
 Right ps -> do
 let testC = LA.fromList $ costC ps
 let testMat = LA.fromLists $ matA ps
 let testB = LA.fromList $ boundB ps
let testTab = addSlackMatrix $ toTableau testC testMat testB
let testIntMask = LA.fromList $ replicate (LA.size testC) True
case bc of
 -- Branch and Bound
 "b" -> do
 case to of
 -- full tree output
 "tree" -> print $ constructBranchAndBound obj testTab testIntMask testC md
 -- just optimal solution
 "solution" -> print $ searchBBTreeMax $ constructBranchAndBound obj testTab testIntMask testC md
 _ -> error "Wrong input format for output type"

 -- Branch and Cut
 "c" -> do
 case to of
 -- full tree output
 "tree" -> print $ constructBranchAndCut obj testTab testIntMask testC md
 -- just optimal solution
 "solution" -> print $ searchBBTreeMax $ constructBranchAndCut obj testTab testIntMask testC md
 _ -> error "Wrong input format for Bound/Cut"

[fileName, maxDepth, "par", bc, to, parDepth] -> do
 let jsonFile = fileName
 let getJSON = B.readFile jsonFile
 let md = read maxDepth :: Int
 let pd = read parDepth :: Int
 let (d, err) = eitherDecode <$> getJSON :: IO (Either String IP)
case d of
 Left err -> putStrLn $ "Failed to load test case" ++ err
 Right ps -> do
 let testC = LA.fromList $ costC ps
 let testMat = LA.fromLists $ matA ps
 let testB = LA.fromList $ boundB ps
 let testTab = addSlackMatrix $ toTableau testC testMat testB
 let testIntMask = LA.fromList $ replicate (LA.size testC) True
case bc of
 -- Branch and Bound
 "b" -> do
case to of
 -- full tree output
 "tree" -> print $ constructParBranchAndBound
 obj testTab testIntMask testC md pd
 -- just optimal solution
 "solution" -> print $ searchBBTreeMax $
 constructParBranchAndBound obj testTab testIntMask testC md pd
 _ -> error "Wrong input format for output type"

 -- Branch and Cut
 "c" -> do
 case to of
 -- full tree output
 "tree" -> print $ constructParBranchAndCut obj
 testTab testIntMask testC md pd
 -- just optimal solution
 "solution" -> print $ searchBBTreeMax $
 constructParBranchAndCut obj testTab testIntMask testC md pd
 _ -> do
 pn <- getProgName
 die $ "Usage: stack exec " ++ pn
 ++ "<json_filename> <maxDepth> <seq> <bc> <to> <parDepth>"

B. src/ParBnC.hs

 module ParBnC
 (
 ObjectiveType,
 toTableau,
 addSlackMatrix,
 constructBranchAndBound,
 constructParBranchAndBound,
 constructBranchAndCut,
 constructParBranchAndCut,
 searchBBTreeMax
) where

import Numeric.IEEE (IEEE(infinity))
import Data.List (elemIndex)
import Numeric.LinearAlgebra as LA
 ((<.>),
 dropColumns,

fromLists, takeColumns, cols, flatten, fromColumns, fromRows, rows, toColumns, toRows, cmap, find, maxElement, maxIndex, scalar, sumElements, diagl, size, vector, subVector, takesV, toList, vjoin, fromList, Matrix, Konst(konst), Indexable(!), R, Vector)

import Control.Parallel(par, pseq)
import Control.Parallel.Strategies (rdeepseq, rparWith, runEval, NFData)
import Control.Monad (when)
import Control.DeepSeq (NFData(..))

data MatConstraints = MatVec [[Double]] [Double] deriving Show
数据 VariableType = INTEGER | CONTINUOUS deriving (Show, Eq)
数据 ProblemType = LP | MIP deriving Show
数据 ObjectiveType = Maximization | Minimization deriving (Show, Eq)

epsilonTol :: R
epsilonTol = 1e-10
failNodeThreshold :: Int
failNodeThreshold = 100

isInt :: (RealFrac a) => a -> Bool
isInt x = x == fromInteger (round x)

toTableau :: LA.Vector R -> LA.Matrix R -> LA.Vector R -> LA.Matrix R
toTableau costC matA constB = tab where
 xb = LA.fromColumns $ LA.toColumns matA ++ [constB]
 z = mappend costC $ vector [0]
 tab = LA.fromRows $ LA.toRows xb ++ [z]

costCheck :: ObjectiveType -> (R -> Bool)
costCheck Maximization = (> 0)
costCheck Minimization = (< 0)

boundCheck :: ObjectiveType -> (R -> Bool)
boundCheck Maximization = (< 0)
boundCheck Minimization = (> 0)

isImprovable :: ObjectiveType -> LA.Matrix R -> Bool
isImprovable obj tab = any (costCheck obj . roundSolution) $ LA.toList cost
 where
cost = subVector 0 (cols tab - 1) $ tab ! (rows tab - 1)

isImprovableDual :: ObjectiveType -> LA.Matrix R -> Bool
isImprovableDual obj tab = any (boundCheck obj) $ LA.toList bounds where
 lastCol = last $ LA.toColumns tab
 bounds = subVector 0 (rows tab - 1) lastCol

gPivotPosition :: ObjectiveType -> LA.Matrix R -> (Int, Int)
gPivotPosition obj tab = (row, column) where
 z = tab ! (rows tab - 1)
 cost = subVector 0 (cols tab - 1) z
 column = LA.maxIndex cost
 getElem rowEq
 | elem == 0 = infinity::R
 | val < 0 = infinity::R
 | otherwise = val
 where
 elem = rowEq ! column
 lastColVal = rowEq ! (LA.size rowEq - 1)
 val = lastColVal / (rowEq ! column)
 restrictions = map getElem $ init (LA.toRows tab)
getPivotPositionDual :: ObjectiveType -> LA.Matrix R -> (Int, Int)
getPivotPositionDual obj tab = (row, column) where
 lastCol = last $ LA.toColumns tab
 bounds = subVector 0 (rows tab - 1) lastCol
 row = head $ LA.find (boundCheck obj) bounds
getElem rowEq
 | elem >= 0 = infinity::R
 | otherwise = elem / (rowEq ! (LA.size rowEq - 1))
 where
restrictions = map getElem $ init (LA.toColumns tab)
 Just column = elemIndex (minimum restrictions) restrictions

pivotStep :: Matrix R -> (Int, Int) -> Matrix R
pivotStep tab (row, column) = newTableau where
 pivotVal = (tab ! row) ! column
 newPivotRow = cmap (/ pivotVal) $ tab ! row
 updateRow rowIdx rowEq
 | rowIdx == row = newPivotRow
 | otherwise = rowEq - newPivotRow * LA.scalar (rowEq ! column)
rowSize = LA.rows tab
newTableau = LA.fromRows $ zipWith updateRow [0..(rowSize - 1)] $ LA.toRows tab

isBasic :: Vector R -> Bool
isBasic colVec = (LA.sumElements colVec == 1) && (length zeroVec == colVecLen)
 where
 zeroVec = filter (== 0) $ LA.toList colVec
 colVecLen = LA.size colVec - 1

getSolution :: Matrix R -> Vector R
getSolution tab = solution where
 colSize = LA.cols tab
 columns = LA.toColumns $ LA.takeColumns (colSize - 1) tab
 lastCol = LA.flatten $ LA.dropColumns (colSize - 1) tab
 findSol colVec
 | isBasic colVec = sol
 | otherwise = 0::R where
 oneIndex = head $ LA.find (==1) colVec
 sol = lastCol ! oneIndex
 solution = LA.fromList $ map findSol columns

updateTab :: ObjectiveType -> LA.Matrix R -> Int -> LA.Matrix R
updateTab obj tab counter
 | not $ isImprovable obj tab = tab
 | counter == 0 = LA.fromLists [[]]
 | otherwise = updateTab obj newTab (counter - 1) where
 pivotPos = getPivotPosition obj tab
 newTab = pivotStep tab pivotPos

updateTabDebug :: ObjectiveType -> LA.Matrix R -> Int -> LA.Matrix R
updateTabDebug obj tab counter
 | counter == 0 = tab
 | not $ isImprovable obj tab = tab
 | otherwise = updateTabDebug obj newTab (counter - 1) where
 pivotPos = getPivotPosition obj tab
 newTab = pivotStep tab pivotPos

updateTabDual :: ObjectiveType -> LA.Matrix R -> LA.Matrix R
updateTabDual obj tab
 | not $ isImprovableDual obj tab = tab
 | otherwise = updateTabDual obj newTab where
 pivotPos = getPivotPositionDual obj tab
 newTab = pivotStep tab pivotPos

isImprovableMixed :: LA.Matrix R -> Bool
isImprovableMixed tab = any ((> 0) . roundSolution) (LA.toList costs) where
 lastRow = last $ LA.toRows tab
 costs = subVector 0 (LA.cols tab - 1) lastRow

definePhaseOneTab :: LA.Matrix R -> (LA.Matrix R, LA.Vector R, Bool)
definePhaseOneTab tab = (newTab, oldCost, needed) where
 (rowSize, colSize) = LA.size tab
 (constRows, [oldCost]) = splitAt (rowSize - 1) $ LA.toRows tab
 updateRow :: LA.Vector R -> LA.Vector R
 updateRow rowVec
 | boundVal < 0 = -rowVec
 | otherwise = rowVec where
 boundVal = last $ LA.toList rowVec
 zeroRow = LA.konst (0::R) colSize
 mixedRows = filter (\rowVec -> (rowVec ! (LA.size rowVec - 1)) < 0) constRows
 needed = not $ null mixedRows
 sumRow = sum $ map (\x -> -x) $ mixedRows ++ [zeroRow]
 newConstRows = map updateRow constRows
 newTab = LA.fromRows $ newConstRows ++ [sumRow]
getPivotPositionMixed :: LA.Matrix R -> (Int, Int)
getPivotPositionMixed tab = (row, column) where
 z = tab ! (rows tab - 1)
colSize = cols tab - 1
cost = subVector 0 colSize z
maxCost = LA.maxElement cost
column = head $ LA.find (== maxCost) cost
getElem rowEq
 | elem == 0 = infinity::R
 | val < 0 = infinity::R
 | otherwise = val
 where
 elem = rowEq ! column
 lastColVal = rowEq ! (size rowEq - 1)
 val = lastColVal / (rowEq ! column)
restrictions = map getElem $ init (LA.toRows tab)
minRatio = minimum restrictions
row = last [idx | (idx, ratio) <- zip [0..colSize] restrictions, ratio == minRatio]
updateMixedTab :: LA.Matrix R -> Int -> LA.Matrix R
updateMixedTab tab counter
 | not $ isImprovableMixed tab = tab
 | counter == 0 = LA.fromLists [[]]
 | otherwise = updateMixedTab newTab (counter - 1) where
 pivotPos = getPivotPositionMixed tab
 newTab = pivotStep tab pivotPos

simplexWithTab :: ObjectiveType -> LA.Matrix R -> (R, LA.Vector R, LA.Matrix R)
simplexWithTab obj tab = (optVal, solution, lastTab) where
 lastTab = updateTab obj tab failNodeThreshold
 solution = getSolution lastTab
 (rowSize, colSize) = LA.size lastTab
 lastVal = lastTab ! (rowSize - 1) ! (colSize - 1)
 optVal = if obj == Maximization then lastVal else (-lastVal)
simplexWithMixedTab :: ObjectiveType -> LA.Matrix R -> (R, LA.Vector R, LA.Matrix R)
simplexWithMixedTab obj tab
 | failedInter = (-infinity, getSolution phaseOneTab, phaseOneTab)
 | infeasible = (-infinity, getSolution interTab, interTab)
 | failedNode = (-infinity, getSolution interTab, interTab)
 | otherwise = (lastVal, solution, lastTab) where
 (phaseOneTab, oldCost, needed) = getPhaseOneTab tab
interTab
| needed = updateMixedTab phaseOneTab failNodeThreshold
| otherwise = phaseOneTab
failedInter = LA.fromLists [[]] == interTab
(rowSize, colSize) = LA.size interTab
lastPhaseOneVal = interTab ! (rowSize - 1) ! (colSize - 1)
infeasible = not $ isClose lastPhaseOneVal (0::R)

(constRows, _) = splitAt (rowSize - 1) $ LA.toRows interTab

phaseTwoTab = LA.fromRows $ constRows ++ [oldCost]
lastTab = updateTab obj phaseTwoTab failNodeThreshold
failedNode = lastTab == LA.fromLists [[]]
solution = getSolution lastTab
lastVal = lastTab ! (rowSize - 1) ! (colSize - 1)
optVal = lastVal

getGomoryCut :: Vector R -> Vector R
getGomoryCut rowVec = gomoryCons where
 [varPart, constPart] = takesV [LA.size rowVec - 1, 1] rowVec
 posDec num = -posFrac where
 (intPart, fracPart) = properFraction num
 posFrac = if fracPart >= 0.0 then fracPart else 1.0 + fracPart
 gomoryCons = vjoin [cmap posDec varPart, vector [1::R], cmap posDec constPart]

addSlackColumn :: Matrix R -> Matrix R
addSlackColumn tab = newTab where
 columns = LA.toColumns tab
 (rowSize, colSize) = LA.size tab
 (varColumns, lastColumn) = splitAt (colSize - 1) columns
 zeroVec = LA.konst 0 rowSize :: Vector R
 extendedTab = varColumns ++ [zeroVec] ++ lastColumn
 newTab = LA.fromColumns extendedTab

addNewRow :: Matrix R -> Vector R -> Matrix R
addNewRow tab newRow = newTab where
 rows = LA.toRows tab
 (rowSize, colSize) = LA.size tab
 (constRows, lastRow) = splitAt (rowSize - 1) rows
 newTab = LA.fromRows $ constRows ++ [newRow] ++ lastRow

addGomoryCut :: Matrix R -> Vector R -> Matrix R
addGomoryCut tab gomoryRow = newTab where
 (rowSize, colSize) = LA.size tab
interTab = addSlackColumn tab
rows = LA.toRows interTab
(consRows, costRow) = splitAt (rowSize - 1) rows
newTab = LA.fromRows (consRows ++ [gomoryRow] ++ costRow)

performGomoryCut :: ObjectiveType -> LA.Matrix R -> Int -> (R, LA.Vector R, LA.Matrix R)
performGomoryCut obj tab varIdx = (newVal, newSol, newTab)
where
 interTab = addGomoryCut tab $ getGomoryCut $ tab ! varIdx
 newTab = updateTabDual obj interTab
 newSol = getSolution newTab
 (rowSize, colSize) = LA.size newTab
 lastVal = newTab ! (rowSize - 1) ! (colSize - 1)
 newVal = if obj == Maximization then lastVal else (-lastVal)

addSlackMatrix :: LA.Matrix R -> LA.Matrix R
addSlackMatrix tab = newTab where
 (rowSize, colSize) = LA.size tab
 slackIdentity = LA.diagl $ replicate (rowSize - 1) (1::R)
 zeroVec = LA.konst (0::R) (rowSize - 1)
 newSlackMat = LA.fromRows $ LA.toRows slackIdentity ++ [zeroVec]
 (prevCols, lastCol) = splitAt (colSize - 1) $ LA.toColumns tab
 newTab = LA.fromColumns (prevCols ++ LA.toColumns newSlackMat ++ lastCol)

isClose :: R -> R -> Bool
isClose x y = diff < epsilonTol where
diff = abs $ x - y

roundSolution :: R -> R
roundSolution num
 | diff < epsilonTol = roundCand
 | otherwise = num where
 roundCand = fromIntegral $ round num
diff = abs $ roundCand - num

integerSolved = zipWith isIntSol where
 isIntSol False _ = True
 isIntSol True mask = mask

fromJust :: Maybe a -> a
fromJust (Just a) = a
fromJust Nothing = error "non-existing index"

findNonIntIndex :: [Bool] -> [Bool] -> Int
findNonIntIndex \(\text{intMask} \) \(\text{solMask} = \text{solIdx} \) where

\[
\begin{align*}
\text{f False solBool} &= \text{True} \\
\text{f True True} &= \text{True} \\
\text{f True False} &= \text{False}
\end{align*}
\]

maybeSolIdx = \(\text{elemIndex False} \) \(\text{zipWith f intMask solMask} \)

\(\text{solIdx} = \text{fromJust maybeSolIdx} \)

getBranches :: Matrix \(\mathbb{R} \) -> Vector \(\mathbb{R} \) -> Int -> (Matrix \(\mathbb{R} \), Matrix \(\mathbb{R} \))

getBranches tab solVec branchIdx = (leftTab, rightTab) where

\[
\begin{align*}
\text{currSolVal} &= \text{solVec ! branchIdx} \\
\text{colSize} &= \text{LA.cols tab} \\
\text{baseVec} &= \text{LA.vjoin [LA.konst 0 branchIdx :: Vector \(\mathbb{R} \), vector [1::R], LA.konst (0::R) (colSize - branchIdx - 2)]}
\end{align*}
\]

\[
\begin{align*}
\text{leftBound} &= \text{fromIntegral $ floor currSolVal} \\
\text{leftRow} &= \text{LA.vjoin [baseVec, vector [1::R, leftBound]]} \\
\text{rightBound} &= \text{fromIntegral $ ceiling currSolVal} \\
\text{rightRow} &= \text{LA.vjoin [-baseVec, vector [1::R, -rightBound]]}
\end{align*}
\]

\[
\begin{align*}
\text{slackTab} &= \text{addSlackColumn tab} \\
\text{leftTab} &= \text{addNewRow slackTab leftRow} \\
\text{rightTab} &= \text{addNewRow slackTab rightRow}
\end{align*}
\]

data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show)

instance NFData a => NFData (Tree a) where

\[
\begin{align*}
\text{rnf Nil} &= () \\
\text{rnf (Node l a r)} &= \text{rnf l `seq` rnf a `seq` rnf r}
\end{align*}
\]

data BranchProblem = BranchProblem {

\[
\begin{align*}
\text{solution:: Vector \(\mathbb{R} \), value :: R}
\end{align*}
\]

} deriving (Show)

instance NFData BranchProblem where

\[
\begin{align*}
\text{rnf BranchProblem \{solution = s, value = v\}} &= \text{rnf s `seq` rnf v}
\end{align*}
\]

constructBranchAndBound :: ObjectiveType -> Matrix \(\mathbb{R} \) -> Vector \(\mathbb{Bool} \) -> Vector \(\mathbb{R} \) -> Int -> Tree BranchProblem

constructBranchAndBound obj tab intMask costVec maxDepth

\[
\begin{align*}
\text{infeasible} &= \text{Nil} \\
\text{maxDepth} &= 0 = \text{Nil} \\
\text{and $ integerSolved intList solMask = currProb Nil Nil} \\
\text{otherwise} &= \text{currProb leftTree rightTree where}
\end{align*}
\]

\[
\begin{align*}
(y, currSol, newTab) &= \text{simplexWithMixedTab obj tab} \\
\text{infeasible} &= y == (-\infty) \\
\text{candVal} &= \text{costVec <.> LA.subVector 0 (LA.size costVec) currSol}
\end{align*}
\]
currProb = Node BranchProblem {
 solution = currSol, value = candVal
}

intList = LA.toList intMask
solMask = map (isInt . roundSolution) $ LA.toList currSol
nextIdx = findNonIntIndex intList solMask
(leftTab, rightTab) = getBranches tab currSol nextIdx
leftTree = constructBranchAndBound obj leftTab intMask costVec (maxDepth - 1)
rightTree = constructBranchAndBound obj rightTab intMask costVec (maxDepth - 1)

constructParBranchAndBound :: ObjectiveType -> Matrix R -> Vector Bool ->
 Vector R -> Int -> Int -> Tree BranchProblem
constructParBranchAndBound obj tab intMask costVec maxDepth parDepth
| infeasible = Nil
| maxDepth == 0 = Nil
| and $ integerSolved intList solMask = currProb Nil Nil
| otherwise = currProb leftTree rightTree where
 (y, currSol, newTab) = simplexWithMixedTab obj tab
 infeasible = y == (-infinity)
 candVal = costVec <> LA.subVector 0 (LA.size costVec) currSol
 currProb = Node BranchProblem {
 solution = currSol, value = candVal
 }
 intList = LA.toList intMask
 solMask = map (isInt . roundSolution) $ LA.toList currSol
 nextIdx = findNonIntIndex intList solMask
 (leftTab, rightTab) = getBranches tab currSol nextIdx
 (leftTree, rightTree)
 | parDepth == 0 = (leftRawTree, rightRawTree)
 | otherwise = leftTree `par` rightTree `pseq` (leftTree, rightTree
where
 leftRawTree = constructBranchAndBound obj leftTab intMask costVec (maxDepth - 1)
rightRawTree = constructBranchAndBound obj rightTab intMask costVec (maxDepth - 1)
leftTree = constructParBranchAndBound obj leftTab intMask costVec (maxDepth - 1) (parDepth - 1)
rightTree = constructParBranchAndBound obj rightTab intMask costVec (maxDepth - 1) (parDepth - 1)

constructBranchAndCut :: ObjectiveType -> Matrix R -> Vector Bool -> Vector R
 -> Int -> Tree BranchProblem
constructBranchAndCut obj tab intMask costVec maxDepth
| maxDepth == 0 = Nil |
| infeasible = Nil |
| and $ integerSolved intList solMask = currProb Nil Nil |
| otherwise = currProb leftTree rightTree where |
| (y, currSol, newTab) = simplexWithMixedTab obj tab |
| infeasible = y == (-infinity) |
| candVal = costVec <.> LA.subVector 0 (LA.size costVec) currSol |
| currProb = Node BranchProblem { |
| solution = currSol, value = candVal |
| } |
| intList = LA.toList intMask |
| solMask = map (isInt . roundSolution) $ LA.toList currSol |
| nextIdx = findNonIntIndex intList solMask |
| cutTab = addGomoryCut tab $ getGomoryCut $ newTab ! nextIdx |
| (leftTab, rightTab) = getBranches cutTab currSol nextIdx |
| leftTree = constructBranchAndCut obj leftTab intMask costVec (maxDepth - 1) |
| rightTree = constructBranchAndCut obj rightTab intMask costVec (maxDepth - 1) |

constructParBranchAndCut :: ObjectiveType -> Matrix R -> Vector Bool -> Vector R -> Int -> Int -> Tree BranchProblem
constructParBranchAndCut obj tab intMask costVec maxDepth parDepth |
| infeasible = Nil |
| maxDepth == 0 = Nil |
| and $ integerSolved intList solMask = currProb Nil Nil |
| otherwise = currProb leftTree rightTree where |
| (y, currSol, newTab) = simplexWithMixedTab obj tab |
| infeasible = y == (-infinity) |
| candVal = costVec <.> LA.subVector 0 (LA.size costVec) currSol |
| currProb = Node BranchProblem { |
| solution = currSol, value = candVal |
| } |
| intList = LA.toList intMask |
| solMask = map (isInt . roundSolution) $ LA.toList currSol |
| nextIdx = findNonIntIndex intList solMask |
| cutTab = addGomoryCut tab $ getGomoryCut $ newTab ! nextIdx |
| (leftTab, rightTab) = getBranches cutTab currSol nextIdx |
| (leftTree, rightTree) = runEval $ do |
| if parDepth == 0 then do |
| leftRawTree <- rparWith rdeepseq $ constructBranchAndCut obj |
| leftTab intMask costVec (maxDepth - 1) |
| rightRawTree <- rparWith rdeepseq $ constructBranchAndCut |
| obj rightTab intMask costVec (maxDepth - 1) |
| return (leftRawTree, rightRawTree) |
else do
 leftTree <- rparWith rdeepseq $ constructParBranchAndCut
 obj leftTab intMask costVec (maxDepth - 1) (parDepth - 1)
 rightTree <- rparWith rdeepseq $ constructParBranchAndCut
 obj rightTab intMask costVec (maxDepth - 1) (parDepth - 1)
 return (leftTree, rightTree)

searchBBTreeMax :: Tree BranchProblem -> BranchProblem
searchBBTreeMax Nil = BranchProblem{solution = LA.fromList [], value = -
 infinity}
searchBBTreeMax (Node bp Nil Nil) = bp
searchBBTreeMax (Node bp leftBpNode Nil) = searchBBTreeMax leftBpNode
searchBBTreeMax (Node bp Nil rightBpNode) = searchBBTreeMax rightBpNode
searchBBTreeMax (Node bp leftBpNode rightBpNode)
 | leftBpVal > rightBpVal = leftBp
 | otherwise = rightBp where
 leftBp = searchBBTreeMax leftBpNode
 rightBp = searchBBTreeMax rightBpNode
 midBpVal = value bp
 leftBpVal = value leftBp
 rightBpVal = value rightBp