Audio and Other Waveforms

Stephen A. Edwards

Columbia University

Spring 2022

Waveforms

Time-varying scalar value

Commonly called a "signal" in the control-theory literature

Sound: air pressure over time

Raster video: brightness over time

Speed over time, position over time, etc.

The Fourier Series

Any periodic function can be expressed as a sum of harmonics For a smooth function f(t) with period T, i.e.,

f(t)=f(t+T),

there exists coefficients a_n , b_n such that

$$f(t) = a_0 + \sum_{m=1}^{\infty} a_m \cos \frac{2\pi m t}{T} + b_m \sin \frac{2\pi m t}{T}$$

Bandwidth-Limited Signals

Basic observation: nothing changes infinitely fast

Bounding the rate of change sets the bandwidth of a signal

Hertz or Hz: "per second"

Source: Stereophile magazine: Marantz SM-11S1, A \$4000 audiophile amplifier rated 5 Hz–120 kHz. Small-signal 10kHz squarewave into 8 ohms.

The Bandwidth of Sound

Human ears are almost a Fourier transform

Human Hearing

Empirically, humans hear 20 Hz–20 kHz Highest frequency limit tends to decrease with age

To reconstruct a bandwidth-limited signal from samples, you need to sample at least twice the maximum frequency.

Sampling at $8 \times f$

To reconstruct a bandwidth-limited signal from samples, you need to sample at least twice the maximum frequency.

Sampling at $4 \times f$

To reconstruct a bandwidth-limited signal from samples, you need to sample at least twice the maximum frequency.

Sampling at $2 \times f$

To reconstruct a bandwidth-limited signal from samples, you need to sample at least twice the maximum frequency.

Sampling at $4/3 \times f$

To reconstruct a bandwidth-limited signal from samples, you need to sample at least twice the maximum frequency.

Audio Sampling Rates

CD-quality audio: 44.1 kHz

Telephone-quality audio: 8 kHz

Dull, Metcalfe, Brooks. Modern Physics

Signal-to-Noise Ratio

You can't always get what you want But if you try sometimes you might find You get what you need

—The Rolling Stones

Signals are never pure: there's always something that makes them deviate from the ideal.

Signal-to-Noise ratio:

Usually measured using a log scale, i.e.,

$$dB = 10 \log_{10} rac{P_{signal}}{P_{noise}}$$

Human Hearing dB, SNR, and bits

Colt .45 Pistol (25 feet) 140 130 Threshold of Pain 110 **Underground Train** 90 Average Home Hi-Fi Level 80 Average Factory Average Conversation Average Office 40 Residential Ambient Noise 30 *Quiet Whisper (5 feet)* 20 10 Threshold of Hearing Ω 0.0002 Dyne/Sq. cm

 $n \times 6.02 + 1.76 = SNR$ in dB

CD samples:

16 bits = 98 dB

Near the limit of human hearing

The CODEC on the DE1-SoC: Wolfson WM8731

enCOder/DECoder: analog-to-digital converter (ADC) + digital-to-analog converter (DAC)

Two 24-bit ADCs; two 24-bit DACs + headphone amp

Sampling rates: 8 kHz – 96 kHz, 16–24 bit words

DE1-SoC Interface to the Audio Codec

				U3			
				WM8731			
	-	AUD_XCK		XTI/MCLK	Mic In	The second se	
		AUD_BCLK		BCLK		J1	
风店	₹⋞≜∖。_	AUD_DACDA		DACDAT		1	
		AUD_DACLRC	ĸ			J 2	
		AUD_ADCDAT		ADCDAT	Line Out		
	+	AUD_ADCLRC	ĸ	ADCLRCK		SL 🥌	
		Pin Assi	gnme	nt of Audio CO	DEC		
Signal Name	FPGA Pin No	D.	Desci	ription		I/O Standard	
AUD_ADCLRCK	PIN_K8		Audic	CODEC ADC LR	Clock	3.3V	
AUD_ADCDAT	PIN_K7	PIN_K7		CODEC ADC Da	3.3V		
AUD_DACLRCK	PIN_H8	PIN_H8		CODEC DAC LR	3.3V		
AUD_DACDAT	PIN_J7	PIN_J7		CODEC DAC Da	3.3V		
AUD_XCK	PIN_G7		Audio CODEC Chip Clock			3.3V	
	FIN_07				Audio CODEC Bit-stream Clock		
AUD_BCLK	PIN_07				am Clock	3.3V	
AUD_BCLK I2C_SCLK		PIN_E23		CODEC Bit-stre	am Clock		

 I^2C bus for configuration: data format, volume levels, etc. Synchronous serial protocol (data + L/R + bit clock) for data

WM8731 Serial Protocol

One of four communication modes, set by I²C registers:

Figure 26 Left Justified Mode

DE1-SoC I²C Multiplexer

Control mechanism for the I2C multiplexer

Pin Assignment of I2C Bus

Signal Name	FPGA Pin No.	Description	I/O Standard
FPGA_I2C_SCLK	PIN_J12	FPGA I2C Clock	3.3V
FPGA_I2C_SDAT	PIN_K12	FPGA I2C Data	3.3V
HPS_I2C1_SCLK	PIN_E23	I2C Clock of the first HPS I2C concontroller	3.3V
HPS_I2C1_SDAT	PIN_C24	I2C Data of the first HPS I2C concontroller	3.3V
HPS_I2C2_SCLK	PIN_H23	I2C Clock of the second HPS I2C concontroller	3.3V
HPS_I2C2_SDAT	PIN_A25	I2C Data of the second HPS I2C concontroller	3.3V

Storing Waveforms

If you store each sample,

$$\frac{samples}{second} \times \frac{bits}{sample} \times channels = \frac{bits}{second}$$

Total memory consumption:

$$\frac{\textit{bits}}{\textit{seconds}} \times \textit{seconds} = \textit{bits}$$

E.g., CD-quality audio: 44.1 kHz, 16 bits/sample, 2 channels

44.1 kHz \times 16 \times 2 = 1.4 Mbps = 175 KB/s

A 74-minute CD:

1.4 *Mbps* × 60
$$\frac{\text{seconds}}{\text{minute}}$$
 × 74 minutes × $\frac{\text{byte}}{8 \text{ bits}}$ = 783 *MB*

Reducing Memory: Sample Less; Use Fewer Bits

74 minutes of CD-quality audio

(16 bits/sample, stereo, 44.1 kHz)

44.1 kHz \times 32 bits \times 60 sec/min \times 74 min \div 8 bits/byte = 783 MB

74 minutes of telephone-quality audio:

(8 bits/sample, mono, 8 kHz)

8 kHz \times 8 bits \times 60 sec/min \times 74 min \div 8 bits/byte = 35 MB

Reducing Memory: Lossy Compression (Companding)

 $\mu\text{-}\mathsf{law}$ and A-law compression

Logarithmic encoding of 12 bit samples in 8 bits Trades dynamic range for quantization noise

ADPCM: Adaptive Predictive Pulse Code Modulation

Uses 4 bits/sample to reconstruct 8-bit samples

Encodes the difference between the next sample and its predicted value

MPEG Layer 3 Compression: Perceptual Coding

Carefully reproduce what we hear well and worry less about what we can't (soft sounds masked by loud ones)

Sound Synthesis: Analog

Modular analog sound synthesis c. 1968 Oscillators + noise sources + envelope generators + filters

Moog synthesizer

Subtractive Synthesis

Start with a saw, square, or triangle wave, then filter

The AY-3-8912 Programmable Sound Generator

FM Synthesis

What does it sound like? Any pop music from the 1980s

Summary of Audio Waveform Generation

- Direct sampling (Pulse Code Modulation) Consider sampling frequency, bits/sample
- Lossy Compression

Companding (µ-law, A-law)

Perceptual Coding (MP3 et al.)

• Synthesis

Subtractive (oscillators, filters, envelopes)

FM (Carrier \times modulator, envelopes)

Wavetable/sampling (sound snippets + note events)

Representing Images

Same story; two dimensional waveforms

E.g., a single frame of VGA/standard definition television:

$$640 imes 480 imes 24 rac{bits}{pixel} = 900 \ KB$$

HD is terrifying:

$$1920 \times 1080 \times 24 \frac{bits}{pixel} = 5.9 \text{ MB}$$

JPEG: Still Image Compression

Colorspace conversion

Space-to-frequency domain conversion

Quantization

Zig-zag encoding

Huffman encoding