
ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022 1

Project Proposal: A FPGA accelerator for YOLO
CNN based on weight quantization and data flow

optimization
Botong Xiao bx2197, Haoran Jing hj2588, Terry Zhang tz2477, Yunran Zhou yz3985

Abstract—Real-time object detection requires high throughput
and power efficiency. However, many convolutional neural net-
works (CNNs) have frequency access to off-chip memory which
causes slow processing and undesired power dissipation. In this
project, we want to implement a streaming hardware acceler-
ator with a YOLO(You-Only-Look-One) CNN. In addition, the
parameters of the CNN will be quantized using binary weight
and low-bit activation. Quantization would allow us to store the
whole CNN in the on-chip block DRAM. Moreover, the hardware
implementation of the CNN will be fully pipelined to improve
hardware utilization and reusability of intermediate data. In all,
the goal of this project is to eliminate off-chip memory access,
improving hardware utilization to better throughput and energy
efficiency.

I. INTRODUCTION

DEEP learnging has been the most prevalent method in
various task in computer vision due to the support of

powerful computation devices such as GPU. Among the state-
of-the-art methods, YOLO and the subsequent Sim-YOLO,
YOLO-V2 demonstrate the most promising trade-off between
speed and accuracy. While GPU is widely used for the training
and inference of deep learning algorithms such as YOLO,
recent researches have proved its inefficiency in optimization
such as the the quantization of weight/activation and data
access schedule. For instance, [2] has demonstrated that the
training and inference of CNNs can be quantized to a very
low-bit precision with insignificant loss in accuracy. This
quantization enables a fast , memory efficient, and power
efficient FPGA accelerator.

Based on this, [1] proposed a optimized data path to reduce
the frequency of off-chip memory access. In this project, we
target to replicate the design of [1]. In the following sections,
the hardware and software are explained in detail. Milestones
of this project is listed in the last section.

II. SPECIFICATION

Fig.1 presents the overall architecture of the whole FPGA
implementation. The data will be input from peripherals such
as the camera through PCIE. Then the data will directly be
sent to the DRAM through the YOLO DMA. The accelerator
will fetch the input image data from the DRAM and perform
the computation and then send the detection result back to
the DRAM. Eventually, the detection result will output from
the DRAM and be sent back to other peripherals such as
the monitor through PCIE. The main design idea and details

will be illustrated in hardware specification and software
specification as follows.

A. Hardware Specification

The YOLO accelerator mainly consists of a controller,
convolution layers, and buffers between each layer. Each
convolution layer consists of three layers performing convo-
lution computation, batch normalization, and max pooling,
respectively.

Fig. 1: The Streaming Architecture

The overall proposed structure of the YOLO accelerator
is shown in Fig.2. The data input from the previous layer
will first be stored in a circular buffer. The circular buffer
includes four lines of SRAM. Three of them are the partial
inputs from the previous layer and will be divided into sliding
cubes and performed 3×3 convolution with the 3×3 kernel.
Another additional line is to enable the overlapping of the
computation of the current layer and the previous layer. The
partial output result of convolution will be sent to the adder
tree which consists of two stages of ternary adders. The partial
results from adders will be stored in the line buffers, and be
sent to perform batch normalization and max-pooling when the
computation is completed. Eventually, the final results will be
transferred to the next layer and sent back to the DRAM after
output from the last convolution layer.

B. Software Specification

For the software part, our initial thought of the program will
roughly mainly focus on 3 parts: I/O interface, accelerator and
user interface. At the I/O interface part, the software needs
to make the connection to the hardware, which means there
should be an interface for the camera for object detecting, an
interface for video output, making those devices communicate
and transfer data. The second part is the accelerator, containing

ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022 2

Fig. 2: FPGA implementation of convolutional layers

Fig. 3: Operation of convolutional layers

the convolution layer and buffer which has mentioned above.
The work for software is to create those buffers from RAM
and also for the algorithm of the accelerator algorithm. The
basic principle of the CNN network is shown below at left:

For the CNN network, weight must be used for learning,
which could cause a lot of computational resources. Our plan
is to calculate the weight off-board, then add the weight to
the FPGA. Due to limited RAM resources, those algorithms
need optimization in order to make room for buffer. Our plan
is to use the method from [1] to reduce the weight re-use,
the abstract method from [1] is shown above at right. After
optimization, we should be able to put the buffer and algorithm
onto the FPGA RAM. And the last part is the user interface.
Because it is a project for object detection, it should have
a direct image or video output to show the result of the
object detection on a screen. Users can choose to activate and
deactivate the function, where the object detected should be
highlighted and labeled.

III. MILESTONES

TABLE I: Milestones

Fully understand the CNN algorithm Mar. 4

Design the RTL implementation for the accelerator Apr. 22

Verify the accelerator RTL implementation functionality Apr. 29

Develop the software to connect the accelerator with peripherals May. 6

Perform verification for the whole design May. 13

REFERENCES

[1] D. T. Nguyen, T. N. Nguyen, H. Kim and H. Lee, ”A High-Throughput
and Power-Efficient FPGA Implementation of YOLO CNN for Ob-

Fig. 4: Different streaming schedule (a) No weight reuse (b)
Full weight reuse (c) Line based weight reuse

ject Detection,” in IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 27, no. 8, pp. 1861-1873, Aug. 2019, doi:
10.1109/TVLSI.2019.2905242.

[2] D. T. Nguyen, H. Kim, H. -J. Lee and I. -J. Chang, ”An Approximate
Memory Architecture for a Reduction of Refresh Power Consumption
in Deep Learning Applications,” 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), 2018, pp. 1-5, doi: 10.1109/IS-
CAS.2018.8351021.

ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022 1

The Design Document
Botong Xiao bx2197, Haoran Jing hj2588, Terry Zhang tz2477, Yunran Zhou yz3985

I. INTRODUCTION

AN FPGA accelerator for YOLO CNN based on weight
quantization and data flow optimization In the computer

vision area, object detection is a challenging task. This project
is aiming to design an accelerator for YOLO(You-Only-Look-
One) CNN on the FPGA board. The YOLO is a single neural
network predicting the object bounding boxes which perform
the best trade-offs between accuracy and latency. The whole
design idea will be illustrated in hardware and software parts
separately.
For the software part, it is mainly responsible for interacting
with the environment. To be more specific, it will first receive
the image data from the camera through the USB port. Then
the software part will manage the input data in a specific
way and stream them into the accelerator through the device
driver. After the computation by the accelerator, the results
will be retrieved and sent back to the software part and
performed post-processing. Eventually, the detection results
will be shown on the screen through a VGA port.
For the hardware part, it consists of 17 convolution layers
and 4 max-pooling layers. Each convolution layer includes
adder trees to perform the convolution computation and
an accumulator to perform the batch normalization. The
parameters for batch normalization and convolutional kernels
can be computed ahead and preloaded into the DRAM. The
weights we use in this network are in binary which takes
only 1 bit and most of the output and intermediate results
are quantized to 6bits, therefore the memory resource on
FPGA is able to fit all the parameters preloaded. As a result,
all the computation will be performed on-chip, and there is
no necessary to access data off-chip. The memory resource
budget will be illustrated more specifically in section 4.

II. BLOCK DIAGRAM

The approximate block diagram of our design is shown in
Fig.1. To make a project for object detection, we decided to
use a USB camera for image sensing. The video data coming
from the camera will be cut into frames by the driver, then
sent to the CNN driver through the Avalon bus. Then software
streaming logic should present as YOLO Accelerator in the
FPGA hardware, which can process the incoming data in
multiple layers to achieve YOLO-CNN implementation. The
output data will be sent to the VGA port, connecting a VGA
monitor to indicate the final object detection result.

The main feature of the hardware part is the YOLO CNN
accelerator. The YOLO accelerator contains an input buffer,
a controller, DRAM, and multiple convolution layers. There

are 21 layers, which contain 4 max-pooling layers and 17
convolution layers in our design. In each convolution layer,
there are 3 sub-layers performing convolution computation,
batch normalization, and max pooling. For the previous
convolution layer, its input will be sent to a circular buffer
for storage. These buffers include 4 lines of SRAM, where 3
of them are partial inputs from the previous layer, performing
3*3 convolution with the 3*3 kernel. The remaining line is
for overlapping computation. The partial output will be sent
to an adder, where the results are then stored in the line
buffer for batch normalization and max-pooling computation.
The final results are transferred to the next layer until the
overall layer computation finishes. In the batch normalization
part, the activations also need to be shifted and quantized to
get the partial output.

The main job of the software side is to provide the correct
data flow for the whole system: from camera input to CNN
accelerator then to screen output. The first part is the drivers
mentioned in the block diagram. The YOLO CNN driver
will read and write the actual data stored in the buffer and
make convolution computations. A camera driver should have
the function of recognizing the USB protocol for data input.
At last, when the CNN network has finished its processing,
the output data flow was received and shown properly by
the VGA screen driver, whose main function is to convert
the output data into the VGA signal that the monitor could
handle. As a result, we can obtain the real-time image of the
camera with CNN processed object-detection boundaries.

The optimized streaming protocol is shown in Fig.2.
We first use preload weight data and batch normalization
parameters into on-chip memory. Then, we will be using
a USB video camera to capture the frame data. The frame
data of the camera will be communicated to the FPGA board
using the UVC protocol.

After the frame data is successfully transmitted. A CNN
device driver will stream the data into the CNN accelerator
block by block. To increase scalability and maximize
intermediate data reuse, our CNN will compute the data
in a special streaming order. The software will stream the
frame data in the following way to ensure correct functionality.

In the input feature map, The number of channels is N. In
our case, the frame input from the camera has three channels:
RGB. The sliding cube indicates the data being sent to the
Yolo CNN accelerator. As we can see from the graph, data is
passed in along the width of the whole frame data. When the
first horizontal layer that has height k is passed, we move on
to pass the next horizontal layer. After the CNN accelerator

ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022 2

Fig. 1: Block diagram

Fig. 2: Data flow

finishes inferencing, the output will be communicated directly
to the monitor screen using VGA protocol. Through raster
scanning, the monitor will show the input frame with the
detected object enclosed in a square.

III. ALGORITHMS

The main algorithm of the accelerator is to implement
convolution computation and max-pooling. The pseudo-code
for the convolution layer and max-pooing layer is shown in
Fig.3.

In each convolution layer, the convolution computation is
always followed by batch normalization. The original batch
normalization is shown below.

y =
γ(i)(act− µ(i))√

[σ(i)]2 + ϵ
+ β(i) (1)

where y and act are the outputs of batch-normalization
and convolutional computation, respectively. µ(i), [σ(i)]2 are
channel-wise mean and variance of activations, respectively.

Fig. 3: Algorithm

γ(i) and β(i) are the channel-wise scale and bias, respectively.

However, the original batch normalization is not easy for
the hardware to implement. Therefore, the batch normalization
has been optimized as below:

y = xW (i) × γ(i)
w + β(i)

w (2)

where γw(i) and βw(i) are the new scale and bias factiors

ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022 3

that can be computed beforehand by the software part and
preloaded into the DRAM of FPGA:

γ(i)
w =

µ
(i)
W × γ(i)√
[σ(i)]2 + ϵ

(3)

β(i)
w = −

µ
(i)
W × µ(i)√
[σ(i)]2 + ϵ

+ β(i) (4)

With the optimized batch normalization and preloaded
scale and bias factors, the accelerator only requires one
multiplication and one addition to perform the batch
normalization.

For the software part, in addition to the scale and bias
factors computation mentioned before, it will also implement
the algorithm written in C language to build a golden block
for the whole design. The actual hardware implementation
may perform some quantization for the activation to save the
hardware resource consumption and eliminate off-chip access,
which may lead to some accuracy loss. But the software still
could use the simple and original version of algorithm to
build a golden block. By analyzing the results of the golden
block and accelerator, we can identify whether the accuracy
of accelerator output is acceptable and therefore verify the
correctness of the accelerator.

IV. RESOURCE BUDGET

The FPGA resource used in this accelerator is reported in
[1]. The network structure, weight size, LUT and FF resource
budget are Shown below.

Fig. 4: The network structure and the weight quantization

[1] implemented the accelerator with a different FPGA
devices but we anticipate a similar amount of resource will
be used in this project.

Fig. 5: weight size w/ and w/o quantization

Fig. 6: Implementation results from [1]

V. HARDWARE-SOFTWARE INTERFACE

Since the only interaction between our CNN accelerator
and the software side is one-way data passing, the Hardware-
software interface is straightforward, the data and control
signals are passed using an Avalon bus. Since we will
be implementing real-time object detection, we will use
h2f axi master to transport data ensuring data throughput.
Each pixel has 8*3 bits (8 bits for each of the 3 channels).
Each data transmission will contain 256 bits, or 32 pixels to
fully utilize the data width of axi master.

REFERENCES

[1] D. T. Nguyen, T. N. Nguyen, H. Kim and H. Lee, ”A High-Throughput
and Power-Efficient FPGA Implementation of YOLO CNN for Ob-
ject Detection,” in IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 27, no. 8, pp. 1861-1873, Aug. 2019, doi:
10.1109/TVLSI.2019.2905242.

[2] D. T. Nguyen, H. Kim, H. -J. Lee and I. -J. Chang, ”An Approximate
Memory Architecture for a Reduction of Refresh Power Consumption
in Deep Learning Applications,” 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), 2018, pp. 1-5, doi: 10.1109/IS-
CAS.2018.8351021.

A FPGA accelerator for YOLO CNN based
on weight quantization and data flow

optimization

Botong Xiao, Terry Tingrui Zhang, Haoran Jing

1 Introduction

DEEP learnging has been the most prevalent method in various task in com-
puter vision due to the support of powerful computation devices such as GPU.
Among the stateof-the-art methods, YOLO and the subsequent Sim-YOLO,
YOLO-V2 demonstrate the most promising trade-off between speed and accu-
racy. While GPU is widely used for the training and inference of deep learning
algorithms such as YOLO, recent researches have proved its inefficiency in op-
timization such as the the quantization of weight/activation and data access
schedule. For instance, [2] has demonstrated that the training and inference
of CNNs can be quantized to a very low-bit precision with insignificant loss
in accuracy. This quantization enables a fast , memory efficient, and power
efficient FPGA accelerator.

2 Software

The software implementation of the project mainly contains a simulation of the
hardware part in the software domain. In this section, we will first introduce
the convolution neural network architecture structure. Then, we will dive
deep into the convolution layer and the max-pooling layer. Moreover, we will
illustrate the quantization and de-quantization method that we used in the
software simulation to better mimic the hardware behavior.

2.1 CNN architecture

The table below shows the whole network structure.

1 layer filters size input output

2 0 conv 16 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 16

3 1 max 2 x 2 / 2 416 x 416 x 16 -> 208 x 208 x 16

4 2 conv 32 3 x 3 / 1 208 x 208 x 16 -> 208 x 208 x 32

5 3 max 2 x 2 / 2 208 x 208 x 32 -> 104 x 104 x 32

6 4 conv 64 3 x 3 / 1 104 x 104 x 32 -> 104 x 104 x 64

1

7 5 max 2 x 2 / 2 104 x 104 x 64 -> 52 x 52 x 64

8 6 conv 128 3 x 3 / 1 52 x 52 x 64 -> 52 x 52 x 128

9 7 max 2 x 2 / 2 52 x 52 x 128 -> 26 x 26 x 128

10 8 conv 256 3 x 3 / 1 26 x 26 x 128 -> 26 x 26 x 256

11 9 max 2 x 2 / 2 26 x 26 x 256 -> 13 x 13 x 256

12 10 conv 512 3 x 3 / 1 13 x 13 x 256 -> 13 x 13 x 512

13 11 max 2 x 2 / 1 13 x 13 x 512 -> 13 x 13 x 512

14 12 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024

15 13 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024

16 14 conv 125 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 125

17 15 region

The following software realizes the structure above.

1 struct network{

2 // input dimension parameter

3 int width;
4 int height;
5 int channels;
6 // pointer to each layer

7 layer *layers;

8 // pointer to calculation result

9 float *output;
10 float *input;
11 int8_t *int8_output;

12 int8_t *int8_input;

13 }

14

15 struct layer{

16 // dimension parameter

17 LAYER_TYPE type;

18 int size_in;
19 int size_out;
20

21 // parameter to draw output boxes

22 int classes;
23

24 // quantization parameter

25 float amax_w;
26

27 // pointer to data and calculation output

28 int8_t *int8_weights;

29 int8_t *int8_biases;

30 int8_t *int8_scales;

31 int8_t *int8_rolling_mean;

32 int8_t *int8_rolling_variance;

33 int8_t *int8_output;

34

35 // forward function pointer

36 void (*int8_forward) (struct layer, struct network);

37 };

The network struct contains pointers to its layers and each layer struct contains
the type, size information, and the pointers to layer parameters that are fixed
during inference. Weights, bias, scale, mean, and variance are all of type int8 t.
These parameters are quantized during loading and the floating-point coun-
terparts can be found on ”https://pjreddie.com/darknet/yolov2/”. The quanti-

2

zation method will be introduced in a later section. As we can see there are 16
layers in the network. The 15th region layer is used to draw the detected object
boundary. Thus, we will not spend time discussing the region layer and focus
on the convolution layer and max-pooling layer.

2.2 Convolution layer

There are several operation inside the int8 forward function of the convolu-
tion layer. First convolution is computed on weights that is the int8 weights
pointer and the corresponding input. Then, we apply batch normalization
to the convolution output using mean and variance in the int8 rolling mean
and int8 rolling variance pointer. Batch normalization is used to set the mean
and variance of each kernel output to 0 and 1. In addition, we apply scaling,
bias and activation to the layer output. At the end of the forward function,
de-quantization is apply to the int8 t output result. The code is in the ”Code”
section of the report.

2.3 Max-pooling layer

The forward function of the max-pooling layer is relatively simple, and is used
to reduce the size of the output. In our CNN, max-pool of size 2×2 and a stride
of 2 is used to reduce the dimension of the output by half. The code is in the
”Code” section of the report.

2.4 Quantization and De-quantization

Quantization and de-quantization are the most challenging part of software
implementation and requires fine-tunning of the quantization parameter. The
following process shows how to quantize one 32-bit floating point number to
an 8-bit integer. Let w be a floating point number and let aw be an positive float
number that w ∈ [−aw , aw], then the quantized int8 value wq can be written as

wq = round(
w
aw
∗ 128)

De-quantization is not as straightforward as quantization, since de-quantization
are applied at the end of the computation. Let w be a weight in floating point
and let aw be an positive float number that w ∈ [−aw , aw]. Let x be the input data
in floating point and let ax be an positive float number that x ∈ [−ax , ax]. Let m
be the mean in floating point number and let am be an positive float number that
m ∈ [−am , am]. Let v be the variance in floating point and let av be an positive
float number that v ∈ [−av , av]. Then the quantized convolution computation
with batch normalization can be written as

wq × xq −mq

vq
=

wx
v
×

128 av

awax
−

m
v
×

av

am

3

If
128 av

awax
=

av

am

Then the de-quantized value can be simply written as

wx −m
v

=
wq × xq −mq

vq
×

am

av

However, the choosing the quantization parameter aw, ax, am, av can be quite
intricate. As the value of these parameter increases, there precision of the
quantized CNN can suffer, since the 8-bit integer needs to represent a larger
range of floating point number.

2.5 Result

3 Hardware

The hardware implementation of the YOLO CNN accelerator mainly consists of
three components: Circular Buffer, Convolution layer and Max-pooling layer.
The implementation details will be illustrated below.

4

3.1 Circular Buffer

The function of the circular buffer is to partially store the input images and
the weight parameter needed in the convolution layer. The way of streaming
input images into the circular buffer is shown in the figure. The first row of
TI layers, which is 4 in this example, will be stored in the first row of the
circular buffer, shown as red blocks in the figure. Then it will move to the
next TI layers of input images until all the first row of the input channels of
input images are stored. Then, it will move to the second row and repeat
the operation. After storing three rows of circular buffer, the host can initiate
the output of data and launch the convolution layer because it is sufficient
for the convolution layer to perform the computation. The circular buffer will
output 9 input image data as well as 9 weight parameters in parallel, and feed
them into the convolution layer. As data streams out of the circular buffer, the
address pointer will automatically go to the next row. At the same time, the
circular buffer can still be stored with new data concurrently, which increases
the efficiency. This is also the reason why it is called a “circular” buffer, because
it can keep storing data and streaming out data simultaneously. Actually, its
working principle is very similar to an asynchronous FIFO. However, one thing
worth mentioning is that the data structure inside the circular buffer is a little
bit different. One buffer for the same address is designed to fit a TI*6 bit data.
The data structure arranged in this way is very beneficial for sending out the
data to the convolution layer, although it may be a little bit difficult for storing
input images into the circular buffer. The Avalon Bus only can support up to 32
bit bandwidth, and the most common value for the TI is 8 and 16, which means
that it cannot be passed through the Avalon Bus in the same cycle. Therefore,
the buffer has to be stored multiple times to fit one buffer storage for the same
address.

Figure 1: Circular buffer

5

3.2 Convolution layer

The architecture of the convolution layer is shown in the figure. When the 9
input image data as well as 9 weight parameters, which is shown as the 3*3
kernel in the figure, are input to the convolution layer, they will first go through
a two stage pipelined ternary adder tree. Then the intermediate computation
results will be stored in the line buffer. After computing for TI times, the
accumulation for one data in the output layer is temporarily done, and the data
will be stored in the next address in the line buffer. After computing for one row,
it will go back to the first data of this row with next TI layers, and then it will
accumulate again with the intermediate data stored in the line buffer. Therefore,
the depth of the line buffer should be the same as the input image size. After
completing all the computations for one row, the data will be simultaneously
streamed into the batch normalization part inside the convolution layer. The
batch normalization is quite easy to implement inside the hardware because it
only requires the multiplication and accumulation operation. And then it will
go to the RELU part, which performs the function that remains the same value
for the positive data and divided by 8 for the negative data. And dividing by
8 can be easily implemented as shifting three bits in the hardware, which is
quite easy to achieve. Eventually, it will also perform the quantization before
eventually sending out the data. The quantization function in the hardware
design is to remain the value if the data value stays within the specific range.
And if it is out of range, it will just remain the maximum or the minimum value
of the range instead of the original value. The output data eventually will either
be sent back to the host or next to the max-pooling layer.

Figure 2: Convolution layer

6

3.3 Max-pooling layer

The architecture of the max-pooling layer is shown in the figure. All the max-
pooling in the YOLO CNN network is all 2*2 max-pooling. When the data
streams in the max-pooling layer, it will be controlled by a ping pong control
signal. When the first data comes in, the ping pong signal is low and the data
will be first stored in a register for one cycle. And in the next cycle, the ping
pong control signal will be set to 1, and then, instead of being stored in the
register, it will compare with the data stored in the register. The larger one of
the comparisons will be stored in the line buffer. The comparison will keep
being performed until it compares all the data in one row. Because the data
are compared in pairs and only the larger one will be stored in the line buffer,
the depth of the line buffer only requires half of the input image size. After
feeding one row, the row signal will be set to 1, and the data in row 1 will also
repeat the step mentioned before. But differently, after comparison, the larger
data will not be stored in the line buffer. Instead, they will compare with the
corresponding data stored in the line buffer, and eventually output the larger
one, completing the max-pooling function.

Figure 3: Max-pooling layer

3.4 Simulation results

To accommodate the different configuration of different layers, such as the
input size of the image or the TI parameter, all the components have been
designed with configurable parameters, which ensures that it can be easily
modified and meet the requirements of different layers. In addition, all the
components designed above have been verified through the simulation. The
simulation results of circular buffer, convolution layer and max-pooling layer
are shown below. For being easily implemented, the circular buffer design
has been connected to the convolution layer, which can directly perform the
convolution computation without additional control.

7

Figure 4: Simulation result for convolution layer

Figure 5: Simulation result for max-pooling layer

3.5 Challenge

The most important challenges are the limitation of the SRAM storage and
the limited bandwidth of the Avalon Bus. The SRAM storage of the FPGA
only has 0.5 MB. However, the whole weight parameters may require about
2MB On-chip SRAM, which means that it cannot fit all the parameters and the
whole computation for all layers cannot be completed in the FPGA. Therefore,
we have to perform the computation layer by layer, with frequently off-chip
memory accessing, which no doubt largely increases the latency.

Another challenge is the limited bandwidth of Avalon Bus. Because of
the limited bandwidth, we are unable to send all the data required by the
convolution layer in parallel, which made me design a separate circular buffer to

8

solve the problem. However, even with the circular buffer, it still needs multiple
times to store the data into the buffer, which introduces some challenges.

4 Software Hardware Interface

Finishing the hardware and software design, it is also important to connect and
transfer data between hardware and software parts, making it simple to access.
One of the approaches we have designed is using DMA , a direct memory
access controller between hardware on-chip memory and software SDRAM to
make them communicate to each other. The pipeline block diagram is shown
as figure below.

Figure 6: Pipeline interface system block diagram

The whole pipeline project is working two separate parts of the DE1-SoC
board and making them communicate with each other, so it contains hardware
and software parts. The software part runs on the Linux kernel in HPS through
SD card, where the input data will also be stored in. The software will transfer
the input data into SDRAM, then it will activate the HPS management, which
is also the DMA(Direct Memory Access) controller, sending data directly to the
on-chip memory by DMA. When the transmission is over, the software will
send a signal to activate the hardware part, which contains read and write
blocks. Read block will read data from on-chip memory to the CNN program,
while the write block will write the data back to on-chip memory, which could
be accessed by Linux software through DMA transmission. The logic of those

9

two blocks is shown in Figure2.

Figure 7: Read and write block logic

As we can obtain from the figure, the whole FPGA part is controlled by start
and finish signals. When the start signal activates, the read block will start to
read data from the on chip memory using the address and chip select. When
reading is over, the input device will activate, which will inform the CNN
Process, which is the algorithm block, to prepare to receive data. Then the
read data will go through data out port and enable the CNN block to process
the data while the read block itself repeats the states above. After processing,
the CNN block sends out the output device signal, together with input device
signal, causing the write block to get into the next writing stage, waiting for
data to come in. The incoming data from out data will be sent to writedata
port, storing the data into the on-chip memory1, which could be accessed by the
DMA between SDRAM and on-chip memory, while the write block transferred
to the original state. One thing that should be mentioned is that in order to make
the whole block could only be controlled by start, finish and reset signal, those 2
blocks are designed to be a state machine, making it process data continuously.
Each block has 5 states, with 1 idle state, 1 reset state, 1 preparation state, 1
process state and 1 stop state.

For the software part in Linux, DMA plays an important role as an interme-
diate between software SDRAM and hardware on-chip memory, handling the
actual data transfer between FPGA and HPS. At first, the program will read the
image to SDRAM by using open memory and mmap function. Then we need
to activate the FPGA to SDRAM bridge and activate the DMA controller, then
we could setup a pointer with address of SDRAM and on-chip memory, then
read and write data between them using DMA REG READ ADDR function
and DMA REG WRITE ADDR function, which can be obtained from the code
block below:

10

1 //create a pointer to the DMA controller base

2 void *h2p_lw_dma_addr1 = NULL;
3 h2p_lw_dma_addr1 = virtual_base + ((unsigned long)(

ALT_LWFPGASLVS_OFST + DMA_1_BASE) & (unsigned long)(HW_REGS_MASK
));

4

5 // clear the DMA control and status

6 clearDMAcontrol(h2p_lw_dma_addr1);

7 _DMA_REG_STATUS(h2p_lw_dma_addr1) = 0;

8 _DMA_REG_READ_ADDR(h2p_lw_dma_addr1) = 0; // read

from OCM

9 _DMA_REG_WRITE_ADDR(h2p_lw_dma_addr1) = physical_addr2; //

write to SDRAM (DDR3)

10 _DMA_REG_LENGTH(h2p_lw_dma_addr1) = 4000; //

number of elements in bytes

11 //start the transfer

12 _DMA_REG_CONTROL(h2p_lw_dma_addr1) = _DMA_CTR_BYTE | _DMA_CTR_GO |

_DMA_CTR_LEEN;

To compile this into a project, we created a new quartus project, including the
hardware files and the main file declaring the pins and connections to compile,
while putting the software file onto the SD card off the board, but unfortunately
we are unable to make it fully functional mainly because of the small on-chip
memory.

5 Contribution

5.1 Terry Zhang

I wrote the software simulation for the Yolo-CNN including the CNN architec-
ture and the parameter quantization.
The most important thing that I learned from this project is to think about the
time limitation, and hardware resource limitations before jumping into some-
thing that sounds exciting. In the project, all of my teammates are in unknown
territories with CNN and deep learning quantization. As a result, we spend
a lot of time learning the material. In future projects, I think it will be best to
start with something fundamental and add on to it, as opposed to starting with
something grand and resulting in something unsatisfictory.

5.2 Botong Xiao

All the hardware part design is completed independently by Botong Xiao, in-
cluding all the verilog codes, testbenches as well as all the hardware parts
specifications in each report.
From this project, I realize the importance of first figuring out the limitations
of resources, because resource limitations such as bandwidth and SRAM stor-
age will not only affect the performance and the area cost of the design, it
may also affect the design specification as the dataflow and computation algo-
rithm. Therefore, it leads me to treat the resource limitations from a completely

11

different perspective.

5.3 Haoran Jing

Haoran Jing is in charge of the interface part between hardware and software,
which contains hardware interface codes, software interface codes and quartus
project creation. However, this group member failed to make the software part
work.
This group member realized the importance of the interface between hardware
and software, and found DMA for interconnection although it does not work
properly. In future projects, this group member will be more focusing on the
efficiency of the interface, which could significantly affect the data transmission,
writing redundant code is hard to implement and test. Moreover, memory
management is also a important part when it comes to FPGA design.

6 Code

Convolution:

1 for (int oc = 0; oc < output_channel; ++oc) {
2 // for each output channel

3 output_channel_offset_kernel = oc * ksize * ksize *

input_channel;

4 output_channel_offset_out = oc * output_size * output_size;

5 for (int ic = 0; ic < input_channel; ++ic) {
6 // for each input channel

7 input_channel_offset_kernel = ic * ksize * ksize;

8 for (int r = 0; r < output_size; ++r) {
9 // for each row

10 row_offset_out = r * output_size;

11 for (int c = 0; c < output_size; ++c) {
12 // for each col

13 col_offset_out = c;

14 for (int i = 0; i < ksize; ++i) {
15 // for row in kernel

16 row_offset_kernel = i * ksize;

17 for (int j = 0; j < ksize; ++j) {
18 // for col in kernel

19 col_offset_kernel = j;

20 int8_t int8_kernel_value =

21 int8_weights[col_offset_kernel +

22 row_offset_kernel +

23 input_channel_offset_kernel +

24 output_channel_offset_kernel];

25 int8_t int8_image_value =

26 int8_get_input_pixel(r, c, ic, i, j, pad,

27 input_size , int8_input);

28 // update output data

29 inter_out[col_offset_out +

30 row_offset_out +

31 output_channel_offset_out] +=

32 ((int8_kernel_value) *

12

33 (int8_image_value));

34 }

35 }

36 }

37 }

38 }

39 }

Batch Normalization:

1 for (int oc = 0; oc < out_channel; ++oc) { // for each output channel
2 int channel_offset = oc * size_out * size_out;
3 for (int r = 0; r < size_out; ++r) { // for each row
4 int row_offset = r * size_out;
5 for (int c = 0; c < size_out; ++c) { // for each col
6 int col_offset = c;
7 int index = col_offset + row_offset + channel_offset;
8 output[index] = (output[index] - rolling_mean[oc]) / (

rolling_variance[oc]);

9 }

10 }

11 }

Apply Scale:

1 for (int oc = 0; oc < out_channel; ++oc) {
2 int channel_offset = oc * size_out * size_out;
3 for (int r = 0; r < size_out; ++r) {
4 int row_offset = r * size_out;
5 for (int c = 0; c < size_out; ++c) {
6 int col_offset = c;
7 output[channel_offset + row_offset + col_offset] *= scales[

oc];

8 }

9 }

10 }

Apply Bias:

1 for (int oc = 0; oc < out_channel; ++oc) {
2 int channel_offset = oc * size_out * size_out;
3 for (int r = 0; r < size_out; ++r) {
4 int row_offset = r * size_out;
5 for (int c = 0; c < size_out; ++c) {
6 int col_offset = c;
7 output[channel_offset + row_offset + col_offset] += biases[

oc];

8 }

9 }

10 }

Apply Activation:

1 static inline float leaky_activate(float x) { return (x > 0) ? x :
0.125 * x; }

13

	Introduction
	Specification
	Hardware Specification
	Software Specification

	Milestones
	References
	fb0e97f7-75ce-4ef8-8991-939fd3cfac9d.pdf
	Introduction
	Block Diagram
	Algorithms
	Resource Budget
	Hardware-software interface
	References

