
Water Raid

Tristan Saidi, Yongmao Luo, Jakob Stiens and
Zhaomeng Wang

Overview

- Based off of the 1980’s Atari game River
Raid released by Activision

- The goal is to survive as long as possible
without getting shot, crashing, flying off the
river, or running out of fuel.

- Score is given for staying alive, and shooting
down enemy vehicles

Gameplay Overview

- Just like the original game, the player can only move
left and right

- Forward movement is simulated with the scrolling
background and sprites

- We have chosen to have an xbox controller as the
input with the following controls

- “X” - left
- “B” - right
- “Y” - shoot
- “A” - start

Original Game

Our Game

Overview of the project

Game Logic

1. Main.cpp

2. Airplane

3. Game Scenario

4. Drivers

5. Sprites
a. Fuel Tank

b. Enemy Plane (helicopter, ballon)

c. Battleship

6. Bullets

Object-Oriented
Programming
Design

Common Data Structures

typedef struct{
 short x,y; // for y, we should put the coordinate at bit [9:1]
 //y[0] is the shift bit, y[0]=1 means disappear
}Position;

typedef struct{
 char width, length; // width is related to x coordinates
 // length is related to y coordinates
}Shape;

typedef struct{
 short river1_left,river1_right,river2_left, river2_right;
}BoundaryInRow;

Main.cpp

containing two nesting while loop with counter to execute logics in static frequency (60Hz)

Each iteration:

Scroll down the background (randomly generating new boundaries for the background)

Reduce and add fuels accordingly

Examine if the plane crashes

If fire, generate bullets

Move all sprites except for the plane

If hit, minus the HP for each hit sprite

If HP has been consumed, delete the sprite

Airplane

private:
 char type; // what type of sprite it is
 Position pos; // the position of the plane
 Shape shape; // the shape of the sprite
 InputEvent xboxInput; // the input data from xbox
 bool buttonXOn,buttonBOn; // help to determine if the user keeps pressing
the two buttons
public:
 int scores,fuel;

Airplane

the class of Airplane. It has variable position, scores, fuel, etc. and functions to control the movement of

the plane while updating fuel and scores.

void fire(int xboxFd,int videoFd,vector<Bullet> &bulletList); // Fire a bullet
bool isCrashed(int videoFd,BoundaryInRow boundary); // if it crashes on the boundary
bool isCrashed(int videoFd,
 std::vector<EnemyPlane> enemyPlaneList,
 std::vector<Battleship> battleList); // if the plane crashes on some
enemy sprites
void addFuel(int videoFd,std::vector<FuelTank> &fuelTankList, std::vector<short>
&spriteIndexList); // add fuel if the plane bumps into the fuel tank
int reduceFuel(int videoFd); // when time flies, the plane should consume more fuels
Position getPos(); // get the position of the plane
void setPos(Position); // set the position of the plane
void receiveFromXbox(int xboxFd); // receive control signals from the Xbox
void calPos(int videoFd); // calculate the new position based on the received data
bool startGame(); // If we press button A, the game starts

Game Scenario

the class of Game Scenario. It has a one-dimensional boundaries array with length 480 to represent the
background information. Each element of the array has four sub-elements, indicating the four
boundaries of each row.

private:
 short minimumWidth; // the minimum width of the river
 short maximumWidth; // the maximum with of the river
 double frequency; // how many lines the plane flies over per second
 short screenHeader; // the header of the circle queue
 short states; // the state of the state machine
 int singleRiverWidth; // when we double the river, we need to record the former
width of the river
 bool firstTimeDouble; // indicator for first time the state becomes DOUBLE_RIVER
 clock_t change; // clock used to adjust the frequency of randomly select new
state

public:
 BoundaryInRow boundaries[480];/* background register */

Game Scenario

Most important functionalities

#define INCREASE_WIDTH 0
#define DECREASE_WIDTH 1
#define DOUBLE_RIVER 2
#define SINGLE_RIVER 3

void updateBackground(int videoFd); // randomly generate new boundaries by
maintaining a state machine
void initBackground(int videoFd); // at the start of each round of game, flash
the background to the same

Sprite
protected:
 char type;
 char hitPoint;
 Shape sp;
 bool left = true;
 bool canMove;

public:
 short index;
 bool isDestroy;

 Position pos;

 void generate(BoundaryInRow boundary, short y);

 void disappear();

 //Make the sprites randomly moved within a certain range
 void move(BoundaryInRow boundary, short minimumWidth);

EnemyPlane, Battleship and FuelTank
//EnemyPlane
private:
 char score;

public:

 EnemyPlane(char type, char hitPoint, const Shape &sp, bool isDestroy, char
 score, short index,bool canMove);

//Battleship
private:
 char score;

public:
 void checkIfHit(vector<Bullet> &bullets,int videoFd, int &planeScore);

//FuelTank
private:
 char fuelVolume;

public:
 void checkIfHit(vector<Bullet> &bullets,int videoFd);

Bullets
private:
 char type;
 Shape sp;
 bool isCrashed;

public:
 Position pos;
 short index;

 void setCrash(){
 isCrashed = true;
 this->pos.y = 0;
 }

 static void fly(int videoFd,std::vector<Bullet> &);

Driver in GameLogic

// video
static void initBackground(int videoFd); // set up the fuel gauge and
scoreboard
static void writeBoundary(int videoFd, BoundaryInRow boundary); // write
boundary for each row
static void writePosition(int videoFd,Position position,int type, int index);
// write position for each sprite
static void writeFuel(int videoFd,int fuel); // adjust the indicator of the
fuel gauge
static void writeScore(int videoFd,int score); // change the scores in the
scoreboard
// audio
static void playAudio(int audioFd,int index); // play audio of different sound
effect

Linux Kernel Driver – Video & Audio Driver

According to the functionality of each variable in hardware

Write different functions, each can realize part of functionality to the whole project

Reduce amount of data transferring from software to hardware compared to single function
implementation

#define WATER_VIDEO_WRITE_BOUNDARY _IOW(WATER_VIDEO_MAGIC, 1,
water_video_arg_boundary *)

#define WATER_VIDEO_WRITE_POSITION _IOR(WATER_VIDEO_MAGIC, 2,
water_video_arg_position *)

#define WATER_VIDEO_WRITE_FUEL _IOR(WATER_VIDEO_MAGIC, 3, water_video_arg_fuel *)

#define WATER_VIDEO_WRITE_SCORE _IOR(WATER_VIDEO_MAGIC, 4, water_video_arg_score *)

#define WATER_VIDEO_INIT _IOR(WATER_VIDEO_MAGIC, 5, water_video_arg_init *)

#define WATER_AUDIO_PLAY _IOR(WATER_VIDEO_MAGIC, 6, water_audio_arg *)

Linux Kernel Driver – Xbox Controller

The paroj/xpad project

https://github.com/paroj
https://github.com/paroj/xpad

Hardware-Software Interface System Design

The Hardware and Software interface via
the avalon bus. A series of registers
controlling information about graphics and
audio can be set from software through the
avalon bus. Hardware then pulls from these
registers and memory for the graphics logic
and audio logic.

VGA signals are asserted based on the
values read from the interface registers and
based on sprite data stored in the ROM
modules. A similar phenomenon is true for
the audio, where the audio signal is read
from ROM and pushed to the audio CODEC.

Hardware - Overview

The hardware is set up such that software can control the
location and “image” of all sprites on screen via writes
through the avalon bus. Essentially software dictates
where the sprite is, and which ROM that specific sprite
should pull from (dictating which image is displayed).

Background generation is done on the software side - the
software generates four “boundary” values, each
corresponding to the right/left side of a branch of the river.
If the last two boundary values are zero, this indicates that
there is only one river branch. To accomplish the
background shifting, the hardware has a single “shift”
signal; upon being toggled, the hardware shifts the entire
screen down one pixel, and loads a new set of boundaries in
from software. The details of how this is accomplished will
be explained on subsequent slides.

Hardware - Sprite Generation

- most sprites are 32 x 32 pixels (except

for fuel and scoreboard)

- generated from color palette value

arrays

- 0 means invisible background

- instantiated as 1 Port ROM modules

generated from .mif files.

- have a total of 15 sprites on screen at

once (including score and fuel gauge)

Hardware - Sprite Display

- whenever a row is being displayed,

hardware checks if a sprite overlaps

- If a sprite overlaps, the sprite color is

chosen as the pixel color instead of the

background

- Palette pixel color for sprites is

chosen through a switch case

Hardware - Background

The hardware to handle the background shift required some thought. We

settled on having a one bit shift signal that, whenever toggled, indicates

to hardware that the screen should be shifted down. The background

boundaries for all rows that are currently visible on the screen are stored

in a two port SRAM unit (4 boundaries x 10 bits per boundary location =

40 bits per word). The hardware uses one port to read values from SRAM

as it constantly cycles through and re-updates the screen. The other port

is used to overwrite memory values with the most recent boundaries set

by software. Everytime the shift signal is toggled, the base address for

both the read and write are incremented - this enables the shift behavior

that is seen. It is worth noting that the two port SRAM has 512 words

despite the vertical depth of the screen only being 480 - this made it

easier to circularly update the memory as the wraparound for a 9 bit

counter replaces the need for modulo circuitry.

Hardware - Audio Overview

- Audio has 3 sound effects - shoot, hit, explode

- Each audio file has address 0 set to 0
- Can be used to turn off the sound

- Have 3 registers that software can access

Hardware - Audio Main Loop

- When a register is set high, the address
for that sound begins incrementing

- When the maximum address is reached,
the incrementing stops

- Each audio file has address 0 set to 0
- Can be used to turn off the sound

Hardware - Audio Connections

- Connect to the audio codec with the

audio_0 and audio_and_video_config_0

modules

- Connect avalon streaming sources on

the top level to avalon sinks connecting

to audio codec

Hardware - Total Resources

Shoot Hit Explosion

memory(bit) 23 Kb 16 Kb 82 Kb

Total Memory Usage: 368.3 Kb

Challenges and Lessons Learned

Challenges:

- Figuring out qsys configuration for audio

- Getting initial sprite graphics to work (ROM instantiation and reading out) without the

ability to really look at waveforms

- Screen shift and two port memory

- Figure out the logic between different objects

Lessons Learned:

- Try to have hardware finished as early as possible

- Do correct system design for connecting the hardware and software

Demo!

