
 CSEE 4840 Embedded System

 Design

 New Rally Y

 Andrew Juang

 Table of Contents

 1. Table of Contents
 2. Introduction
 3. Initial Plan

 a. Player Movement:
 b. Scoring Condition:
 c. Enemy Movement:

 4. System Architecture
 5. Hardware Design
 6. Software
 7. Challenges
 8. Further Improvements
 9. References
 10. Source Code

 1. Introduction

 New Rally Y is going to be a tribute based on the video game “ New Rally X ”.

 It is a classic retro video game where a “race car” sprite is controlled by the player via a

 joystick and directed through a set “maze” race track to collect flags for a high score

 while ai drive around either aimlessly or chase after the player. The player has the

 option to navigate through the maze to avoid them or use smoke to wipe out the

 enemies. Similarly, New Rally Y will try and emulate this game by having the player also

 control a target player sprite which can be controlled in 4 directions (up, down, left, right)

 to also gather flags in a less complex map maze. The AI will probably end up being

 dumb ai which will have two functions, either being a dumb wall which eliminates the

 player upon contact and is temporarily removed when the player uses smoke, or chases

 the player when they enter its proximity. The focus of this game will be mostly on the

 visual aspect, where sounds will be considered for later but sprite art and functionality

 will be the main focus.

https://www.youtube.com/watch?v=ssB-FTfuH3U

 2. Initial Plan

 Figure 1. Initial System Block Diagram Proposal

 The initial plan was to implement the game in 3 main milestones: the

 implementation of the player movement, the implementation of the scoring

 system, and the implementation of the enemy AI for a game over condition.

 Player Movement. These were to make up the bulk of the project, and the

 remainder was supposed to be optional. As we see in the block diagram, I

 excluded audio off the bat since I had low confidence in the timing needed to

 implement it. Below are greater details of the proposed implementation:

 Player Movement:

 Player movement was to be decided using the input. Using a keyboard

 input, the player movement was meant to go into any of the four cardinal

 directions up down left right. This was to be done via similar logic to vga_ball,

 which was implemented in lab 3 while using the lab 2 keyboard logic. The sprite

 shifts were to be done similar to vga_ball. Input was tentatively via a keyboard

 after the initial implementation, we were supposed to switch over to a controller

 for more similarities to the original product, the keyboard was the one provided

 by the lab. Collisions were also supposed to be implemented in the first

 milestone, making the player restricted to a map which is boxed off by multiple

 walls. The original New Rally X used a zoomed in map, but the first goal was to

 emulate a pac man map where the character moves on screen rather than the

 map in the background.

 Scoring Condition:

 The next milestone was meant to be the scoring system, where the player

 will interact with flags around the map to obtain points. These flags would be

 implemented with collision detection so that they can increment up a scoreboard

 by 1 when hit. This would only happen when the player model overlaps with the

 flags, and might be the first implementation of collision detection depending if the

 player character would have a restricted map zone in the first milestone

 implementation.This would be the winning condition and the endgoal.

 Enemy AI:

 Enemy movement is the hardest to implement and also the game over

 condition of the project. This would be the final milestone and would spawn 3

 enemies at the start which path randomly on the map. These should follow player

 restrictions, where collision detection is also preventing them from walking

 through walls (if implemented). The enemies should follow a random path by

 choosing and trying one of the four directions every time they update, and when

 they are within a certain range of the player they can “home in” and start

 following them with varying degrees of consistency. Perhaps something along the

 lines of a weighted greedy randomizer where there is an n chance of following

 the player and a (1-n) chance to choose a random direction instead. If colliding

 with the player, it should result in a game over or a subtraction of lives if

 implemented. This would be the stopping point of the project given the limited

 time.

 3. System Architecture

 The System architecture of the project drastically changed from its initial

 planned implementation. We leaned more towards the labs than initially planned

 to implement both the hardware and software logic. For the hardware, we ended

 up using vga_ball.sv for the main implementation of sprites and for the usual

 setups as done previously in lab 3. For Software, the base logic started out with

 lab 3’s implementation of hello.c, vga_ball.c and vga_ball.h, but taking in the

 keyboard interrupts from lab 2 with usbkeyboard.c and usbkeyboard.h. The

 changed diagram as a result was much more simpler.

 Figure 2. Revised System block diagram

 As seen in the diagram, the software portion became much more

 simplified. Most of the “hard” code would be inside of hello.c, which links up the

 usbkeyboard.c and usbkeyboard.h for keyboard interrupts along with vga_ball.c

 and vga_ball.h for a software/hardware interface. On the software side,

 vga_ball.sv was meant to connect ROMs of images to generate the graphic

 display.

 4. Graphics

 Figure 3: Sprite Sheet of New Rally X

 Before starting to talk about the hardware and software, it’s important to cover

 the graphics. Graphics were implemented by obtaining a New Rally X sprite map for the

 game. However, the plan was not to use all of the sprites as there was a time limit. Of

 these sprites there were only a few sprites that I needed. The most important were the 2

 cars, one blue for the player and one red for the enemy ai. Each sprite would have 4

 directions of movement, each to represent the cardinal movements.

 Figure 4. Car sprites

 The other sprite that was important was the flag sprite, which represents the

 scoring sprite. This sprite was the same size as the car sprites, which were all 16 x 16

 bits. To make them take up more space on the screen for better ease of gameplay, I

 decided to double the size of each sprite to 32 x 32 bits. This way, it was easier to see

 on screen and also meant that the map wasn’t so wide between each flag. The overall

 breakdown of memory allocation also can be seen below:

 Category File Name Sprite # of image Pixel Size Total Size
 (Bytes)

 Background wall 1 32 x 32 1920

 road 1 32 x 32 1920

 Player bluecar 4 32 x 32 7680

 Enemy redcar 4 32 x 32 7680

 Points flag 1 32 x 32 1920

 Figure 5: Memory Chart

 The plan was to have the sprite map layered where the exterior wall of green

 would be the lowest layer along with the orange road tiles, the points (flag) would be the

 middle layer and the player characters would be the topmost layer which would overlap

 the bottom most layers.

 5. Software

 The software design was a lot more straightforward than I had initially

 thought. The bulk of the changes had to be made to hello.c, which provided

 ample foundation for implementing the software and I was able to get the code to

 make it without errors.

 Movement

 The movement of the sprites would have to be implemented in hello.c but

 that was after determining what variables needed to be kept track of in order to

 acquire player movement, so a basic positional feature. The base program

 allowed us to print the base position of the vga_ball, send some colors to the

 write data, and provided a base list of colors that would be sent to the vga_ball.sv

 on the hardware side. The goal was to implement movement to overwrite these

 sends for something more relevant. The first thing that I noticed was that we

 needed a method to send updates to the software externally, as hello.c from lab

 3 only had the ability to receive from vga_ball.c and vga_ball.h which gave us our

 base variables. Logically, since we were using a keyboard, it was best to

 implement the keyboard interrupts from lab 2. Importing usbkeyboard.c and

 usbkeyboard.h, I had to connect these two to the hello.c implementation by

 changing the Makefile and also including usbkeyboard.h in the header. Doing

 some testing again, the keypress for the keyboard interrupts arrow keys were

 added again to indicate the directions up, down, left, and right. Wanting to

 implement a map in the future for the project, I had initially planned out an array

 with a 15 by 19 outer boundary with a 13 by 17 inner boundary. This would give

 ample space for the player to move around, and I just wanted to hardcode the

 outer boundary first for edge checks when the player ran into the “walls”.

 The movement was implemented by taking the lab 2 keyboard interrupts

 and then coding in the movement shifts based on what keyboard binding was

 pressed. This was located in a for(;;) loop in order to indefinitely loop such that

 the player had priority in movement over any other base action. The code in this

 part was edited to compile and the vga_ball variables were tweaked based on

 what was needed on the hardware side. It was assumed that hardware

 implementation would need an x and y position, and a pointer indicating which

 sprite to use indicated by psprite_n (player sprite number).

 Scoring

 Scoring was meant to be implemented by having a hard counter on the

 software side keeping track of the number of flags that were collided. This was

 indicated by “int i” in the main() function as a placeholder. However, due to not

 being able to implement the movement on the hardware side, it was foolhardy to

 try and implement collision detection and scoring until that was resolved on the

 other side. As such, scoring was not implemented and Enemy AI was not

 included as well.

 6. Hardware Design

 The main issues were found in the Hardware. Hardware was the core

 focus of this project for the last few weeks that I could not figure out in time.

 Based on what was said in class and Ed, I knew how to start up the hardware

 portion sprite wise, but my weak fundamentals from lab 3 really hurt.

 Sprite Generation

 Sprite generation was done trying to follow the professor’s lecture and ED

 discussions. First I took the ripped New Rally X sprites and ran them through

 matlab and python programs to try and convert them to .mif files for image

 processing. Following a guide on ROMs, I then converted these to ROMs using

 the quartus program on the lab computers. This gave me 4 player sprites, 4

 enemy ai sprites, 2 background sprites and 1 flag sprite in the form of .mif and .v

 files. These were to supply me with the sprite image data that I should’ve been

 able to load into the vga_ball.sv file.

 vga_ball.sv

 The trouble with the project was with my fundamental flawed

 understanding with vga_ball.sv. In my final implementation of the program, I set

 up 2 more logic registers, player_x and player_y to indicate horizontal and

 vertical distance and psprite_n to indicate sprite usage. However, I failed to

 implement an i/o connection to the hardware. For the reset I set it up similar to

 lab 3, but I would’ve been better off hardcoding a sprite than trying to figure out

 where to connect the ROM files since I was unable to satisfactorily set it up.

 Online guides seemed to point out that hardcoding might be the better option but

 there was also the option to load in the .mif files. However, the .mif files I

 generated seemed to be in a different format than the 1s and 0s, as it was in an

 array of numbers not even in hex, indicating that I might’ve messed up the

 transfer from .png to .mif. I was able to generate an image on the screen that

 wasn’t the default image, but evidently it was a flawed design. This is where I got

 stuck on the software side as well.

 7. Challenges

 The main challenge this semester for me was time. I was unable to learn at a fast

 enough pace to accomplish the goals I had set for myself. I was already behind from

 Lab 3 and it only further escalated through the final project. In addition, I overloaded

 myself this semester with coursework so I was unable to catch up sufficiently to

 effectively program this project. Getting stuck again on the hardware coding of sprites

 really killed any momentum I might’ve had since I couldn't program the scoring

 capabilities or test if my movement controls worked as they should have. I settled for

 code that compiled but it really makes a poor difference.

 Secondly, it was extremely difficult for me to coordinate with team members and I

 seem to have lost touch with them. It’s partially due to busy schedules and also just a

 lack of communication in general. This lead to an even greater lack of effective coding

 as I had no one to throw ideas around with, leading to me probably tunneling further

 down the wrong track compounded with the busy work schedule of the semester

 preventing me from 100% focusing on the project without completely flunking my other

 core classes.

 Sprite Implementation was a mess due to my lack of knowledge from lab 3

 mainly, which I was able to get a demonstration of a working model but I was unable to

 implement it myself in this final project. Although I might be able to code on a software

 level, my lack of hardware knowledge was palpable. This further compounded

 hardware/software issues and basically brought me into a deadlock situation.

 8. Further Improvements

 This project could be drastically improved due to the challenges faced

 hindering its success. I failed to accomplish the base design that I had hoped to

 implement in this course due to my lack of experience. Some base improvements

 would include:

 ● The scoring system could be done via a collision detection system with the

 flag sprites that we have ripped from the New Rally X sprite sheet. This

 should be relatively easy to implement assuming that the sprite connection

 is successfully implemented. It’d be mainly a software implementation, as

 we’d have to detect on the software side when the player collides with

 them. The bigger challenge for this flag system would be the randomized

 spawns that’d be needed to make the game interesting

 ● The map could use obstacles. New Rally X had a variety of obstacles in its

 maze like structure. In fact, the map was “zoomed in” onto the car to make

 it harder to navigate. This would make the game more interesting

 ● Sound and controller implementation would be an important part of

 mimicking the original game. New Rally X was played with a joystick and

 the sound would definitely make the game more responsive.

 ● Enemy AI could be added to the game in order to pose a threat to the

 player. In fact, this is the game over condition that is needed to end the

 game other than a hard reset or a hard cap on points.

 ● With Enemy AI, it’d be more important to implement the smoke screen

 which is the player’s countermeasure to being cornered. This would be a

 button that would deploy an obstacle behind of the player that would spin

 out only the Enemy AI.

 ● Two players could be added if we don’t zoom in the map, and it’d make it

 similar to Pacman. This however is a sidegrade compared to everything

 else.

 9. References

 Lab Website

 http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/

 New Rally X

 https://www.youtube.com/watch?reload=9&v=ssB-FTfuH3U

 New Rally X Sprite Sheet

 https://www.spriters-resource.com/arcade/rallyxnewrallyx/sheet/57635/

 Sprite Rundown:

 https://www.youtube.com/watch?v=2ApafTCylus

 Matlab Code to make .png to .mif (didn’t work for me but possibly useful)

 https://www.mathworks.com/matlabcentral/fileexchange/45833-generating-mif-file

 s-from-images

 Video Display Processor Documentation

 http://www.cs.columbia.edu/~sedwards/papers/TMS9918.pdf

http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/
https://www.youtube.com/watch?reload=9&v=ssB-FTfuH3U
https://www.spriters-resource.com/arcade/rallyxnewrallyx/sheet/57635/
https://www.youtube.com/watch?v=2ApafTCylus
https://www.mathworks.com/matlabcentral/fileexchange/45833-generating-mif-files-from-images
https://www.mathworks.com/matlabcentral/fileexchange/45833-generating-mif-files-from-images
http://www.cs.columbia.edu/~sedwards/papers/TMS9918.pdf

 Hardware Sprites Tutorial

 https://projectf.io/posts/hardware-sprites/

 .mif Tutorial

 https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/merge

 dProjects/reference/glossary/def_mif.htm

 ROM Creation Tutorial

 https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf

 10. Source Code

 hello.c

 /*

 * Userspace program that communicates with the vga_ball device driver

 * through ioctls

 *

 * Stephen A. Edwards

 * Columbia University

 */

 #include <stdio.h>

https://projectf.io/posts/hardware-sprites/
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/reference/glossary/def_mif.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/reference/glossary/def_mif.htm
https://mil.ufl.edu/3701/docs/quartus/rom_creation.pdf

 #include "vga_ball.h"

 #include <sys/ioctl.h>

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 #include <string.h>

 #include <unistd.h>

 #include <math.h>

 #include <pthread.h>

 #include "usbkeyboard.h"

 #include <stdlib.h>

 #define MAXHOR 480

 #define MAXVER 608

 int vga_ball_fd;

 int map[15][19];

 struct libusb_device_handle *keyboard;

 uint8_t endpoint_address;

 /* Read and print the background color */

 void print_background_color() {

 vga_ball_arg_t vla;

 if (ioctl(vga_ball_fd, VGA_BALL_READ_BACKGROUND, &vla)) {

 perror("ioctl(VGA_BALL_READ_BACKGROUND) failed");

 return;

 }

 printf("%02x %02x\n",

 vla.background.red, vla.background.green);

 }

 /* Set the background color */

 void set_background_color(const vga_ball_color_t *c)

 {

 vga_ball_arg_t vla;

 vla.background = *c;

 if (ioctl(vga_ball_fd, VGA_BALL_WRITE_BACKGROUND, &vla)) {

 perror("ioctl(VGA_BALL_SET_BACKGROUND) failed");

 return;

 }

 }

 /* print position */

 /*

 void print_position() {

 vga_ball_arg_t vla;

 if (ioctl(vga_ball_fd, VGA_BALL_READ_BACKGROUND, &vla)) {

 perror("ioctl(VGA_BALL_READ_BACKGROUND) failed");

 return;

 }

 printf("%02x %02x %02x\n",

 vla.background.red, vla.background.green, vla.background.blue);

 }

 */

 /* set position */

 /*

 void set_background_color(uint hx, uint vy)

 {

 */

 /* Plan is to send hx and vy to move hardware */

 /* unimplemented due to technical issues */

 /*

 vga_ball_arg_t vla;

 vga_ball_color_t position;

 position.red = (unsigned char) hx;

 position.green = (unsigned char) vy;

 position.blue = (unsigned char) 0;

 vla.background = position;

 if (ioctl(vga_ball_fd, VGA_BALL_WRITE_BACKGROUND, &vla)) {

 perror("ioctl(VGA_BALL_SET_BACKGROUND) failed");

 return;

 }

 }

 */

 int main()

 {

 vga_ball_arg_t vla;

 struct usb_keyboard_packet packet;

 int transferred;

 char keystate[12];

 int i;

 /* bools for direction of movement */

 int x1 = 200;

 int y1 = 300;

 static const char filename[] = "/dev/vga_ball";

 /*

 static const vga_ball_color_t colors[] = {

 { 0xff, 0x00, 0x00 }, * Red *

 { 0x00, 0xff, 0x00 }, * Green *

 { 0x00, 0x00, 0xff }, * Blue *

 { 0xff, 0xff, 0x00 }, * Yellow *

 { 0x00, 0xff, 0xff }, * Cyan *

 { 0xff, 0x00, 0xff }, * Magenta *

 { 0x80, 0x80, 0x80 }, * Gray *

 { 0x00, 0x00, 0x00 }, * Black *

 { 0xff, 0xff, 0xff } * White *

 };

 # define COLORS 9

 */

 printf("VGA ball Userspace program started\n");

 if ((vga_ball_fd = open(filename, O_RDWR)) == -1) {

 fprintf(stderr, "could not open %s\n", filename);

 return -1;

 }

 /*

 printf("initial state: ");

 print_background_color();

 for (i = 0 ; i < 24 ; i++) {

 set_background_color(&colors[i % COLORS]);

 //print_background_color();

 set_position(40*i, 20*i);

 print_position();

 usleep(400000);

 }

 */

 if ((keyboard = openkeyboard(&endpoint_address)) == NULL) {

 fprintf(stderr, "Did not find a keyboard\n");

 exit(1);

 }

 /* Look for and handle keypresses */

 for (;;) {

 libusb_interrupt_transfer(keyboard, endpoint_address,

 (unsigned char *) &packet, sizeof(packet),

 &transferred, 0);

 if (transferred == sizeof(packet)) {

 /* right */

 if (packet.keycode[4] == 0x4F) {

 if (x1 < 464) {

 x1 += 1;

 }

 }

 /* left */

 else if (packet.keycode[4] == 0x50) {

 if (x1 > 16) {

 x1 -= 1;

 }

 }

 /* down */

 else if (packet.keycode[4] == 0x51) {

 if (y1 > 16) {

 y1 -= 1;

 }

 }

 /* up */

 else if (packet.keycode[4] == 0x52) {

 if (y1 < 592) {

 y1 += 1;

 }

 }

 }

 }

 printf("VGA BALL Userspace program terminating\n");

 return 0;

 }

 vga_ball.h

 #ifndef _VGA_BALL_H

 #define _VGA_BALL_H

 #include <linux/ioctl.h>

 typedef struct {

 unsigned char red, green, player_x, player_y, psprite_n;

 } vga_ball_color_t;

 typedef struct {

 vga_ball_color_t background;

 } vga_ball_arg_t;

 #define VGA_BALL_MAGIC 'q'

 /* ioctls and their arguments */

 #define VGA_BALL_WRITE_BACKGROUND _IOW(VGA_BALL_MAGIC, 1,

 vga_ball_arg_t *)

 #define VGA_BALL_READ_BACKGROUND _IOR(VGA_BALL_MAGIC, 2,

 vga_ball_arg_t *)

 #endif

 usbkeyboard.h

 #ifndef _USBKEYBOARD_H

 #define _USBKEYBOARD_H

 #include <libusb-1.0/libusb.h>

 #define USB_HID_KEYBOARD_PROTOCOL 1

 /* Modifier bits */

 #define USB_LCTRL (1 << 0)

 #define USB_LSHIFT (1 << 1)

 #define USB_LALT (1 << 2)

 #define USB_LGUI (1 << 3)

 #define USB_RCTRL (1 << 4)

 #define USB_RSHIFT (1 << 5)

 #define USB_RALT (1 << 6)

 #define USB_RGUI (1 << 7)

 struct usb_keyboard_packet {

 uint8_t modifiers;

 uint8_t reserved;

 uint8_t keycode[6];

 };

 /* Find and open a USB keyboard device. Argument should point to

 space to store an endpoint address. Returns NULL if no keyboard

 device was found. */

 extern struct libusb_device_handle *openkeyboard(uint8_t *);

 #endif

 usbkeyboard.c

 #include "usbkeyboard.h"

 #include <stdio.h>

 #include <stdlib.h>

 /* References on libusb 1.0 and the USB HID/keyboard protocol

 *

 * http://libusb.org

 * http://www.dreamincode.net/forums/topic/148707-introduction-to-using-libusb-10/

 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf

 * http://www.usb.org/developers/devclass_docs/Hut1_11.pdf

 */

 /*

 * Find and return a USB keyboard device or NULL if not found

 * The argument con

 *

 */

 struct libusb_device_handle *openkeyboard(uint8_t *endpoint_address) {

 libusb_device **devs;

 struct libusb_device_handle *keyboard = NULL;

 struct libusb_device_descriptor desc;

 ssize_t num_devs, d;

 uint8_t i, k;

 /* Start the library */

 if (libusb_init(NULL) < 0) {

 fprintf(stderr, "Error: libusb_init failed\n");

 exit(1);

 }

 /* Enumerate all the attached USB devices */

 if ((num_devs = libusb_get_device_list(NULL, &devs)) < 0) {

 fprintf(stderr, "Error: libusb_get_device_list failed\n");

 exit(1);

 }

 /* Look at each device, remembering the first HID device that speaks

 the keyboard protocol */

 for (d = 0 ; d < num_devs ; d++) {

 libusb_device *dev = devs[d];

 if (libusb_get_device_descriptor(dev, &desc) < 0) {

 fprintf(stderr, "Error: libusb_get_device_descriptor failed\n");

 exit(1);

 }

 if (desc.bDeviceClass == LIBUSB_CLASS_PER_INTERFACE) {

 struct libusb_config_descriptor *config;

 libusb_get_config_descriptor(dev, 0, &config);

 for (i = 0 ; i < config->bNumInterfaces ; i++)

 for (k = 0 ; k < config->interface[i].num_altsetting ; k++) {

 const struct libusb_interface_descriptor *inter =

 config->interface[i].altsetting + k ;

 if (inter->bInterfaceClass == LIBUSB_CLASS_HID &&

 inter->bInterfaceProtocol == USB_HID_KEYBOARD_PROTOCOL) {

 int r;

 if ((r = libusb_open(dev, &keyboard)) != 0) {

 fprintf(stderr, "Error: libusb_open failed: %d\n", r);

 exit(1);

 }

 if (libusb_kernel_driver_active(keyboard,i))

 libusb_detach_kernel_driver(keyboard, i);

 libusb_set_auto_detach_kernel_driver(keyboard, i);

 if ((r = libusb_claim_interface(keyboard, i)) != 0) {

 fprintf(stderr, "Error: libusb_claim_interface failed: %d\n", r);

 exit(1);

 }

 *endpoint_address = inter->endpoint[0].bEndpointAddress;

 goto found;

 }

 }

 }

 }

 found:

 libusb_free_device_list(devs, 1);

 return keyboard;

 }

 Makefile

 ifneq (${KERNELRELEASE},)

 # KERNELRELEASE defined: we are being compiled as part of the Kernel

 obj-m := vga_ball.o

 else

 # We are being compiled as a module: use the Kernel build system

 KERNEL_SOURCE := /usr/src/linux-headers-$(shell uname -r)

 PWD := $(shell pwd)

 #CFLAGS = -Wall

 default: module hello

 hello: hello.o usbkeyboard.o

 cc $(CFLAGS) -o hello hello.o usbkeyboard.o -lusb-1.0 -pthread -lm

 hello.o: hello.c usbkeyboard.h

 module:

 ${MAKE} -C ${KERNEL_SOURCE} SUBDIRS=${PWD} modules

 clean:

 ${MAKE} -C ${KERNEL_SOURCE} SUBDIRS=${PWD} clean

 ${RM} hello

 TARFILES = Makefile README vga_ball.h vga_ball.c hello.c usbkeyboard.h

 usbkeyboard.c

 TARFILE = lab3-sw.tar.gz

 .PHONY : tar

 tar : $(TARFILE)

 $(TARFILE) : $(TARFILES)

 tar zcfC $(TARFILE) .. $(TARFILES:%=lab3-sw/%)

 endif

 vga_ball.sv

 /*

 * Avalon memory-mapped peripheral that generates VGA

 *

 * Stephen A. Edwards

 * Columbia University

 */

 module vga_ball(input logic clk,

 input logic reset,

 input logic [7:0] writedata,

 input logic write,

 input chipselect,

 input logic [2:0] address,

 output logic [7:0] VGA_R, VGA_G, VGA_B,

 output logic VGA_CLK, VGA_HS, VGA_VS,

 VGA_BLANK_n,

 output logic VGA_SYNC_n);

 logic [10:0] hcount;

 logic [9:0] vcount;

 logic [7:0] background_r, background_g, background_b;

 logic [7:0] player_x;

 logic [7:0] player_y;

 logic [7:0] psprite_n;

 vga_counters counters(.clk50(clk), .*);

 always_ff @(posedge clk)

 if (reset) begin

 background_r <= 8'h0;

 background_g <= 8'h0;

 background_b <= 8'h0;

 player_x <= 8'h0;

 player_y <= 8'h0;

 psprite_n <= 8'h0;

 end else if (chipselect && write)

 case (address)

 3'h0 : background_r <= writedata;

 3'h1 : background_g <= writedata;

 3'h2 : player_x <= writedata;

 3'h3 : player_y <= writedata;

 3'h4 : psprite_n <= 8'h0;

 endcase

 always_comb begin

 {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h0};

 if (VGA_BLANK_n)

 if (hcount >= 16 && hcount < 480 && vcount >= 16 & vcount < 608)

 {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};

 else

 {VGA_R, VGA_G, VGA_B} =

 {background_r, background_g, background_b};

 end

 logic [9:0] currpos;

 always_ff @ (posedge clk) begin

 if (hcount < (player_x*4 + 64) && vcount < (player_y*2 + 32) && hcount >=

 (player_x*4) && vcount >= (player_y *2))

 currpos <= vcount[8:1] - player_y + psprite_n;

 end

 endmodule

 module vga_counters(

 input logic clk50, reset,

 output logic [10:0] hcount, // hcount[10:1] is pixel column

 output logic [9:0] vcount, // vcount[9:0] is pixel row

 output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n);

 /*

 * 640 X 480 VGA timing for a 50 MHz clock: one pixel every other cycle

 *

 * HCOUNT 1599 0 1279 1599 0

 * _______________ ________

 * ___________| Video |____________| Video

 *

 *

 * |SYNC| BP |<-- HACTIVE -->|FP|SYNC| BP |<-- HACTIVE

 * _______________________ _____________

 * |____| VGA_HS |____|

 */

 // Parameters for hcount

 parameter HACTIVE = 11'd 1280,

 HFRONT_PORCH = 11'd 32,

 HSYNC = 11'd 192,

 HBACK_PORCH = 11'd 96,

 HTOTAL = HACTIVE + HFRONT_PORCH + HSYNC +

 HBACK_PORCH; // 1600

 // Parameters for vcount

 parameter VACTIVE = 10'd 480,

 VFRONT_PORCH = 10'd 10,

 VSYNC = 10'd 2,

 VBACK_PORCH = 10'd 33,

 VTOTAL = VACTIVE + VFRONT_PORCH + VSYNC +

 VBACK_PORCH; // 525

 logic endOfLine;

 always_ff @(posedge clk50 or posedge reset)

 if (reset) hcount <= 0;

 else if (endOfLine) hcount <= 0;

 else hcount <= hcount + 11'd 1;

 assign endOfLine = hcount == HTOTAL - 1;

 logic endOfField;

 always_ff @(posedge clk50 or posedge reset)

 if (reset) vcount <= 0;

 else if (endOfLine)

 if (endOfField) vcount <= 0;

 else vcount <= vcount + 10'd 1;

 assign endOfField = vcount == VTOTAL - 1;

 // Horizontal sync: from 0x520 to 0x5DF (0x57F)

 // 101 0010 0000 to 101 1101 1111

 assign VGA_HS = !((hcount[10:8] == 3'b101) &

 !(hcount[7:5] == 3'b111));

 assign VGA_VS = !(vcount[9:1] == (VACTIVE + VFRONT_PORCH) / 2);

 assign VGA_SYNC_n = 1'b0; // For putting sync on the green signal; unused

 // Horizontal active: 0 to 1279 Vertical active: 0 to 479

 // 101 0000 0000 1280 01 1110 0000 480

 // 110 0011 1111 1599 10 0000 1100 524

 assign VGA_BLANK_n = !(hcount[10] & (hcount[9] | hcount[8])) &

 !(vcount[9] | (vcount[8:5] == 4'b1111));

 /* VGA_CLK is 25 MHz

 * __ __ __

 * clk50 __| |__| |__|

 *

 * _____ __

 * hcount[0]__| |_____|

 */

 assign VGA_CLK = hcount[0]; // 25 MHz clock: rising edge sensitive

 endmodule

