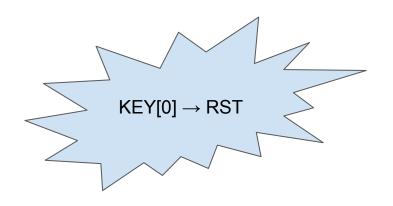
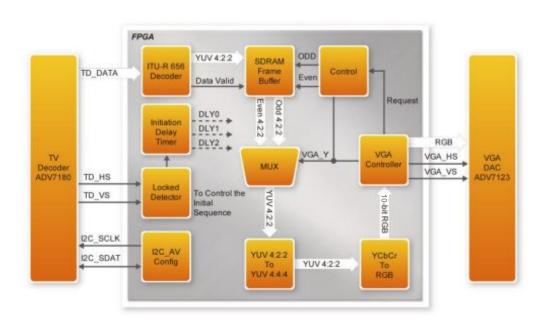


# Invisible Curtain

Abhijeet Nayak (an3075) Srivatsan Raveendran (sr3859)




#### 1 Motivation


- Implement Chroma-keying on video stream relayed through a composite camera
- A red color foreground cloth is chosen
- When held before the camera, it gets masked to display the background

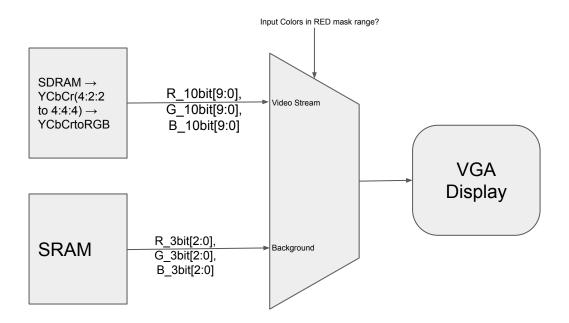
#### Video Processing Features

| Feature                 | SW [9:0] |
|-------------------------|----------|
| Invisible Cloak         | 0        |
| Video OFF (for privacy) | 1        |
| Captured Background     | 2        |
| Red Filter Video        | 3        |
| Green Filter Video      | 4        |
| Blue Filter Video       | 5        |
| Grayscale Video         | 6        |
| Invert Video            | 7        |
| Low Brightness Video    | 8        |
| High Brightness Video   | 9        |
|                         | I        |



### 2 Systems Architecture




#### 3 NTSC

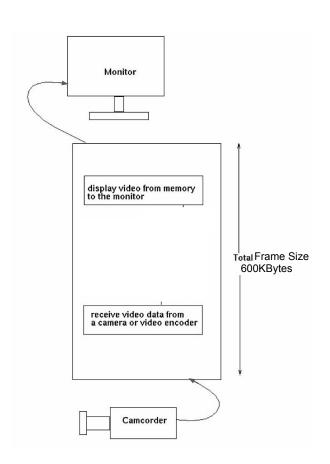
- Low resolution
- Auto-gain to adjust saturation
- Output data in YCbCr format
- Access from FPGA through ADV 7180

#### **Color Format Used**

- 16 bit YCbCr 4:2:2
- 24 bit YCbCr 4:4:4
- 10 bit RGB

### Chromakey




### Memory Management -I

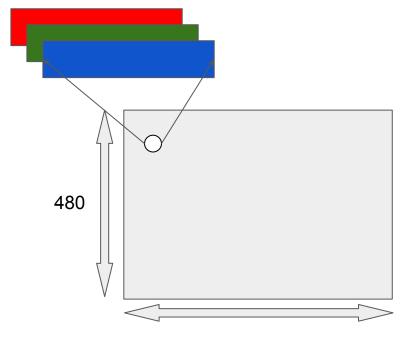
#### **Video Stream Buffer**

- → YCbCr 16 bit per pixel
- $\rightarrow$  1 Frame = 16 x 640 x 480 = 4915200 bits  $\Rightarrow$  600 KB but available only 512 KB in SRAM

#### SDRAM (4 - port)

- → Buffered each frame
- → Interlaced Write, Deinterlaced Read



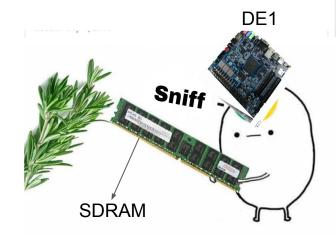

### Memory Management -II

#### **Background Image**

- → RGB 3 bit per pixel, 3 channels
- $\rightarrow$  1 Frame = 3 x 3 x 640 x 480 = 2764800 bits ⇒ 337.5 KB
- → Cannot use DRAM due to 2 port deinterlace logic ⇒ SRAM

#### **SRAM**

- → Store frame on RST
- → Read when Mask Enabled




### Challenges

- Color Detection
  - Perfecting the threshold for detecting real-world red shades - varied lighting
- Memory Constraints in SRAM
  - Moved to SDRAM
- Handling aliasing artefacts
  - Accessing only Active Frame region using corrected HCount, VCount information to address pixel frame from memory
- SDRAM Synchronization
  - o 3ns lead PLL
  - Handling reads from 2 different memory areas –
     Background & Video Stream

Smelling rosemary increases memory

Sniff **rosemary**. The herb has been shown, in trials, to improve working **memory** because it appears to have an arousing effect on a brain



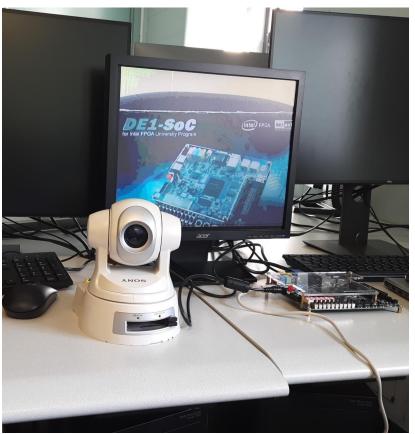
### What Could have been better? – Future Ideas

- Wider use of SDRAM ⇒ More bits for Background
- Connect to HPS Software image processing + 1GB SDRAM
- Send video over network Video Call (Ethernet camera)

### Testing & Debugging

#### Test Cases

- Check Color Mask with different shades of Red
  - Expanded Color Range incrementally
- Check if system works after reset aliasing after reset
  - Resolved VGA → SRAM addressing issue
- Background Storage Isolating issue between camera & memory
  - Generated image in python and copied to SRAM
- Test all
  - Covered possible video processing modes toggled through HW switches




```
Current_X = HCont-HBlank
Current_Y = VCont-VBlank
Addr =
Current_Y*H_Active+Current_X
XBlank = XFront+XSync+Xback
```

## Invisibility in action







### Other features













Thank you for listening!

Open to Questions & Suggestions