
Hardware Accelerated CNN 
for Digit Recognition

Liam Bishop, Dan Cooke, Felix Hanau, Ryan 
Kennedy and Richard Mouradian 



Model

●
● We used a very compact and simple CNN model featuring 2 convolution layers, 2 pooling layers and 1 

Fully Connected layer
● The input to the network was a 28x28 gray scale image
● The output is a probability vector



Model Size and Parameters 



● Implementation of CNN written in C to:
○ Verify functionality of configuration
○ Implemented using 16-bit fixed-point approximation of trained weights
○ Debug output of hardware implementation

■ Also used verilator to generate waveforms and compare results of different layers
● Trained model (weight and biases) with Keras
● 98% accuracy when tested with recognizing handwritten digits

Software Implementation



Block Diagram
● Software:

○ Sends image data for processing
○ Controls hardware by telling it which layer 

to compute and waits for hardware to 
return acknowledgement

● Hardware:
○ 4 main Sections

■ MAC and After MAC
■ Average Pooling
■ Memory
■ Control

○ Data stream is looped through modules to 
perform different layer operations of CNN



● 14 Registers
○ Control Input
○ Control Output
○ Input address 
○ Input data
○ Output registers (10)

● Control states

Software Driver Interface



● Used to compute Convolution layers and Fully Connected Layer
● MAC:

○ Convolution:
■ 24 multiply and accumulate can be performed simultaneously.

○ Fully Connected:
■ All 10 outputs are computed simultaneously

● After MAC:
○ Processes layers:

■ Convolution:
● Performs ReLU, adds bias to outputs of MACs, and shift outputs for proper scaling

■ Fully Connected:
● Shifts outputs from MAC for proper scaling

MAC and After MAC



● Used to compute Pooling Layer outputs
○ Average of the 4 inputs

Pooling

Memory
● Stores input image, layer weights, and 

between layer values
○ Originally Quartus Mega-Wizard Memory 

blocks but changed to implied memory 
for ease of use and debugging

○ Redundant memory blocks used to 
allow for more that 2 accesses at a time

○ Each section of memory controlled by 
read and write counters



● Software implementation runtime: 7.71 ms
● Hardware Implementation runtime (Verilator): 0.205 ms

○ Capable of processing 4878 images per second
● 37 times faster than software
● FPGA resource Utilization

○ Total block memory bits: 371,328 (9%)
○ Total DSP blocks: 24 (28%)
○ Total Registers: 2534

Benchmarking and Results


