
Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

CSEE 4840 Embedded System Design Final Project Report

Convolutional Neural Network

1. Introduction
Convolutional Neural Network (CNN) is widely used in the machine learning task in the
computer vision and neural language processing area. In this project, we implement the
convolutional neural network algorithm on the DE-1 SOC FPGA + HPS to run a pre-trained
CNN-based network: VGG-11.

2. Data Flow
The figure below shows the structure of the VGG11, which contains these types of operator:
conv2d, Relu, max pooling 2d, adaptive average pooling, linear(fully connection).

To limit the volume of data transmitted
between the HPS and the FPGA, we
did the following modification compared
with the original VGG

1. Instead of the famous VGG16,
we apply VGG11, which is
lighter with less parameters
compared with VGG16.

2. The input image shape is set to
32 by 32 by 3 rather than 224
by 224 by 3, and the output
class number is changed from
1000 to 10. We use an open
source 32 by 32 RGB dataset
called CIFAR-10 to train the
VGG11 network.

3. Float point 16 is used instead of
float point 32. We use fp16 to
make the data width shorter.
The fp16 follows the IEEE 754
with one bit sign, five bit
exponent and ten bit mantissa.

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

3. Hardware System Architecture

HPS Data to FPGA FPGA Data to HPS

The system is built with two main components, HPS and FPGA that work with each other. From
high level, the HPS is in charge of interfacing with the user and obtains the initial data, whereas
the FPGA is in charge of low level computations.

The system is first configured and generated using qsys (platform designer). The qsys
configuration is as follows:

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

The detailed configuration of each block is as follows:

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

- The HPS system is configured with two DDR3 SDRAM interfaces, connected through
the Avalon Memory Mapped interface as shown below. One is configured to read-only
and the other as write-only.

- Two DMA-onchip_memory pairs are created for exchanging data between HPS and
FPGA. As seen below, the first dma0 has its read_master connected to HPS’s sdram0
(read-only), and write_master to onchip_memory0. This dma copies data from HPS to
the onchip_memory. Vise versa, dma1 has its read_master connected to
on_chip_memory1 and write_master connected to HPS’s sdram1 (write-only).

- A list of PIO IP cores are added for HPS to send or receive control signals from / to
FPGA. As seen below, the h2f_finish signal has one bit and is configured as an input,
with conduit “h2f_finish” and base address 0x00000080.

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

This signal can be used in the top level module as follows, as part of the generated qsys
module.

In the HPS code, we first take advantage of the “sopc-create-header-files” tool from quartus to
generate a header file that has the configured base addresses defined using the following
command:
sopc-create-header-files "/path/to/qsys.sopcinfo" --single hps_0.h
--module hps_0

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

The generated header file includes the defines above, and we can use the PIO in the HPS C
code as follows:

//lightweight HPS-to-FPGA bridge
void *virtual_base;
virtual_base = mmap(NULL, HW_REGS_SPAN, (PROT_READ | PROT_WRITE),
MAP_SHARED, fd, HW_REGS_BASE);

uint32_t * h2f_finish = virtual_base + ((unsigned long)(
ALT_LWFPGASLVS_OFST + H2F_FINISH_BASE) & (unsigned long)(
HW_REGS_MASK));

*h2f_finish = 0;

Similarly, as the DMA controller is also on the lightweight HPS-to-FPGA bridge, we are able to
command the DMA controller similarly:

// ========== HPS —--DMA—--–> FPGA ==========
void *h2p_lw_dma_addr0 = NULL;
h2p_lw_dma_addr0 = virtual_base + ((unsigned long)(
ALT_LWFPGASLVS_OFST + DMA_0_BASE) & (unsigned long)(HW_REGS_MASK)
);

#define _DMA_REG_STATUS(BASE_ADDR) *((uint32_t *)BASE_ADDR+0)
#define _DMA_REG_READ_ADDR(BASE_ADDR) *((uint32_t *)BASE_ADDR+1)
#define _DMA_REG_WRITE_ADDR(BASE_ADDR) *((uint32_t *)BASE_ADDR+2)
#define _DMA_REG_LENGTH(BASE_ADDR) *((uint32_t *)BASE_ADDR+3)
#define _DMA_REG_CONTROL(BASE_ADDR) *((uint32_t *)BASE_ADDR+6)

_DMA_REG_STATUS(h2p_lw_dma_addr0) = 0;

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

_DMA_REG_READ_ADDR(h2p_lw_dma_addr0) = physical_addr1; // read from
F2SDRAM_0
_DMA_REG_WRITE_ADDR(h2p_lw_dma_addr0) = 0; // write to F2SDRAM_1
_DMA_REG_LENGTH(h2p_lw_dma_addr0) = <size>; //write <size>

//start the transfer
_DMA_REG_CONTROL(h2p_lw_dma_addr0) = _DMA_CTR_BYTE | _DMA_CTR_GO |
_DMA_CTR_LEEN;

// ========== FPGA —---DMA—--–> HPS ==========
void *h2p_lw_dma_addr1 = NULL;
h2p_lw_dma_addr1 = virtual_base + ((unsigned long)(
ALT_LWFPGASLVS_OFST + DMA_1_BASE) & (unsigned long)(HW_REGS_MASK)
);

_DMA_REG_STATUS(h2p_lw_dma_addr1) = 0;
_DMA_REG_READ_ADDR(h2p_lw_dma_addr1) = 0; // read from OCM
_DMA_REG_WRITE_ADDR(h2p_lw_dma_addr1) = physical_addr2; // write to
SDRAM (DDR3)
_DMA_REG_LENGTH(h2p_lw_dma_addr1) = <size>; // read <size> bytes

//start the transfer
_DMA_REG_CONTROL(h2p_lw_dma_addr1) = _DMA_CTR_BYTE | _DMA_CTR_GO |

_DMA_CTR_LEEN;

// wait for DMA to be finished
waitDMAFinish(h2p_lw_dma_addr1);

void waitDMAFinish(void *BASE_ADDR) {
while(!(_DMA_REG_STATUS(BASE_ADDR) & _DMA_STAT_DONE) &&

(_DMA_REG_STATUS(BASE_ADDR) & _DMA_STAT_BUSY));
}

4. Main Modules

4.1 readOCM.sv
This module handles reading from the OCM, including both reading weight and bias, and
loading the feature map.

After HPS finishes asking the DMA controller to copy data into OCM, it sends a signal to the
“start” wire below, after which the readOCM module will load the weight and bias from OCM into
“weight_bias” and raise “in_data_ready” when finished.

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

The module also reads feature maps from OCM at index “conv_idx”, after receiving a rising
edge on “start_fm”. It will read the feature map into “feat_map_in” and raise “finish_fm” when
done.

The detailed interface is as follows.

module readOCM(
input logic clk, reset,

// ------------ Read weight and bias ------------
// Input from HPS
input logic start,
input logic [15: 0] read_length,
input logic [5: 0] read_data_dim,

// Output to pipeline
output logic in_data_ready,
output logic [(3*3+1)*16-1: 0] weight_bias,
// --

// ------------ Read feature map 3x3 ------------
// Input from pipeline
input logic start_fm,
input logic [15: 0] conv_idx,

// Output to pipeline
output logic finish_fm,
output logic [3*3*16-1: 0] feat_map_in,
// --

// On-Chip RAM 0 s2 (read)
input logic [7: 0] ocm0_readdata,
output logic [16: 0] ocm0_addr,
output logic ocm0_chip,
output logic ocm0_clk_enab,

// Debug
output logic [2: 0] debug_state

);

The module is implemented using a finite state machine structure with the following states.
Please refer to the code for detailed implementation.
S0: Reset

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

S1: Prepare to read weight bias
S2: Read weight bias
S3: Finished reading weight bias. Wait for feature map request
S4: Received feature map request, prepare to read
S5: Read feature map 8 LSB
S6: Read feature map 8 MSB
S7: Finished feature map reading

4.2 convOpt.sv
This module implements convolution. Input “in_data_ready” signals that weight and bias is
ready, and “in_data_dim” is the dimension of the data. “Weight_bias” is the weight and bias read
by readOCM module. The module uses a finite state machine to manage states. Please see the
source code for detailed implementation.

module convOpt(
input logic clk, reset,

// Input from pipeline
input logic in_data_ready,
input logic [5: 0] in_data_dim,
input logic [(3*3+1)*16-1: 0] weight_bias,

// Request FM from pipeline
output logic start_fm,
output logic [15: 0] conv_idx,

input logic finish_fm,
input logic [3*3*16-1: 0] feat_map_in,

input logic finish_out,

// Output to pipeline
output logic start_out,
output logic [16: 0] out_idx,
output logic [3*3*16-1: 0] feat_map_out,

// Output to HPS
output logic finish,

// Debug
output logic [2: 0] debug_state

);

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

4.3 writeOCM.sv
This module handles writing data to OCM that will be DMA’d back to HPS. The module uses a
finite state machine to manage states. Please see the source code for detailed implementation.

module writeOCM(
input logic clk, reset,
input logic start_out,
input logic [16: 0] out_idx,
input logic [3*3*16-1: 0] feat_map_out,

output logic finish_out,

// On-Chip RAM 1 s1 (write)
output logic [7: 0] ocm1_writedata,
output logic [16: 0] ocm1_addr,
output logic ocm1_chip,
output logic ocm1_clk_enab,
output logic ocm1_write,

output logic [15: 0] count,

// Debug
output logic [2: 0] debug_state

);

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

5. Testbench
Version 1:
For one 32x32 feature map, total time is 472us
Loading 32*32: 40us
Computation: 390us
Sending 32*32: 40us

Version 2:
For one 32x32 feature map, total time is 840us

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

6. Synthesis result

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

Yanchen Liu (yl4189) Columbia University
Minghui Zhao (mz2866) Spring 2022

6. Other Modules & Test Files Developed

Main.sv: Top module for synthesis

readFMPipeline.sv: Version 1’s read from OCM

readImg.sv: Test module

tbEchoWrite.sv: Test bench top module for writing to OCM and echo back

tbFPU.sv: Test bench top module for the float16 module used

tbOpt.sv: Test bench top module for version 2

tbPipeline.sv: Test bench top module for version 1

tbRWFeatureMap.sv: Test bench top module for reading and writing feature map

testEcho.sv: Test bench top module for echoing data from input OCM to output OCM

writeFeatMap.sv: Write feature map to output OCM initial test

writeFMPipeline.sv: Write feature map to output OCM version 1

writeOCM.sv: Write feature map to output OCM version 2

writeOCM8.sv: Initial test to write to OCM 8-bit data

