
Chip-8 Emulator
Team:

Xin Gao (xg2376)
Daniel Indictor (di2215)
Elysia Witham (ew2632)
Yuhang Zhu (yz4136)

Block Diagram

FSM Diagram

Code Layout

Chip-8

● hw/
○ Contains SystemVerilog modules (next slide)
○ Contains module-level unit tests

● sw/
○ Contains kernel driver (chip8.c)
○ Contains user-space application

● swproto/
○ Contains software prototype
○ Contains unit tests

Chip-8 Hardware
● display_ram: A simple 256-byte two-port read-write RAM to be read by the display

module and written by either the software driver or the CPU module.
● chip_ram: A 4096-byte two-port read-write RAM to be read by the CPU and written by

the CPU or the software driver.
● display: This module does the job of reading data from the display ram and

scaling/fitting the 64x32 pixel display native to CHIP8 to a 640x480 pixel VGA display.
It thus also handles setting VGA protocol signals.

● cpu: This module is incomplete (as you shall see) but in theory it should house the
finite state machine given earlier and a huge switch statement to handle the opcodes.

● sound: This module is complete (but not integrated). In theory, it should just make the
FPGA make a sound on its AUX port given the signal to do so.

● yachip: This is the top-level module (completed but not tested) that delegates access
to the display and chip8 rams to the CPU and display module. As discussed, it gives
priority to the software driver.

● timer: Timers are necessary in three parts in our code: first, for two special purpose
registers which, when set to a non-zero value tick down to 0 at 60Hz, and another to
slow down the CPU.

VGA Display

Ram module
Chip8 only had 64x32 pixel display
Interface with CPU.

Audio

● Generate a memory initialization file (.mif) for audio
effect

● Single-port ROM memory blocks
● Use 3 IPs in Qsys:

○ Audio and Video Config
○ Audio Clock for DE-series Board
○ Audio.

Keyboard Layout

We opted to use a USB keyboard rather than a dedicated pin pad for
CHIP8 inputs. Many online CHIP8 emulators support a keyboard with the
same keys as the ones we are using mapped to the same inputs. The
mapping is as follows:

 1 2 3 4 1 2 3 C
 q w e r 4 5 6 D
 a s d f --> 7 8 9 E
 z x c v A 0 B F
The left side represents a standard keyboard, with the right side
representing what it is being translated as for the CHIP8 device.

Game Selection

We created a userspace application with a few
pre-selected games which can be chosen with 5-9
number keys. Keyboard presses are captured by
software, with the appropriate data being
communicated to hardware. Once a game is selected
via the keyboard, the hardware emulator will take over
and a user will be able to play the selected game using
the keyboard.

Software Prototype

Testing

Observations & Advice

● Decision to use C++ rather than C complicated the compilation process
on the FPGA itself and our ability to use libraries that we learned about
in labs, such as libusb and ioctl. We wound up having to cross compile
C++ and C code at the end, which certainly increased the debugging
time frame. Note to future students: getting cmake to work on Linux on
the FPGA is a pain!

● Writing rigorous tests for all the modules was a good decision.
Completing the modules would have been a better decision still

