
CSEE 4840
Project Presentation

Audio Sampler
Spandan Das (sd3506)
Avik Dhupar (ad3910)

Agenda

● Project Overview
● System Architecture
● Hardware design
● Software design
● Challenges

.

● Goal
○ Create an audio sampler and playback system that supports:

■ MIDI input using a USB-MIDI Keyboard
■ Sample storage
■ Sample Playback
■ Sample Playback with undersampling
■ ASR amplitude envelope

● HPS
○ Reads input from USB-MIDI keyboard and passes to FPGA
○ Loads sample from HPS to FPGA
○ Allows changing envelope parameters

● FPGA
○ Loads WT from HPS and saves in BRAM
○ Drives & configures CODEC
○ Reads BRAM data, applies any algorithms, and outputs to CODEC

Overview
.

System Architecture

● Input

System Architecture

● Input
● Input Processing

System Architecture

● Input
● Input Processing
● Data Transfer to FPGA
● Processing on FPGA

System Architecture

● Input
● Input Processing
● Data Transfer to FPGA
● Processing on FPGA
● Audio output

Hardware Design: SV Modules

● I2C_programmer
○ Implements I2C and writes configuration to WM8731

● Hpsfreq:
○ Implements 3x RAM to accept and store wavetable from HPS

● Serial_dac
○ Accepts 33bit word and outputs 33 bits serially to the CODEC

● Key_parser
○ Accepts input from HPS, parses & outputs MIDI keypress

● Summer
○ Sums 3 signals to allow polyphony

● Asr_envelope
○ Implements Attack, Sustain, Release envelope

● Audio
○ Binds all other modules together
○ Implements logic and routing of internal signals

.

Hardware Design

● Reuse I2C driver and WM8731 driver written fully in FPGA-land
○ Someone else’s code almost always doesn’t do what we want it to do
○ The existing WM8731 driver code simply enabled mic bypass, and claimed to be a system

which reads mic input to FPGA and writes this data to line-out
● Modified the I2C driver to configure the audio codec to accept digital data
● Samples incoming from the HPS are stored in the BRAM of the FPGA
● There are 3 such samples stored in memory.
● Audio Sampling

○ The audio.v module reads samples from the stored memory
○ Undersampling implemented on memory read addresses
○ The address is calculated using fractional values in verilog(MSB represents the addr and LSB

represents the fractional increment)

.

Hardware Design

● The summer module takes 3 inputs and gives a amplitude adjusted summed
output

○ The outputs are dependent upon the key presses coming from the MIDI keyboard

● The ASR envelope module takes the input from the summer module to
implement the final output

○ Attack
○ Sustain
○ Release

.

Hardware Design

● The ASR envelope state machine :-

.

HPS software is divided into 2 parts:

● USB userspace program
○ USB-MIDI keyboard is read using libusb
○ Incoming data is parsed and on keypress, if the key is between G2 to C#5, then values

ranging from 0x01 to 0x1F are sent over a socket

● Memory mapped drivers+Userspace program
○ Data received over socket is written to the memory mapped device, routed through the drivers

Software Design

Challenges, Resolutions & Lessons

● Only X number of samples being played back despite changing the value of
parameter in sv code

○ Professor, Oscilloscope & RTL viewer to the rescue
○ Quartus UI saves the parameter values internally and doesn’t seem to update them despite

the change of parameter values in the code
■ Is this a bug? Do we not understand Quartus workflow?

● Getting sine output with audible harmonics
○ Oscilloscope to the rescue
○ There was discontinuity in the data, and only 500 of 512 samples were being played

● Reworking large parts of verilog modules to accommodate more features
○ Define and architect the system well, before writing a single line of code

● A one-off multiplication or division by an odd number in verilog doesn’t hurt
(yet)

Challenges, Resolutions & Lessons

● I2C drivers and ensuring the I2C device is configured as required
○ Simulate, simulate, simulate… but we were late to realize this…
○ Use SignalTap
○ Use a $10 logic analyzer (it decodes the protocol too!)

● Ensuring the WM8731 does what we want it to do, i.e. output the correct wave
○ Turns out to be an incorrect Master CLK being fed to the WM8731
○ Professor & oscilloscope to the rescue

● Multi-port RAM to read more than two samples from memory at one point in
time to enable polyphony

○ Limit size of each wavetable to 32k and write the same wavetable to 3 distinct RAMs
○ Ideally, this could be done by scheduling access to the same memory blocks since audio

output is only generated at 48KHz as compared to the 50MHz CLK of FPGA

