
csee 4840
Embedded System Design

Lab 2: Using C, Linux, Sockets, and usb

Stephen A. Edwards
Columbia University

Spring 2022

Code and compile C under Linux on the DE1-SoC board. Implement a primitive Internet
chat client that communicates with a server. Receive keystrokes and draw on a framebu�er.

1 Introduction

Unlike the �rst lab, this lab only involves developing software. We supply a platform on an
sd card that consists of Linux running on the arm processors on the fpga on the DE1-SoC
board. A fpga con�guration adds a video framebu�er.

You will implement an Internet-based chat client on this platform. When a user types a
line of text on the attached usb keyboard, it will appear on the video display. When s/he
presses Enter, the contents of the line should be sent through the Ethernet port to a chat
server, which will then broadcast it to all its connected clients. You can set up a chat server
yourself and test it with telnet, or debug it with your friends.

These instructions are written referring to the workstations in 1235 Mudd, which are
named micro01.ee.columbia.edu through micro35.ee.columbia.edu. This lab can be
done using your own laptop, but you may have to install terminal emulation software. You
will also need a vga monitor, a usb keyboard, and an wired Internet connection. All of
these are provided in 1235 Mudd, but there’s nothing special about them.

1

2 Booting the Board

Set the fpga con�guration mode switches
(sw10, on the underside of the board) to
100000.

This setting for the msel switches instructs
the fpga to accept its con�guration from
the arm processors.

If this is set di�erently, the system may not boot, or may boot but not produce video.

We will provide you with pre-�ashed micro sd cards with the lab 2 environment, but you
may also �ash your own. Download lab2-img.tar.gz from the class website, unpack it to
create the (sparse) 16 gb lab2-16G.img �le, and then �ash it using dd (slow) or bmaptool
(much faster).

Insert the micro sd card for lab 2 into the socket on the board (upper right).

Connect your workstation to the board using the mini usb cable that came with the kit.
The connector is at the upper right corner of the board.

On your workstation, start the screen terminal emulator in a new window as follows:

screen /dev/ttyUSB0 115200

This establishes a 115200-baud serial connection to the hps system on the board through
an ftdi usb serial chip. The usb serial port should appear when the cable is connected,
even if the board is not yet powered on.

Control-a k will terminate screen, or just unplug the mini usb cable.

Power on the board. You should quickly see boot messages that include

U-Boot SPL 2013.01.01 (Jan 12 2019 - 19:40:48)

BOARD : Altera SOCFPGA Cyclone V Board

CLOCK: EOSC1 clock 25000 KHz

reading u-boot.img

U-Boot 2013.01.01 (Jan 12 2019 - 19:41:00)

CPU : Altera SOCFPGA Platform

Hit any key to stop autoboot: 5

Let the boot continue. It should con�gure the fpga and start the kernel (zImage):

reading u-boot.scr

226 bytes read in 4 ms (54.7 KiB/s)

Executing script at 02000000

reading soc_system.rbf

7007184 bytes read in 344 ms (19.4 MiB/s)

Starting application at 0x3FF79598 ...

Application terminated, rc = 0x0

reading zImage

4877224 bytes read in 240 ms (19.4 MiB/s)

reading soc_system.dtb

31245 bytes read in 7 ms (4.3 MiB/s)

Flattened Device Tree blob at 00000100

Loading Device Tree to 03ff5000, end 03fffa0c ... OK

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.19.0 (sedwards@zaphod) (gcc version 6.2.0

(Sourcery CodeBench Lite 2016.11-88)) #5 SMP Sat Jan 19 01:44:12 EST 2019

[0.000000] CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7),

The kernel should eventually mount the root directory on the sd card and start /sbin/init:

[1.835185] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data

mode. Opts: (null)

[1.843283] VFS: Mounted root (ext4 filesystem) on device 179:2.

[1.885157] Run /sbin/init as init process

Soon, Ubuntu will start running and the messages will start looking like

Welcome to Ubuntu 16.04.5 LTS!

[OK] Listening on Journal Socket (/dev/log).

and will eventually present a login prompt:

Ubuntu 16.04.5 LTS de1-soc ttyS0

de1-soc login:

Login as root with password CSee4840! Change the password by running passwd.

Connect your board to the network using an Ethernet cable, then start the network:

root@de1-soc:~# ifup eth0

The system will report some DHCPDISCOVER messages followed by DHCPOFFER and
DHCPACK. You can force the system to always start eth0 on boot by adding “auto eth0”
to /etc/network/interfaces, but only do this if you will always be connected to the network.

By default, Linux thinks your terminal is only 80×24; this may be changed by stty, e.g.,

stty rows 43

stty cols 132

3 Installing Development Software

By design, the lab 2 sd card image includes very little; you need to add additional software
to complete lab 2. You should only need to do this once.

Connect your board to the network, con�gure the network interface, update package
information, and bring everything up-to-date.

ifup eth0

apt update

apt upgrade -y

For lab 2, install the C compiler, make, libusb, and usbutils:

apt install -y gcc make libusb-1.0-0-dev usbutils

You will probably want to install a terminal-based text editor. Here are two options:

apt install -y nano

apt install -y vim-tiny

You may also install the larger vim or emacs-nox packages.

Scp is convenient for copying �les to and from the DE1-SoC board (via Ethernet). You can
install it with

apt install -y openssh-client

Wget is convenient for getting �les from the class webpage:

apt install -y wget

Finally, you can recover some space after these packages are installed with

apt clean

4 Compiling and Running the Skeleton Lab 2 Files

First, connect a usb keyboard and vga monitor to your board. Both kinds of connectors
are along the top of your board (vga uses a rounded trapezoid holding 19 pins).

Copy the lab2.tar.gz �le to your board. You can download it directly from the class website
with wget:
wget http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/lab2.tar.gz

You can also use scp to copy �les from your workstation (provided it is running an ssh
server) or simply copy the �le onto your sd card after you mount it on your workstation.

Next, unpack and edit the provided lab2 skeleton:
tar zxf lab2.tar.gz

cd lab2

vi lab2.c

Put your name(s) in the comments at the beginning of lab2.c.

Set the SERVER_HOST value to the ip address of the chat server you are going to use. We
will try to keep a server running on arthur.cs.columbia.edu whose address is 128.59.19.114;
post a message on Ed if the server is not working. If you have the telnet program installed
(e.g., apt install telnet), you may test the server by running
telnet arthur.cs.columbia.edu 42000

Next, compile and run the skeleton code:
root@de1-soc:~/lab2# make

cc -Wall -c -o lab2.o lab2.c

cc -Wall -c -o fbputchar.o fbputchar.c

cc -Wall -c -o usbkeyboard.o usbkeyboard.c

cc -Wall -o lab2 lab2.o fbputchar.o usbkeyboard.o -lusb-1.0 -pthread

root@de1-soc:~/lab2# ./lab2

Welcome to the CSEE 4840 Lab2 chat server

On the vga monitor driven by the board,
you should see a “hello world” message.

When a key is pressed on the usb keyboard,
this skeleton client will display three hex-
adecimal numbers indicating the message
received.

This skeleton client also displays messages received from the chat server.

The skeleton client will quit (return to a command prompt) if you press Esc on the keyboard.

If you get an error like

root@de1-soc:~/lab2# ./lab2

Error: connect() failed. Is the server running?

there may not be a chat server running, you may have the wrong SERVER_HOST value, your
chat server may be behind a �rewall, or something is wrong with the board’s connection
to the network.

5 The Framebu�er

A framebu�er is a region of memory that is displayed as pixels on a monitor. For this lab,
we are supplying you with an fpga con�guration and Linux kernel with a framebu�er
device named /dev/fb0.

To use this device in a user-level program, open the device �le and call mmap(2) to make it
appear in the process’s address space. In fbputchar.c, the fbopen() function does this for
you. Also in this �le is the fbputchar() function, which displays a single character on the
screen, and fbputs(), which displays a string. See lab2.c for a simple demonstration of their
use.

Once mapped, the framebu�er memory appears as a sequence of pixels in the usual raster
order: the upper left pixel appears �rst, followed by the one just to its right. The next row
of pixels starts immediately after the �rst row ends.

Each pixel is a group of four bytes; the �rst three represent red, green, and blue intensities;
the fourth is unused.

For this lab, you may want to add functions that clear the framebu�er, scroll a region of
the framebu�er (consider using memcpy()), draw lines, etc. You may also want to modify
fbputchar() to use di�erent colors, a di�erent font, etc.

6 Networking

We will use Internet protocols to communicate to and from a chat server. Each com-
puter connected to the Internet has a numeric ip address; the micro01 workstation is
“128.59.64.121”. Within each computer, servers communicate on ports, which are numbered
starting from 1. For example, webservers listen on port 80 and ssh uses port 22. Our chat
server uses port 42000.

“Sockets” is the standard api for network communcation in Linux. You send and receive
data to and from programs on remote computers using read() and write() system calls.

The main function in lab2.c creates, opens, and listens to a socket. Abstractly, this looks
like

// Create an Internet socket

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

// Connect to the server

#define IPADDR(a,b,c,d) (htonl(((a)<<24)|((b)<<16)|((c)<<8)|(d)))

#define SERVER_HOST IPADDR(192,168,1,1)

#define SERVER_PORT htons(42000)

struct sockaddr_in serv_addr = { AF_INET, SERVER_PORT, { SERVER_HOST } };

connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));

// Write to the socket

write(sockfd, "Hello World!\n", 13);

// Read from the socket

#define BUFFER_SIZE 128

char recvBuf[BUFFER_SIZE];

read(sockfd, &recvBuf, BUFFER_SIZE - 1));

Note that each of these functions can fail in various ways and their return values must be
checked for errors.

7 USB

We use the libusb C library for communicating with the usb keyboard. The usb protocol is
rich and complicated, allowing it to work with peripherals as diverse as keyboards, hard
drives, and speakers; libusb hides many of the details, especially those related to intializing
and communicating with the usb controller chip.

Usb is a networking protocol like ip, but assumes a simple, tree-shaped network consisting
of a single host connected to peripherals and hubs that fan out. While it is possible to
directly address the tree structure of the network, libusb allows us to ignore it.

To communicate with a usb keyboard, we �rst have to �nd its address. Because there are
so many kinds of usb devices, we will look at each connected device and determine if it is
a keyboard before attempting to receive keystrokes from it.

The code in the openkeyboard() function in usbkeyboard.c does this: it initializes libusb,
enumerates all the currently connected devices, then checks each one to see if it is part of
the “Human Interface Device” (hid) class and speaks the keyboard protocol (hid devices
also include mice). If openkeyboard() �nds a keyboard, it attempts to connect to it.

In lab2.c, keypress events are received from the usb keyboard using the libusb function
libusb_interrupt_transfer(). This returns an eight-byte packet consisting of a byte indicating
which modi�er keys (such as Shift) are pressed, an unused byte, and six bytes holding
keycodes of pressed keys or 0.

Usb keyboards use their own, non-ascii keycodes. Consult section 10 (page 53) of the usb
Implementer’s Forum documentation1 for details.

The skeleton code in lab2.c receives and displays the modi�er and the �rst two keycode
bytes. For example, when the “A” key is pressed, it displays “00 04 00,” and when it is
released, “00 00 00.” Shift-A produces “02 04 00,” and Ctrl, A, and C together give “01 04 06.”

1https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf

https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf

8 Threads

Reading from a socket and reading from the usb keyboard are functions that block, meaning
they do not return until new data is available. This is a problem because we must be able
to receive messages from other users while we are typing.

A solution is to spawn threads. These are e�ectively separate program counters within the
same program; we can have one waiting for networking communication while the other
waits for events from the keyboard.

In lab2.c, we spawn one thread to receive data from the network, leaving the main program
to handle the usb keyboard. The basic template is this:

#include <pthread.h>

pthread_t network_thread;

void *network_thread_f(void *)

{

// Code to be run "in parallel" with the main program

}

int main()

{

// Start the network thread

pthread_create(&network_thread, NULL, network_thread_f, NULL);

// Do stuff "in parallel" with the network thread

// Wait for the network thread to terminate

pthread_join(network_thread, NULL);

}

Threads can communicate with each other and the main program through global variables.
To avoid race conditions (i.e., where one thread is reading while the other writing), the
pthread library provides mutexes (mutual exclusion constructs) that can be used to enforce
exclusive access to global variables.

9 What to Do

Start from the partially working skeleton in lab2.tar.gz and extend it as follows:

• Make the display work properly and look good. fbputchar.c has the framebu�er
initialization code and some simple character generation code.

– Clear the screen when the program starts.
– Split the screen into two parts with a horizontal line. Have the user enter text

on the bottom two rows; use the rest to record what s/he and other users send.
– When a packet arrives, print its contents in the “receive” region. Don’t forget

to wrap long messages across multiple lines.
– When printing reaches the bottom of the area, you may either start again at

the top, or scroll the entry region of the screen.
– Implement a reasonable text-editing system for the bottom of the screen. Have

input from the keyboard display characters there and allow users to erase
unwanted characters and send the message with return. Clear the bottom area
when a message is sent.

– Display a cursor where the user is typing. This could be a vertical line, an
underline, or a white box.

• Make the keyboard input work. Speci�cally,

– Convert the usb keycodes into ascii to display and send them over the network.
– Make both shift keys work (i.e., do upper and lowercase characters)
– Make the left and right arrow keys work
– Make the backspace key work

• Complete the network communication

– When your client receives a packet from the server, display it on the next line
at the top of the screen.

– When the user presses return, have your client send to the server the text s/he
has been typing and display it in the text area at the top of the sceen.

10 What to turn in

Put you name and uni in the comments in the lab2.c �le.

Run make lab2.tar.gz on the board in your lab2 directory to collect all the source code, and
submit your lab2.tar.gz via Courseworks.

Demonstrate your working lab2 to a ta during his/er o�ce hours or submit a video demo
(see below).

11 Video Demo (optional)

Due to the inevitability of covid-related absences, we will be accepting video demos this
year. If you would like to submit a video demo, please read these instructions carefully
and follow them exactly. Any aspect of the demo not included in the video will be graded
as though it does not work, and you will not have the opportunity to resubmit after the
deadline.

In your video, please show your entire monitor and keyboard in the frame and narrate
the following steps as you demonstrate them. Rename your video �le “uni_lab2_demo”
(replace uni with your uni) and submit it on Courseworks.

• Do not keep the default �lename, change it to “uni_lab2_demo”

• Do not submit a link to a YouTube video, submit the video �le on Courseworks.

• Do not submit your video as part of the lab2.tar.gz �le. Submit it as a separate �le

In this demo, we need to see the e�ect of packets arriving from the server. Please coordinate
with a classmate to send at least one or two messages to the server while you record your
demo.

Demo Instructions:

1. Type It is a period of civil war.

2. Press the ‘enter’ key
3. Type Rebel spaceships, striking from a hidden base, have won their

first victory against the evil Galactic Empire.

4. Press the ‘enter’ key
5. Type During the battle, Rebel Spies managed to steal secret plans to

the Empire’s ultimate weapon, an armored

6. Press the ‘backspace’ key to erase the text after the second comma
7. Type the DEATH STAR, an armored space station with enough power to

destroy an entire planet.

This will be more text than �ts on the screen. Type as much as �ts on the screen, then
type a few more letters to show what happens.

8. Type Pursued by the empire’s

9. Press the ‘left arrow’ key to bring the cursor to the correct position and capitalize
the e in empire

10. Press the ‘right arrow’ key to return the cursor the the end of the text
11. Type esteemed agents, Princess Leia races home aboard her starship,

12. Press the ‘left arrow’ key to return to the correct position and change esteemed to
sinister

13. Press the ‘enter’ key (without returning the cursor to the end of the text)
14. Type Space, the final frontier.

15. Press the ‘backspace’ key to erase all of the text
16. Press the ‘backspace’ key again
17. Type custodian of the stolen plans that can save her people and

restore freedom to the galaxy....

18. Press the ‘enter’ key
19. Demonstrate the special keys by typing each of them
20. Press the ‘enter’ key
21. Press and hold the ‘r’ key as you

Type Star Wars

22. If your screen has not yet �lled up, keep sending messages to the server until it does.

	Introduction
	Booting the Board
	Installing Development Software
	Compiling and Running the Skeleton Lab 2 Files
	The Framebuffer
	Networking
	USB
	Threads
	What to Do
	What to turn in
	Video Demo (optional)

