
csee 4840
Embedded System Design Lab 1: Using the fpga

Stephen A. Edwards, Columbia University

Spring 2022

Learn how to code in SystemVerilog, run the Verilator simulator, observed simulated
waveforms with GTKWave, and compile and download an fpga-only project to the DE1-
SoC board. You will create a system that can test the Collatz conjecture over a small range
of values.
For this lab, you will use the open-source Verilator SystemVerilog simulator, the open-source
GTKWave waveform viewer, and Quartus Prime 21.1 fpga design software produced by
Intel for their chips. You can �nd this software on the workstations in 1235 Mudd (on which
you should have an account if you registered for the class), you may be able to run it on your
laptop, or use some combination of both. Quartus Prime 21.1 Lite is free to download from
the Intel website https://fpgasoftware.intel.com/21.1/?edition=lite, although you
will have to register for a free account and it only runs under Windows or Linux.
To submit this assignment do two things:

1. Put your SystemVerilog code �les (hex7seg.sv, collatz.sv, range.sv, and lab1.sv) into a
.tar.gz �le (e.g., make lab1.tar.gz) and upload it to Courseworks.

2. Demonstrate your working system to a ta or upload a video demo. See Sections 10
and 11 for details.

1

https://fpgasoftware.intel.com/21.1/?edition=lite

1 Download and Unpack the Lab 1 �les

Download lab1.tar.gz from the class website and extract it by typing tar zxf lab1.tar.gz. This
will create a lab1 directory containing the �les listed below.

Name Contents

Make�le Commands for creating the project �les, compiling the project, build-
ing the lab1.tar.gz �le, and cleaning up unneeded �les.

hex7seg.sv A module skeleton for a hex-to-seven segment decoder for displaying
numbers on the board

collatz.sv A module skeleton for computing the Collatz iteration for a particular
number.

range.sv A module skeleton for computing the Collatz iteration over a range
of numbers and storing the iteration counts in a small memory.

lab1.sv A module skeleton that provides a user interface to the modules
above.

hex7seg.cpp A Verilator test bench for the hex7seg module.

collatz.cpp A Verilator test bench for the collatz module, which, when working,
prints a Collatz sequence from a particular value.

range.cpp A Verilator test bench for the range module, which, when working,
runs the collatz module over a range of numbers and stores the result
in a small memory.

collatz.gtkw A GTKWave “save” �le that remembers what signals to display, etc.
for the collatz module.

range.gtkw A GTKWave “save” �le for the range module.

range-done.gtkw A GTKWave “save” �le that displays what should be the end behavior
of the range module.

de1-soc-project.tcl A Tcl script that creates the lab1 project �les.
Includes pin assignments.

Modify the hex7seg.sv, collatz.sv, range.sv, and lab1.sv �les.

You may modify any other �les; we will not grade them.

2 Implement and Test a Hex-to-Seven-Segment Decoder

The DE1-SoC includes six seven-segment displays, which we
will use to display hexadecimal numbers. Each segment is con-
nected to its own pin. These segment signals are active-low: a
“0” turns them on. Bit 0 (the rightmost) of each 7-bit segment
vector is the “a” segment, bit 1 is the “b” segment, etc., up to
bit 6, the leftmost, which controls the “g” segment.

The hex7seg.sv �le includes the interface to this module:

module hex7seg(input logic [3:0] a ,
output logic [6:0] y);

a

b

c

d

e

f

g

Implement the body of the sevent-segment decoder module in hex7seg.sv. We have provided
a Verilator testbench to test your implementation. Make sure Verilator is installed and
compile and run the simulation:

$ make hex7seg
0 40 OK
1 79 OK
2 24 OK
3 30 OK
4 19 OK
5 12 OK
6 02 OK
7 78 OK
8 00 OK
9 10 OK
a 08 OK
b 03 OK
c 46 OK
d 21 OK
e 06 OK
f 0e OK
SUCCESS

which shows the 16 possible inputs and their outputs. An incorrect output will produce

7 7a INCORRECT expected 78

8 00 OK

FAILED

Run make lint to have Verilator run a fast, thorough check on your SystemVerilog code.
The solution you eventually submit should not report any lint errors.

3 The Collatz Conjecture

The Collatz Conjecture is that for any positive integer =, 5 : (=) = 1 for some positive
integer : , where

5 (=) =
{
=/2, if = is even;
3= + 1 otherwise,

and 5 : (=) means to apply the function 5 : times: 5 : (=) = 5 (5 (· · · 5 (=) · · ·))︸ ︷︷ ︸
: times

.

For example, for = = 5, the sequence is

5 16 8 4 2 1,

and for = = 7, the sequence is

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1.

The number of iterations it takes to reach 1 varies erratically. Here is a list of various = and
the number of iterations required for that =. These number are in hexadecimal, which you
will eventually display on the DE1-SoC.

7 11 17 10 27 23 f7 30 3ff 3f 40f 3f 4ef b1

8 4 18 b 28 9 f8 6e 400 b 410 20 4f0 28

9 14 19 18 29 6e f9 30 401 25 411 7d 4f1 28

a 7 1a b 2a 9 fa 6e 402 25 412 7d 4f2 20

b f 1b 70 2b 1e fb 42 403 25 413 7d 4f3 20

c a 1c 13 2c 11 fc 6e 404 7d 414 20 4f4 28

d a 1d 13 2d 11 fd 6e 405 7d 415 20 4f5 28

e 12 1e 13 2e 11 fe 30 406 7d 416 7d 4f6 20

f 12 1f 6b 2f 69 ff 30 407 25 417 7d 4f7 20

10 5 20 6 30 c 100 9 408 7d 418 20 4f8 3a

11 d 21 1b 31 19 101 7b 409 9c 419 3f 4f9 20

12 15 22 e 32 19 102 7b 40a 7d 41a 20 4fa 3a

13 15 23 e 33 19 103 7b 40b 7d 41b 5e 4fb 54

14 8 24 16 34 c 104 1e 40c 7d 41c 51 4fc 3a

15 8 25 16 35 c 105 1e 40d 7d 41d 51 4fd 3a

16 10 26 16 36 71 106 1e 40e 3f 41e 51 4fe 85

4 Write and Test a Collatz Sequence Generator

Implement a module that can test the Collatz conjecture for a particular = by completing
the body of the provided collatz module in collatz.sv. Its interface is
module collatz(input logic clk , // Clock

input logic go, // Load value from n; start iterating
input logic [31:0] n, // Start value; only read when go = 1
output logic [31:0] dout, // Iteration value: true after go = 1
output logic done); // True when dout reaches 1

In every cycle, if go is true, the module should reset and start counting from the 32-bit
unsigned integer value on n. The dout signal should always output the current value. In
every other clock cycle, the module should compute the next number in the sequence by
checking whether the current number is positive and either divide by two or multiply by
three and add one. When the value reaches 1, done should be asserted and the module
should stop producing new numbers until the next go input.
Here is the correct output running with the input 7. Note that dout is loaded with 7 starting
at the �rst rising edge of the clock where go is asserted, but 22, the second number in the
sequence, only appears in the �rst cycle after go is asserted.

7

0 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

clk

go

n[31:0]

dout[31:0]

done

We have provided a Verilator test bench that supplies appropriate inputs to the collatz
module (i.e., clk, go, and n). To compile your collatz.sv �le with the provided test bench
into a Verilator simulator, run make obj_dir/Vcollatz or

verilator -trace -Wall -cc collatz.sv -exe collatz.cpp -top-module collatz

cd obj_dir

make -j -f Vcollatz.mk

Run the Verilator simulator for this module by typing make collatz.vcd or
./obj_dir/Vcollatz, which prints the sequence it �nds. When working, it prints

$./obj_dir/Vcollatz

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

As a side-e�ect, running the Vcollatz simulation produces a Value Change Dump (VCD)
�le collatz.vcd, which you can view with the gtkwave program. Invoke it with gtkwave
collatz.vcd. A “save” �le controls which signals are displayed. You may use the one provided
with gtkwave --save=collatz.gtkw collatz.vcd.

5 Write and Test a Module That Checks a Range of Values

Write a module that uses your Collatz sequence generator to test the Collatz hypothesis
for a sequence of numbers and record the number of iterations each took. Fill in the body
of the range module provided in range.sv. Its interface is

module range
#(parameter

RAM_WORDS = 16, // Number of counts to store in RAM
RAM_ADDR_BITS = 4) // Number of RAM address bits

(input logic clk , // Clock
input logic go, // Read start and start testing
input logic [31:0] start , // Number to start from or count to read
output logic done, // True once memory is �lled
output logic [15:0] count); // Iteration count data once �nished

The two compile-time parameters RAM_WORDS and RAM_ADDR_BITS set the size of the
memory in which the iteration counts should be stored.
The go signal should tell the module to read the start input and start generating Collatz
iterations from that number. The number of iterations it takes to reach 1 starting from start
should be written into address 0 in ram; the number of iterations from start + 1 should be
written into address 1, etc. Finally, done should be asserted when the ram is �lled.
Once done is asserted, applying an address to start should read the memory from that
address and present it on count in the next cycle.
Fill in the skeleton range.sv �le provided. While you may modify anything you want except
the interface to the module, we suggest you use the ram and internal signals provided.
We have supplied a testbench �le range.cpp that provides the clock, go, and start signals,
then waits for done before reading out the number of iterations observed by applying
di�erent values of start to read the value out through the count signal.
As before, make range.vcd will compile the simulator, run the testbench, print the iteration
counts that are written to memory, and write the range.vcd �le.

Below is the timing diagram of our solution as it starts; your solution only has to obey the
protocol at the interface (clk, go, start, done, and count).

0 100 ns 200 ns 300 ns 400 ns 500 ns

7

0

0 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 1 2

0 7 8 9

0 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 8 4 2 1 9 28

Time
clk

go

start[31:0]

done

count[15:0]

running

num[3:0]

we

din[15:0]

cgo

n[31:0]

dout[31:0]

cdone

The go input switches running to true; loads n with the value on start; resets num, the ram
address, to 0; sets din, the iteration count, to 1; and pulses cgo high for a cycle to start the
Collatz iterator module.
Every running cycle when cgo is low before cdone goes high, din, the number that will be
ultimately written to the ram, is increased by one. When the Collatz module asserts cdone,
the we signal is pulsed high for just a single cycle to write the current count (din) to the
ram at the address in num. The cycle after cdone is asserted, n is increased by one, din is
reset to 1, and cgo is asserted again to start testing the next value.

Below is the timing diagram of our solution as it �nishes the Collatz iterations and switches
to reading out the numbers it found.

4400 ns 4500 ns 4600 ns 4700 ns 4800 ns

7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 +

18 0 17 4 20 7 15 10 18 5 13 21 8

15

6 7 8 9 10 11 12 13 14 15 16

22 23

26 13 40 20 10 5 16 8 4 2 1

Time
clk

go

start[31:0]

done

count[15:0]

running

num[3:0]

we

din[15:0]

cgo

n[31:0]

dout[31:0]

cdone

After we is asserted for the highest ram address (15, set by RAM_WORDS), running turns o�
and done pulses once. This tells the testbench to feed 0, 1, 2, . . . into start and the number of
iterations for each value is read out on count. For example, start = 0 produces a 17 on count,
corresponding to = = 7, and start = 11 produces a 21, corresponding to = = 7 + 11 = 18.
Running the Vrange simulator directly prints out these iteration counts:

$./obj_dir/Vrange

7 17

8 4

9 20

10 7

11 15

12 10

13 10

14 18

15 18

16 5

17 13

18 21

19 21

20 8

21 8

22 16

Note that these counts match those listed earlier, although they were in hexadecimal.

6 Set the fpga Con�guration Mode

A microscopic set of
switches on the back of
the board controls the
source of the fpga’s con-
�guration information.
For this lab, set it to the
“Active Serial” mode as
shown on the right.

For this lab, we will be con�guring the fpga with a jtag interface through usb; the Active
Serial mode makes the board start up in a factory demonstration mode.

Mode 6 5 4 3 2 1

Active Serial (Default; use for this lab) O� O� On On O� On
FPPx16 (from SD card; later labs will use this) O� On On On On On
FPPx32 (from Linux) O� On O� On O� On

7 Compile and Download the Project Via the Command-Line

Enter the lab1 directory and run make lab1.qpf to create the project from de1-soc-project.tcl.
This should report “Info (23030): Evaluation of Tcl script de1-soc-project.tcl was successful,”
but if it complains “quartus_sh: Command not found,” make sure your PATH variable
includes the directory for the Quartus binaries (on the 1235 Mudd machines, /etc/pro-
�le.d/quartus.sh does so when you log in). Running this script creates lab1.qpf (the main
project �le), lab1.qsf (settings, including �les and pins), and lab1.sdc (clock constraints).
Once the project is created, you can compile it from the command-line with make out-
put_�les/lab1.sof. This reads the .sv �les and ultimately produces the lab1.sof (sram object)
�le, which is downloaded to the fpga to run your project. This takes a while, and will
report and handful of warnings, but should eventually report “Info (293000): Quartus Prime
Full Compilation was successful.” You may ignore warnings “(292013) Feature LogicLock”
and “(15714) Some pins have incomplete I/O assignments”; others should be �xed.
Connect the DE1-SoC board to your workstation. Connect the
+12V power supply to the board near the red power button, con-
nect a USB cable to the “USB Blaster” port on the board (next to
the power button) and to your workstation, and power on the
board with the red button.
Once your project is compiled, download the .sof �le to the DE1-SoC board by running
make program. A variety of things can go wrong. If you get “Error (213013): Programming
hardware cable not detected,” check your board’s power and usb connection to the your
workstation.
When powered and connected, the board should appear as a usb device. Under Linux, lsusb
should report the board as 09fb:6810 Altera or 09fb:6010 Altera.
The Quartus software must also have permission to access the port. Run jtagcon�g. With
the board connected and powered on, it should report

$ jtagconfig

1) DE-SoC [1-1.5.2.2]

4BA00477 SOCVHPS

02D120DD 5CSE(BA5|MA5)/5CSTFD5D5/..

If lsusb “sees” the board but jtagcon�g reports “No JTAG hardware available,” there is a
permission problem, which can be resolved by telling udev to make the board accessible to
everybody. As root, create the �le /etc/udev/rules.d/51-altera.rules containing

ATTR{idVendor}=="09fb", ATTR{idProduct}=="6010", MODE="0666"

ATTR{idVendor}=="09fb", ATTR{idProduct}=="6810", MODE="0666"

8 Compile and Download the Project Via the GUI (optional)

The project can also be compiled and downloaded via the Quartus GUI. Start from a
directory with a clean unpack of lab1.tar.gz (or run make clean), then start Quartus by
typing quartus.
Create the project �les by running a Tcl script. Open the Tcl console window with
View→Utility Windows. . .→Tcl Console. Type source de1-soc-project.tcl in the Quartus
Prime Tcl Console window. This will create the project �les lab1.qpf, lab1.qsf, and lab1.sdc.
Open the lab1.qpf project with File→Open Project. . . .
Compile the project with Processing→Start Compilation. This will take a while and should
eventually report Quartus Prime Full Compilation was successful. There should be no errors,
but there may be warnings.
Download the con�guration to the fpga. Select Tools→Programmer. If “No Hardware”
appears, connect the board to your workstations via USB and power it on (see the previous
section), then click on “Hardware Setup. . . ” You should see “DE-SoC” under “Available
hardware items.” Select “De-SoC[· · ·]” under “Currently selected hardware” and click
“Close.”
Set up the jtag chain by
clicking on “Auto Detect”
and select “5CSEMA5.”
Answer “yes” if it asks
to update the program-
mer’s device list.
Tell it to con�gure the
fpga with the lab1.sof
�le by clicking on the
“5CSEMA5” device then
“Change File” and choose
the lab1.sof �le in the
output_�les directory.
Mark the “Program/-
Con�gure” checkbox on
the 5CSEMA5F31 line.
It should look like the
image on the right.

Finally, click on “Start” to program the fpga. This should quickly report “100% (Successful)”
on the programmer.

9 Add a User Interface

Add a user interface that uses the four pushbuttons and the ten switches to test the number
of iterations taken to reach 1 for various values of =. Modify the lab1.sv �le we provided.
Have the ten switches sw[9:0] control the value = at the start of the range to test. Make
the leftmost button key[3] run the range module over 256 values (i.e., trigger go) starting
from the value on the switches (in binary).
Use your hex7seg module to make the leftmost three seven-segment displays show the
value of = (speci�cally, the lower twelve bits) and have the rightmost three displays show
the number of iterations taken to reach 1 for that value of =.
For example, if you enter 7 (in binary) on the switches and press key[3], the display should
show 007011, which indicates = = 7 takes 17 iterations (in decimal).
Make it so that the rightmost buttons, key[0] and key[1] increment and decrement the
value of = being displayed. Make it so holding them makes the value change about 5 times a
second, e.g., by using a 22-bit counter running o� the 50 MHz clock and only changing the
value when this counter wraps around. The lowest = should always be set by the switches;
the buttons should just control which number (between = and = + 255) is being read out.
Make it so key[2] (second to left) resets the di�erence between the = displayed and the
value on the switches.

10 Demonstrate Your Working System

Every student needs to do a demonstration of his or her lab 1 design. The main objective
of the demo is to test the user interface, so it will focus on the buttons, switches, and
seven-segment displays. We will check the Collatz values from your submitted code.
You can demonstrate your working system during ta o�ce hours or submit a video demo.
The instructions for submitting a video demo are very speci�c; please refer to Section 11
for more details.
We will check the following input and output during the demo:

• switch input

• seven-segment display output

• button input

– regular button press
– fast button press
– slow button press
– button press and hold
– multiple button press

• indication that range is complete

This rubric deliberately does not specify exactly what your system should do in each of
these cases because we want you to think about what “the right thing” is according to what
a person would expect. For many of these actions there are multiple appropriate responses.
Consider what you would expect from each action, and design your system accordingly.
The tas are happy to discuss what is “reasonable” behavior if you have questions.

11 Video Demo Option

Due to the inevitability of covid-related absences, we will be accepting video demos this
year. If you would like to submit a video demo, please follow the instructions below exactly.
Any aspect of the demo you do not include in your video will be graded as though it does
not work; you will not have any opportunity to resubmit after the deadline.
In your video, please show your entire fpga board in the frame and narrate the following
steps as you demonstrate them.

1. Set SW[9:0] to decimal 7 (binary 0000000111).

2. Press KEY[3].

3. Wait for an indication that the range module is complete.

4. Press KEY[0] 5 times at a normal pace.

5. Press KEY[1] 3 times at a normal pace.

6. Press KEY[2].

7. Press and hold KEY[1] for 3 seconds.

8. Press KEY[0] 10 times as fast as you can.

9. Press KEY[0] 5 times at a slow pace.

10. Press KEY[0] and KEY[1] at the same time.

11. Set SW[9:0] to decimal 775 (binary 1100000111).

12. Press KEY[3].

13. Wait until the range module is complete.

Name your video “uni1_uni2_lab1_demo” and submit the �le on Courseworks.

	Download and Unpack the Lab 1 files
	Implement and Test a Hex-to-Seven-Segment Decoder
	The Collatz Conjecture
	Write and Test a Collatz Sequence Generator
	Write and Test a Module That Checks a Range of Values
	Set the fpga Configuration Mode
	Compile and Download the Project Via the Command-Line
	Compile and Download the Project Via the GUI (optional)
	Add a User Interface
	Demonstrate Your Working System
	Video Demo Option

