
The Design Document for CSEE 4840

Embedded System Design:

Bullet Hell Game: Bad Bird!

Xinye Jiang (xj2253)

Po-Cheng Liu (pl2812)

Spring 2022

Contents

1 Introduction 2

2 System Block Diagram 3

3 Algorithms 4

4 Resource Budgets 5

5 The Hardware/Software Interface 6

1 Introduction

Our project is to create a pixelated bullet-hell-shoot’ em-up game. It provides a

gameplay of dodging the bullets from the 2D enemies. Just like the famous danmaku

game Touhou Project, our game would have enemies that shoot 2D bullets at the player

while the player would try their best to avoid getting hit by the rains of bullets.

Our game allows users to control the playable character with a Xbox 360 controller for

its movements, and give feedback if the character is hit with any of the bullets. The goal

of the game is to survive. So long as the player lasts through the time limit set without

getting hit at all, the player wins. The player can also choose to fight back with their own

bullets. If the player eliminates the enemies before the time limit set for each enemy, the

player also wins.

The game has colorful pixelated graphs of enemies, player, and the bullets, and has

different sound effects as well as a main background music.

Sample Game Graphics Drawn with Photoshop

2

2 System Block Diagram

3

3 Algorithms

- Boss action:

Attack patterns are predesigned and may be stochastic (generate bullets at random direction).

If pattern is not selected:

Select an attack pattern by random.

Else:

Play the predesigned action from the pattern.

Ex: time action

0 generate bullet vertically

1 move up

2 move left

3 generate bullets at 45 degrees

6 generate bullets with outward spirals

9 generate 5 hollow circles of bullets falling down

12 generate a ball of bullets bouncing around

13 end of the pattern, select a new one

- Player action:

Move in up, down, left, right.

Attack: generate bullet vertically up.

Bullets movement:

For every bullet:

Properties:

Damage, position, velocity, current_direction, A, B, C, D

Movement every timestep:

Position change is defined by the velocity and current_direction.

In order to create curved path, update current_direction by the equation:

Current_direction = A + B*time + C*sin(D*time)

Use the current direction to select the correct bullet figure to show.

- Collision detection:

Loop for all boss’ bullets:

If it hits the player, decrease the player's health for 0.5 or 1 depending on bullets’ types (3

from start).

Loop for all player’s bullets:

If it hits the boss, decrease boss’ health by 1 (100 from start).

Bullets from player and boss will not cancel each other. They overlay on the display with the

boss’ bullets on top.

4

- Result:

A player wins if the boss' health decreases to 0 or time out.

A player loses if the player’s health decreases to 0 before a win.

4 Resource Budgets

(1) Display Memory Budget

Objects Graphics Size (pixel) Number Total Size (bit)

Boss 40 * 25 3 72000

Player 30 * 30 3 64800

Bullet 1 25 * 25 4 60000

Bullet 2 25 * 25 4 60000

Bullet 3 14 * 13 1 4368

Player’s Health 15 * 15 3 16200

Timer 20 * 20 5 48000

Result 60 * 50 2 144000

Total 469368

5

(2) Audio Memory Budget

Objects Time (sec) Frequency (kHz) Size (bit)

Background Music 38 8 12050000

Bullet Generate 0.2 8 28800

Bullet Hit 0.45 8 56000

Total 12135400

For both display and audio, we need a total of 12,604,768 bits (1.6 MB) of memory.

5 Hardware/Software Interface

Size (bits) description

Time 8 Time in seconds

Player health 8

Player position 20 10 for X, 10 for Y

Player sprite number 3 Select which player’s figure to show

Boss health 8

Boss position 20 10 for X, 10 for Y

Boss sprite number 3 Select which boss’ figure to show

Number of bullets 8 Current number of bullets existed

Bullet[N] position 20 N=0:255

Bullet[N] sprite number 4 N=0:255

6

