
1

THE DESIGN DOCUMENT
FOR CSEE 4840
PROJECT RISCY

Shuai Zhang (sz3034)

Spring 2022

2

Contents
Introduction ... 3

System Block Design .. 3

Algorithms .. 5

Resource Budgets .. 6

The Hardware/Software Interface ... 6

3

Introduction
RISC-V is an open-source instruction set architecture developed by UC-Berkley and have been picking up
popularity and community over the years. Apart from the open-source instruction encoding, there are also
development tools such as C compiler, simulator etc. available. This document will be about the
specification of my own home-brew RISC-V core (project name: RISCY), The goal for this project is to
load it into the FPGA and making the DE-1 development board behave like an Arduino. Specifically, this
project will:

 HW side: the DE-1 development board shall be loaded with RISCY, which reads pre-compiled
instructions, perform read / write to memory locations (including MMIO), and interact with the
board’s peripheral such as GPIO pins, 7-Segs, switches, UART command lines. Etc.

 SW side: I will use the HPS module to communicate with RISCY, and develop respective software
including:

o Compiler proxy: pass the C / C++ code to my cloud server for compilation and fetch back
compiled assembly and binary. The compilation could not be done on HPS because the
toolchain doesn’t support 32-bit arm

o Bootloader: write the binary file into RISCY memory space
o Debugger: handling debugger instructions (ECALL), read memory content, alter memory

content, and resume RISCY

Sidenote1: project is called RISCY is because I morphed RISC-V’s V to Y, so it makes easier for me to
pronounce. (And because I’m almost certain it will consume me hundreds of hours building this project and
it’s a ris-ky decision)

Sidenote2: I updated the project objective from my proposal from ‘just a debugger’ to ‘anything I want it
to be’, I noticed that since my RISCY core and the HPS shares memory space, I can even use my RISCY
core as a co-processor for the HPS!

Sidenote 3: GitHub link:

System Block Design

Fig 1, the sketch of RISCY core architecture

4

Fig 1 shows the very basic architecture of the RISCY core, it’s a basic classic 5-stage pipeline design

Core input: clock, reset, enable

Core output: instruction fetch bus, data read/write bus (self-defined simple ready-valid handshake bus)

Note that this sketch was created a long time ago, and it does not exactly match what the core is now, and
data path are not all labeled. Its only purpose is to give a sense of design principles.

Fig 2: the sketch of the overall SoC system

Fig 2 shows the overall SoC structure of the project. The Riscy Core’s instruction bus and data bus are
merged into one single AXI bus. This bus is then merged with the HPS’s AXI bus into a center crossbar
interconnect. The interconnect is then connected to an AXI-wrapped SDRAM controller and peripheral
controller.

Both the HPS and the external bootloader can bootstrap the RISCY system via the HPS H2F AXI bus.

5

Fig 3, Software workflow

Fig 3 shows the software front workflow for a typical debugging process. This is a very coarse draft and
will add more details once I finish the hardware system.

Algorithms
Frankly there’s not a whole lot of fancy algorithms involved in this project. Everything is retrospective and
old-fashioned. Instead, I’ll just list the key specs of this project

1. CPU Core:
a. In-Order Classical 5 stage pipeline
b. Support RV32IMA instruction set

i. 32-bit word size, small endian, byte addressable
ii. I: base integer operation ISA

iii. M: integer multiplication / division operation ISA
iv. A: atomic instruction set

c. Full forwarding to solve hazard
i. Side notes 1: this is a BAD idea because it hurts timing a LOT. Should’ve gone

with plain stalling…
ii. Side notes 2: the forwarding / stalling logic is so complicated that I once though I

should’ve gone with out-of-order core design…
d. Parameterizable instruction fetch buffer
e. Parameterizable memory read/write buffer
f. Parameterizable system cache

6

i. Can be either unified or separate I / D cache
ii. 2-Way set associative cache, parameterizable depth

iii. Write-back policy, LRU victim eviction policy
g. Hardware Multiplication / Division support (can be generated by either pure combinational

or using the Altera DSP)
h. Atomic instruction support
i. Unified system bus, can be either AXI4 or AXI-Lite

i. AXIL to AXI and AXI to AXIL bridge available
j. Pure System Verilog, platform independent, no priority IP
k. Formally verified (better than nothing)

2. SoC System:

a. 512Mb on-board SDRAM
i. Controller with AXI wrapper

b. Unified bus everywhere
i. All buses are either AXI or AXI-Lite, made bus translation overhead much smaller.

c. Support most on-board peripheral:
i. All GPIO

ii. UART for serial I/O
iii. SW and push button
iv. 7-seg for system state indicator
v. SPI for bootloader

vi. (hopefully) simple VGA output API

Resource Budgets
Only for RISCY core, not the whole SoC system

Logic: around 4K logic element at 50MHz timing requirement, 3K if 40MHz

Memory block: 0 (set all buffer depth to 0), infinite if I just ramp up the numbers

DSP block: 23 if support mult/div instruction, 0 if not

The Hardware/Software Interface
The RISC-V ISA includes 4096 32-bit control status registers (CSR), the registers are memory mapped and
controlled by a stand-alone controller, and I will choose some of them to be my debugging interface.

The CSR will include: (note, the RW privileges are from the RISCY core’s perspective)

1. 0x100: The “GO” register (R)
a. the processor will pull on it after reset or after ECALL/EBREAK instructions
b. PC resume if bit 0 set, otherwise pulse
c. Bit clear once PC pulls on it when set

2. 0x101: the ‘FSM_ERR’ register (stand-alone W)
a. Each bit corresponds to one FSM in the system (TBD)
b. Bit set if corresponding FSM goes into bad state

3. 0x102: the ASSERT_ERR register (stand-alone W)

7

a. Each bit corresponds to one assertion error latch (TBD)
b. Bit set if corresponding assertion fails

4. 0x103: the EBREAK register (W)
a. Bit 0 set indicates the RISCY core run into a EBREAK instruction.
b. Indicates RISCY is in debug state, PC freezes.
c. HPS can read this bit and can safely read / write into RISCY memory space

5. 0x103: the ECALL register (W)
a. Bit 0 set indicates the RISCY core run into a ECALL instruction.
b. Indicates RISCY requests supervisor handler
c. More of a placeholder, beyond the scope of this project

6. 0x104: the STOP registers (W)
a. Bit set indicates the core run into a HALT instruction
b. Indicates the program either entered a SW bad state or ended execution

7. 0x105: the GPIO_0_RW_CTRL register (W)
a. Bit set if output, bit clear if input (Inout not supported)

8. 0x106: the GPIO_0_OUT register (W)
a. Write to GPIO 0, output 1 if set

9. 0x107: the GPIO_0_IN register (R)
a. Mapped from GPIO, read 1 if set

10. 0x108: the GPIO_0_mask register (W)
a. Mask GPIO IO data

Let’s not go so far ahead of ourselves. I will extend the peripheral control registers once I finish building
the system.

At this point what really matters is the CSR 0x100 – 0x104, which are vital for the bootloader / debugger
to function. After the core starts running I will add support for more peripheral.

