

2022

New Rally Y

DESIGN DOCUMENT FOR CSEE 4840

ANDREW JUANG

Content

1. Introduction
2. System Block Design
3. Algorithms
4. Resource Budgets
5. The Hardware/Software Interface

1. Introduction

 New Rally Y is going to be a tribute based on the video game “New Rally X”. It is a classic retro

video game where a “race car” sprite is controlled by the player via a joystick and directed through a set

“maze” race track to collect flags for a high score while ai drive around either aimlessly or chase after

the player. The player has the option to navigate through the maze to avoid them or use smoke to wipe

out the enemies. Similarly, New Rally Y will try and emulate this game by having the player also control a

target player sprite which can be controlled in 4 directions (up, down, left, right) to also gather flags in a

less complex map maze. The AI will probably end up being dumb ai which will have two functions, either

being a dumb wall which eliminates the player upon contact and is temporarily removed when the

player uses smoke, or chases the player when they enter its proximity. The focus of this game will be

mostly on the visual aspect, where sounds will be considered for later but sprite art and functionality

will be the main focus.

2. System Block Diagram

3. Algorithms

Player Movement

Player movement will be decided using the input. Using a joystick or wasd to simulate a joystick, the

player movement can go into any of the four cardinal directions up down left right. This will be done via

similar logic to vga_ball, which was implemented in lab 3. The sprite shifts will be done similar to

vga_ball. Input is tentatively via a keyboard and we might switch to a joystick for more similarities to the

https://www.youtube.com/watch?v=ssB-FTfuH3U

original product, the keyboard will be the one provided by the lab. The player is restricted to a map

which is boxed off by multiple walls, so collision detection must be added such that the player can only

move in a restricted area. The original implementation used a zoomed in map, but for now we’ll

probably emulate a pac man map.

Enemy Movement

Enemy movement will spawn 3 enemies at the start which path randomly on the map. These should

follow player restrictions, where collision detection is also preventing them from walking through walls.

The enemies should follow a random path by choosing and trying one of the four directions every time

they update, and when they are within a certain range of the player they can “home in” and start

following them with varying degrees of consistency. Perhaps something along the lines of a weighted

greedy randomizer where there is an n chance of following the player and a (1-n) chance to choose a

random direction instead. If colliding with the player, it should result in a game over or a subtraction of

lives if implemented

Sprite Generation

Sprite generation will follow the professor’s lecture (https://www.youtube.com/watch?v=2ApafTCylus).

Similarly we want to have a sprite attribute table with a name and tag. Based on the pattern map, we

want to adjust the location of the sprite on the screen. We’d have each sprite for the player models and

enemies have 4 different sprites for facing different directions. We’d want the map to be made of blocks

so the obstacles could actually be 4 different variants as well to distinguish different varied obstacles of

rectangles of different shape/orientation to simplify it. The static map or the zoomed in map with static

player sprite both can use this feature.

Map Movement

If we have time, we will implement a moving map. This will be done via simulating a zoomed in

environment, where instead of moving the “player” we’ll move the entities around the player instead to

simulate movement. This should be rather trivial to implement once the base map is resolved and coded

in. The wasd or joystick will instead dictate where the “map” will “move” in context to the player.

Smoke Resource

Smoke can be used via a simple button, which will make a “static” sprite appear. If interacting with an

enemy it will temporarily remove said enemy for a set time, before “respawning” said enemy in a

different location or perhaps in the same location as it was disabled to save data processnig. In this time,

the enemy should have no collision box, show a different disable animation or be removed, and pause

ai. This will have a resource timer so it cannot be spammed.

Flag Collection

Flag collection should be relatively simple. Upon contact with the flag sprite, the player should have

their score increase. This should only register when the player hits the flag and also should spawn on a

random part of the map. It should try to spawn anywhere on the map and redistribute if it hits a “wall”

and the player cannot reach it there

https://www.youtube.com/watch?v=2ApafTCylus

4. Resource Budgets

Based on New Rally X sprites:

https://www.spriters-resource.com/arcade/rallyxnewrallyx/sheet/57635/

We want to simplify it down to a few main sprites

Category Graphics Size (bits) # of images Total size (bits)

Car Sprite 24*22 2 cars *4
directions

101,376

Smoke Sprite 16*16 1 6,144

Flag Sprite 16*16 1 6,144

Wall Sprite 90*20 2 86,400

Score Sprite 20*20 10 96,000

Game Status GAME OVER 160*20 1 32,000

 Total Bits 328,064

Audio we don’t want to consider at this original state since I’m not sure about the time for the

implementation.

https://www.spriters-resource.com/arcade/rallyxnewrallyx/sheet/57635/

5. Hardware/Software Interface

Will be based on the hardware documentation found on the website:

http://www.cs.columbia.edu/~sedwards/papers/TMS9918.pdf

Will need to go to office hours to figure this out better.

Register 0: VDP option control bits

Register 1 (Contains Eight VDP Control Bits)

Bit 0 = selects 4/16k selection. This is relevant for our project

Bit 1 = Display Blank Enable/Disable. Will use to turn on and off the display, possibly after a game over

Bit 2 = IE (Interrupt Enable), might use when transitioning map screens, a slight pause before rendering

Bit 3,4 = Pattern Mode.

Bit 5 = Reserved Bit. Set to 0

Bit 6 = Sprite Size Selection, Probably will use Size 1 sprites (16x16)

Bit 7 = Sprite Magnification. Set to 0

Register 2: Register of Name Table sub-block

Register 3: Color implementation

Register 4: Base address of the pattern, text or multicolor generator sub block

Register 5: Base address of Sprite Attribute Table sub-block

Register 6: Base address of Sprite Pattern Generator Sub Block

Register 7: color code in text mode and color code for backdrop

http://www.cs.columbia.edu/~sedwards/papers/TMS9918.pdf

