
The Design Document for CSEE 4840 Embedded
System Design

Invisibility-Curtain

(sr3859)Srivatsan Raveendran

(an3075)Abhijeet Nayak

Guide: Prof. Stephen A. Edwards

Spring 2022

Contents
1 Introduction 1

2 System Block Diagram 4

3 Algorithms 5

4 Resource Budgets 8

5 The Hardware/Software Interface 9

6 Milestone 17

7 Appendix 18

References 22

mailto:sr3859@columbia.edu
mailto:abhijeet.nayak@columbia.edu

1 Introduction
The invisibility cloak is a typical chromakey example of detecting a specific color
and masking it in a video stream. This project aims to use the DE-1 SoC to perform
edge image processing to execute the graphic effect of an invisibility cloak/curtain.
The Invisibility cloak is such that if a piece of cloth of a specific hue is held before
the camera, the regions of the cloak in the image disappear to reveal the original
background behind it. This gives an invisibility effect to the person covered in the
veil. The project aims to involve design of hardware system, interfaces, user mode
programs and kernel mode drivers to obtain an end-to-end system that is capable of
performing real-time camera image processing to achieve the task stated.

Our design aims to perform camera interface, image frame acquisition and its
respective format conversion (A2D and YCbCr to RGB) in the FPGA implemented
though Altera IP cores. The chroma key effect of replacing foreground color with the
background frame is done in software in the HPS. HPS sends back the modified
frame to the FPGA to display in the monitor.

The introduction briefly discusses some terminologies that are precursors to
understanding the video acquisition pipeline. Later in the Systems Diagram section,
the detailed discussion of design decisions will be presented.

1.1 YCrCb Color Space

The Luminance-Chrominance (YCrCb) color space contains information about the
brightness (luminance or luma) and color (chrominance or chroma). The color is
represented as two components, namely chrominance-red (Cr) and chrominance-blue
(Cb). The Altera IP allows 8 bits for each of Y, Cr and Cb. There are two possible
format modes of interest for our use-case:

1. YCrCb 4:4:4 -- This format is the normal YCrCb with all components as
shown in Figure 1. This mode is defined as 8 bits per color and three color
planes.

Fig.1 16-bit YCrCb 4:4:4 Color Space

2. YCrCb4:2:2—This format has half of the Cr and Cb entities onlyas
shown in Figure 2.. Each consecutive pixel has alternating Cr or Cb
components, with the first pixel in the frame starting with the Y and Cb
pixel. This mode is defined as 8 bits per color and two color planes.

Fig.2 16-bit YCrCb 4:2:2 Color Space

1

The DE-1 SoC uses a 4:4:4 setting for YCbCr.

1.2 RGB Color Space

Fig.3 16-bit RGB color space

This format uses 5 bits for red, 6 bits for green, and 5 bits for blue as shown in Figure
3..
If R and B are 5-bit integers and G is a 6-bit integer then color = B+(G<<5)
+(R<<11);

1.3 NTSC

The NTSC Standards and Video Capturing: NTSC refers to the National Television
Standards Committee. Their standards for interfacing video cameras are as follows.

a) The clock frequency is 27MHz.

b) The cycle frequency is 60 Hz.

c) Video is sent interlaced. Implying that two frame cycles are needed to
capture a full video display, where the first frame is all the odd horizontal lines
and the second frame is all the even horizontal lines.

The graph below shows the I2C timing diagram (SDA- Serial Data; SCL – Serial
Clock) for communication between the NTSC peripheral and the DE-1 FPGA’s
ADV7180 video chip.

Fig 4. I2C timing diagram

From Page 2 of the datasheet for ADV 7180 we know that the SCL supports a
maximum of 400KHz clock. We use this information to build a clock divider RTL
that steps down the 27MHz clock into 40KHz. On the DE-1, the switch 0 must be
pushed up to enable the 27MHz clock generation. This ensures that the TD_RESET
Pin is asserted with logic level high that in-turn triggers the 27MHz XTAL .

Our next step is to create a place in memory to store the 8 bit command, 8 bit address

2

and 8 bit data that we receive from the I2C camera peripheral. These regions are
separate registers.

Now, the Video decoder must receive the I2C data and SCL. For this serial shifting of
the clock and the data, we generate an I2C SCL and generate 8 bit values for
command address and data. Using the I2C protocol we await an acknowledgement
from the decoder and then stop sending this information to the decoder. The
substitution technique is used to receive the frames from the decoder into the SRAM
on one end and read the same frame from memory and display it to the monitor
through the VGA Raster RTL.

Fig 5. NTSC Interlacing Frame pattern

3

2 System Block Diagram
The hardware components of this system includes data acquisition from the NTSC
camera, logic to display the image data stored in memory via a VGA raster RTL, RTL
to synchronize the rates of image acquisition and image display and 2 port SRAM
block to buffer the YCbCr image pixels.

The Video decoder receives the I2C data and SCL. For this serial shifting of the clock
and the data, we generate an I2C SCL and generate 8 bit values for command address
and data. Using the I2C protocol we await an acknowledgement from the decoder and
then stop sending this information to the decoder.

Upon clicking a key (Key 0), the hardware starts streaming frames. The first frame
that is buffered in memory gets read by the software in the ARM HPS. This is saved
as a background image i.e., that which needs to be displayed over the colored curtain.
As the clock moves forward, the camera input is updated with newer frames that
rewrite the background frame in memory. These form the frames which we operate
upon using the core chromakey logic in software. The C program converts, performs
edge detection on the thresholded color of interest and generates a mask which is
bitwise anded with the stored background frame. The data in the memory follows the
substitution fashion of access. New video frame goes to the lower half of memory
and moves to the upper half for VGA buffering.

We design our system in such a way that the software component of this system
interacts with hardware through the Linux Kernel Mode Driver (KMD) stack. The
driver can access the entire SRAM, read a background frame and subsequent frames,
operate on them and finally write to the SRAM.

Fig 6. Systems Diagram of the Invisibility-Cloak System

4

3 Algorithms
In order to arrive at the correct steps to implement the system, we first simulate the
system through a python program (refer Appendix).

The following are the stages of the simulated program:

1. General Algorithm Flow

i) Acquiring RGB background image using OpenCV and storing it in an
array

ii) Flip the image frame

iii) Conversion of RGB to HSV

iv) Generating a mask that can be applied on the incoming frame

a. Generate two different ranges of HSV values for the color of
interest and apply the ranges to threshold the image. This leaves us with
two masks.

b. Perform addition of these two masks to incorporate the lower and
upper bound of the range of HSV values

c. Apply Morphological opening operation on the mask with a 3,3
filter for 2 iterations

d. Apply Morphological image dilation operation on the mask using
3,3 filter for a single iteration.

e. Bitwise invert the mask and call it mask_2

f. Apply bitwise and on the masked background and the original
background using mask_1

g. Perform bitwise and of the incoming image with the masked version
of the image frame using mask_2

h. Combine the results from steps ‘f’ and ‘g’ using weighted addition

i. Display the result of the addition as the operated final image

Morphological Image Opening

Opening refers to the morphological dilation of the erosion of a set with a structuring
element. The effect of the operator is to preserve foreground regions that have a
similar shape to this structuring element, or that can completely contain the
structuring element, while eliminating all other regions of foreground pixels. It is
used to preserve intensity patterns in the image. (Fig 6.)

The equation of opening is: (A o B = (A⊖B)⊕ B)

5

Fig 7. Illustrates the functioning of image opening on a thresholded image

Morphological Image Dilation

The basic effect of the operator on a binary image is to gradually enlarge the
boundaries of regions of foreground pixels (i.e. white pixels, typically). Thus areas of
foreground pixels grow in size while holes within those regions become smaller. For
each background pixel (which we will call the input pixel) we superimpose the
structuring element on top of the input image so that the origin of the structuring
element coincides with the input pixel position. If at least one pixel in the structuring
element coincides with a foreground pixel in the image underneath, then the input
pixel is set to the foreground value. If all the corresponding pixels in the image are
background, however, the input pixel is left at the background value.

Fig 8. below illustrates the working of image dilation on a sample binary image.

Fig 8. Dilation on sample image

6

2. Display Logic - VGA Raster algorithm

The following signals and logic must be generated to perform a VGA display scan.

1. vsync, hsync and blank signals.

2. First using the 50 Mhz system clock we will divide it to generate the needed 25
MHz monitor clock

3. Using the 25 MHz clock creates a counter and generates the needed sync pulses.

We follow the steps below to configure the RTL for VGA counters and pixel
generation.

1. The memory configuration is 16 address lines and 32 data bits.
2. We were using a substitution method for video capture and display.
3. Lower 16 bits [0 - 15] were for odd video lines.
4. Upper 16 bits [16 - 31] were for even video lines.
5. Two frames were required to create a full video frame.
6. Vid_udl and Vid_udh are used to store all the even lines of video data.
7. Vid_ldl and Vid_ldh are used to store all the odd lines of video data.
8. There are a total of 210 vertical lines. Also note we started after 30 vertical

lines and ended at 240 vertical lines (240-30= 210). So the full frames is 210 x 2 =
420

9. There were a total of 624 horizontal video pixels (8 bits per pixel). Again note
we

started the counter at 150 pixels in and stopped at 774 pixels (774-150 = 624)

In step 4 of the above algorithm, steps a through h are performed in software and
the result image is sent back to the hardware for display to VGA.

Fig 9. VGA Horizontal timing diagram

7

4 Resource Budgets
1. How much RAM is needed

a) Video Buffer

To compute the approximate memory requirement for storing a frame of data, we
consider 640 pixels and there are 480 vertical rows. This means the frame size is
640X480 = 307200. In this case we would need ~ 307k x8 or 307K bytes. Where 8 is
the 8 bits of colour data per pixel.

We consider a smaller frame resolution to allow budgeting memory for incoming
video stream as well as the outgoing VGA display stream to be buffered. In a 624 x
480 resolution, since the camera NTSC standard acquisition happens in an
interleaved fashion, we are required to acquire 2 frames of size 2 x (624x210) x 8
bits.

1. At the edge of each 27 MHz clock pulse an 8 bit video pixel is to be stored in
SRAM.

2. Horizontal Line memory: Hsync corresponds to a line of video data. One line
occupies 624 x 8 = 4992 bits.

3. Vertical Line consideration: Vsync allows to capture a number of lines (rows) for
each frame. For 210 rows per frame 4992 x 210 = 1,048,320 (~1 Mbit).

4. Since we do this twice to account for the interleaving, a full frame demands 2
Mbits ~ 256 Kbytes. This is within the memory capacity of the on chip memory
SRAM on the DE1-SOC board.

To write a system Verilog SRAM module, we consider the configuration - 16 address
lines x 32 bits of data = 216 x 32 = 2 Mbits of memory.

b) VGA Buffer
In order to optimize the memory requirement, the access pattern that we design is
such that the decoded frame written to the from the camera gets accessed by the VGA
controller RTL. The video format we use is the 4:2:2 format where there are 4 red
bits, 2 green bits, and 2 blue bits summing to a total of 8 bits.

The common buffer for Display out and Video-in will be synchronized by a state
machine rtl. The memory will be generated using Quartus 2 port RAM generating
wizard. In order to display the frame, the 2MBit of frame data will be moved to the
VGA Buffer which will form the lower half of addresses in the SRAM.

Thus the total of 256*2 = 512Kbytes will be utilized.

2. Timing (latency)

Synchronization between the display and video feed in will introduce delays due
to the different clock rates at which each stores information in the SRAM.
Hence, the data available in the RAM is not always the latest data. Hence, it must
be ensured that the VGA reads only when the RAM is fully populated with the
video feed data. This hopes to tackle synchronization related latency overhead

8

5 The Hardware/Software Interface

The FPGA fabric and the ARM core are connected through two Advanced
Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI)
bridges. Although these two components can function entirely independently,
communication between the ARM core and FPGA fabric can be a bottleneck for the
overall system. That is why they are connected with two high-speed 128bit AMBA
AXI bus bridges called HPS to FPGA and FPGA to HPS. The data path width for
both bridges is not fixed to 128 bits; it can be configured via QSYS to 32, 64, and
128. By having this variable data width, the bridge can be tuned for maximum
performance when communication between the FPGA fabric and the HPS L3 occurs.

The different types of interfaces in the DE-1 FPGA region are so following:

1. Composite Video Input – interfaces with NTSC / camcorder

2. VGA Video Output – connects to a VGA monitor for display out

3. PS2 Interface – Interfaces with Keyboards

4. Audio Interface – mic input, line input, speaker output

5. 40 pin general purpose ports – GPIO-0 (JP1), GPIO-1(JP2)

Fig 10. Block diagram of De1-SoC

9

Memory:
The DE1-SoC Computer has an SDRAM port, as well as two memory modules
implemented using the on-chip memory inside the FPGA. These memories are
described below.

SDRAM
An SDRAM Controller in the FPGA provides an interface to the 64 MB synchronous
dynamic RAM (SDRAM) on the DE1-SoC board, which is organized as 32M x 16
bits. It is accessible by the A9 processor using word (32-bit), halfword (16-bit), or
byte operations, and is mapped to the address space 0xC0000000 to 0xC3FFFFFF.
Connections between the FPGA and SDRAM are shown below:

Fig 11: FPGA-SDRAM interface
On-Chip Memory
The DE1-SoC Computer includes a 256 KB memory that is implemented inside the
FPGA. This memory is organized as 64K x 32 bits, and spans addresses in the range
0xC8000000 to 0xC803FFFF. The memory is used as a pixel buffer for the video-out
and video-in ports.

Dual-clock FIFO:
The Dual-Clock FIFO buffers video data entering into the video decoder from the
video source and help transfer a stream between two clock domains. Video streams
into the core at the input clock frequency. The data is buffered in a FIFO memory.
Then, the data is read out of the FIFO at the output clock frequency and streamed out
of the core. The block diagram of the core is represented below:

10

Fig 12. Dual-clock FIFO interface interface

DMA Controller:
The DMA Controller IP core stores and retrieves video frames to and from memory.
The DMA controller has two modes of operation: “from stream to memory” and
“from memory to stream”. When in the “from stream to memory” mode, the core
stores frames from an incoming stream to an external memory. The core uses its
Avalon memory-mapped master interface to send the data to the memory. When in
the “from memory to stream” mode, the DMAcontroller uses its Avalon
memory-mapped master interface to read video frames from an external memory.
Then, it sends those video frames out via its Avalon streaming interface. The block
diagram of the core is represented below:

Fig 13. DMA controller interface

DMA controller register Map :
The DMAcontroller’s Avalon memory-mapped slave interface, named
avalon_dma_control_slave, is used to communicate with the controller’s 4 internal
registers.

11

Fig 14. DMA Controller Register Map

TheBuffer register holds the 32-bit address of the start of the memory buffer. This
register is read-only, and shows the address of the first pixel of the frame currently
being output. The BackBuffer register allows the start address of the frame to be
changed under program control. To change the frame being displayed, the desired
frame’s start address is first written into the BackBuffer register. Then, a second write
operation is performed on the Buffer register. The value of the data provided in this
second write operation is not used by the controller. Instead, it interprets a write to the
Buffer register as a request to swap the contents of the Buffer and BackBuffer
registers. The swap does not occur immediately. Instead, the swap is done after the
DMA controller reaches the last pixel associated with the frame currently being
output. While the controller is not yet finished outputting the current frame, bit S of
the Status register will be set to 1. After the current screen is finished, the swap is
performed and bit S is set to 0. The Resolution register provides the X resolution of
the screen in bits 15-0, and the Y resolution in bits 31-16. Finally, the Status/Control
register provides information of the DMA controller.

Avalon bus:
Avalon-MM interface that supports read and write transfers with agent-controlled
wait requests. The agent can stall the interconnect for as many cycles as required by
asserting the waitrequest signal. If an agent uses waitrequest for either read or write
transfers, the agent must use waitrequest for both. An agent typically receives
address, byteenable, read or write, and writedata after the rising edge of the clock. An
agent asserts waitrequest before the rising clock edge to hold off transfers. When the
agent asserts waitrequest, the transfer is delayed. While waitrequest is asserted, the
address and other control signals are held constant. Transfers complete on the rising
edge of the first clk after the agent interface deasserts waitrequest. There is no limit
on how long an agent interface can stall. The following figure shows read and write
transfers using waitrequest.

12

Fig 15. Avalon Bus timing diagram

The numbers in this timing diagram mark the following transitions:
1. address, byteenable, and read are asserted after the rising edge of clk. The agent
asserts waitrequest, stalling the transfer.
2. waitrequest is sampled. Because waitrequest is asserted, the cycle becomes a
wait-state. address, read, write, and byteenable remain constant.
3. The agent deasserts waitrequest after the rising edge of clk. The agent asserts
readdata and response.
4. The host samples readdata, response and deasserted waitrequest completing the
transfer.
5. address, writedata, byteenable, and write signals are asserted after the rising edge
of clk. The agent asserts waitrequest stalling the transfer.
6. The agent deasserts waitrequest after the rising edge of clk.
7. The agent captures write data ending the transfer.

VGA Port:

The DE1-SoC board has a 15-pin D-SUB connector populated for VGA output. The
VGA synchronization signals are generated directly from the Cyclone V SoC FPGA,
and the Analog Devices ADV7123 triple 10-bit high-speed video DAC (only the
higher 8-bits are used) transforms signals from digital to analog to represent three
fundamental colors (red, green, and blue). It can support up to SXGA standard
(1280*1024) with signals transmitted at 100MHz.

13

Fig 16. VGA Port Interface

Video-in decoder:

The chip used on the DE1-SoC board is an Analog Devices ADV7180. The
ADV7180 is an integrated video decoder which automatically detects and converts a
standard analog baseband television signals (NTSC, PAL, and SECAM) into 4:2:2
component video data, which is compatible with the 8-bit ITU-R BT.656 interface
standard. Video is collected from a composite video source, such as a camcorder,
with a composite video RCA jack output. The VGA controller supports a screen
resolution of 640 × 480. The registers in the TV decoder can be accessed and set
through serial I2C bus by the Cyclone V SoC FPGA or HPS. The video-in controller
interface is illustrated in figure below

Fig 17. ADV7180 Interface

14

[TV Decoder Data (7:0)]- 8 bits of video data are connected from the video chip to
the FPGA. Pins are assigned according to Table 1.

[TV Decoder H_SYNC] -Horizontal sync pulse generated by the ADV7180 video
decoder chip. Pin is assigned according to Table 1.

[TV Decoder V_SYNC]- Vertical sync pulse generated by the ADV7180 video
decoder chip. Pin is assigned according to Table 1.

[TV Decoder Clock input]- This is a 27 MHZ clock generated by the ADV7180
video chip. In order to enable the clock, the TD_RESET pin must be asserted to an
active high logic level.

I2C Data- This is a bi-directional serial data bus pin, use to program the internal
serial register of the ADV7180 video decoder.

I2C Clock- This is the serial clock pin used to clock the serial data. The frequency
that must be generated is typically below 400 KHz.

Video processing from Video-in decoder to VGA controller:

There are two major blocks in the system called I2C_AV_Config and TV_to_VGA.
The TV_to_VGA block consists of the ITU-R 656 Decoder, SDRAM Frame Buffer,
YUV422 to YUV444, YCbCr to RGB, and VGA Controller. The register values of
the TV decoder are used to configure the TV decoder via the I2C_AV_Config block,
which uses the I2C protocol to communicate with the TV decoder. The ITU-R 656
Decoder block extracts YcrCb 4:2:2 (YUV 4:2:2) video signals from the ITU-R 656
data stream sent from the TV decoder. It also generates a data valid control signal,
which indicates the valid period of data output. De-interlacing needs to be performed
on the data source because the video signal for the TV decoder is interlaced. The
SDRAM Frame Buffer and a field selection multiplexer (MUX), which is controlled

15

by the VGA Controller, are used to perform the de-interlacing operation. The VGA
Controller also generates data request and odd/even selection signals to the SDRAM
Frame Buffer and filed selection multiplexer (MUX). The YUV422 to YUV444
block converts the selected YcrCb 4:2:2 (YUV 4:2:2) video data to the YcbCr 4:4:4
(YUV 4:4:4) video data format. Finally, the YcrCb_to_RGB block converts the
YcbCr data into RGB data output. The VGA Controller block generates standard
VGA synchronous signals VGA_HS and VGA_VS to enable the display on a VGA
monitor. The block diagram of the system is demonstrated below:

Fig 18. Block diagram for video processing

16

6 Milestones

Tentative
Date

Action Item Comments

03/05 Understanding IP components, VGA adapters,
Avalon interconnects, HPS, algorithmic complexity

03/12 Integrating hardware IPs, adapters, avalon
interconnect etc. Interfacing Camera with DE-1.

Design documentation of
successful IPs integrated

03/24 Writing Test Benches for bare metal hardware

03/29 Writing device drivers for hardware integrated (i.e.,
for the video processing RTL and the)

deeper understanding of video
interface and processing real time
with FPGA

04/01 Mid Review

04/15 Testing the integration with linux

04/25 Writing user mode program to compile the kernel
for the FPGA

05/06 Testing System and debugging backgrounds Drafting final report with debug
results

05/16 Final Presentation

17

7 Appendix
Python program:

Import Libraries

import numpy as np

import cv2

import time

camCount=0

#To use webcam enter 0 and to enter the video path in double quotes

cap = cv2.VideoCapture(0)

time.sleep(3) # parenthesis has two because the camera needs time to

adjust it self i according to the environment

background = 0

Capturing the background

for i in range(60):

ret, background = cap.read()

#capturing image

background = np.flip(background,axis=1)

while(cap.isOpened()): # Condition for this is when only the webcam is opened

it will only run the code else the code will not run in the background without

the webcam

ret, img = cap.read() # FPGA

if not ret:

break

Software _BEGIN_

img = np.flip(img,axis=1)

hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) # FPGA - RGB

#HSV values

#setting the values for the cloak

18

lower_red = np.array([0,120,70])

upper_red = np.array([10,255,255])

mask1 = cv2.inRange(hsv, lower_red,upper_red)

lower_red = np.array([170,120,70])

upper_red = np.array([180,255,255])

mask2 = cv2.inRange(hsv,lower_red,upper_red)

mask1 = mask1 + mask2

mask1 = cv2.morphologyEx(mask1,cv2.MORPH_OPEN,np.ones((3,3),np.uint8),

iterations = 2)

mask1 = cv2.morphologyEx(mask1, cv2.MORPH_DILATE,np.ones((3,3),np.uint8),

iterations = 1)

mask2 =cv2.bitwise_not(mask1)

res1 = cv2.bitwise_and(background, background, mask=mask1)

res2 = cv2.bitwise_and(img, img, mask=mask2)

Software _END_

final_output = cv2.addWeighted(res1,1,res2,1,0)

cv2.imshow('Invisible Cloak',final_output)

k = cv2.waitKey(10)

if k==27:

break

cap.release()

Gcv2.destroyAllWindows()

19

Test Case:

Background: Image stream from camera capture - 3 channel (RGB) 720x480 matrix

20

Output: Processed image after applying the algorithm stated in section 3: RGB 3 channel
720x480 image matrix

21

References
1. Invisible Cloak using OpenCV | Python Project,

https://www.geeksforgeeks.org/invisible-cloak-using-opencv-python-projec
t/

2. DE-1 SoC Manual and Datasheet:
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/4
2/doc-us-dsnbk-42-1004282204-de1-soc-user-manual.pdf

3. Video capture using DE1-SoC:
https://hackaday.io/project/19945-video-capture-using-de1-soc-hps

4. ADV 7180 Video Decoder Datasheet -
https://www.analog.com/media/en/technical-documentation/data-sheets/AD
V7180.pdf

5. I2C Protocol Working -
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

6. Display VGA Video Raster Scan Algorithm -
http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/video.pdf

7. Altera Memory System Design -
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literatu
re/hb/nios2/edh_ed51008.pdf

8. FPGA NTSC Video Feed and Processing -
https://inst.eecs.berkeley.edu/~cs150/Documents/VideoNutshell.pdf

9. Altera Avalon Bus Specification sheet -
https://www.ee.ryerson.ca/~courses/coe718/Data-Sheets/sopc/mnl_avalon_
bus.pdf

22

https://www.geeksforgeeks.org/invisible-cloak-using-opencv-python-project/
https://www.geeksforgeeks.org/invisible-cloak-using-opencv-python-project/
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1004282204-de1-soc-user-manual.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1004282204-de1-soc-user-manual.pdf
https://hackaday.io/project/19945-video-capture-using-de1-soc-hps
https://www.analog.com/media/en/technical-documentation/data-sheets/ADV7180.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADV7180.pdf
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/
http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/video.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/edh_ed51008.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/edh_ed51008.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/VideoNutshell.pdf
https://www.ee.ryerson.ca/~courses/coe718/Data-Sheets/sopc/mnl_avalon_bus.pdf
https://www.ee.ryerson.ca/~courses/coe718/Data-Sheets/sopc/mnl_avalon_bus.pdf

