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Overview:
The idea for our project is to make a Convolutional Neural Network accelerator for a

Computer Vision Model which will perform facial recognition. Computer Vision models which
rely on CNN’s are very taxing on a processor because of the constant heavy computations
needed to process images. To alleviate this we will get the FPGA to perform very fast and
parallelized computations on pixel matrices. We will use the software as a controller for the CNN
which will take video input from a camera (peripheral) and feed it to the CNN algorithm on the
hardware side. Upon completion of the final layer of computation we will get the output
indicating the decision the model made. Finally we can set up a display to say whose face it
recognized to the user.

CNN Model:
Convolutional Neural Networks (CNN) are a form of Artificial Neural Network that we

will be using for image recognition. A CNN is composed of many connected neurons with
weights and biases. Each neuron receives input data and performs operations on it using the
weights and biases then outputs the transformed data to the next layer. The CNN model we are
building is composed of four types of layers: convolution, activation, pooling, and fully
connected. These functions are combined to form single layers, then the layers are stacked to
form the CNN.

[2]
The convolution function is the core function of the CNN and is used to extract features

from the input images. The convolution works by taking a small filter or kernel (usually 3x3 or
5x5) and sliding over the input. At each pixel, the filter values are multiplied by the
corresponding pixel in the neighborhood and summed to create a feature map. Generic kernels
exist such as the Sobel filter for detecting vertical and horizontal edges, but our CNN will use
unique kernels trained to recognize features specific to our dataset.  For pixels on the edge of the
image where the filter would hang over the image can be zero-padded by adding zeros to the
edge of the image. The other option would be to ignore the edge pixels and shrink the image
after convolution. Our model makes use of convolution in two layers and uses 5x5 kernels along
with no zero padding to decrease memory usage.
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The activation layer introduces non-linearity into the CNN model and is used to decide if
the neuron will “fire” or not. This effect is achieved through the use of an activation function. A
popular activation function is ReLU which is simply f(x) = max(0,x), it eliminates negative
numbers and turns them to zero. Another activation function is sigmoid function:

σ(𝑥) = 1

1+𝑒−𝑥

Because this function uses the exponential function, for the hardware implementation we will use
a segmented fitting optimization as shown in [3].

The fully connected layer takes as input the flattened matrix of the previous layer’s
output (ie. 12x4x4 gets flattened to 192x1) and fed as input. The inner workings of this layer take
each of these 192 neurons and connect them to each and every neuron in the next layer. The size
of this next layer in the fully connected layer can be changed to meet the desired output
possibilities as the user wishes. For a next layer of size 10 we have 1920 connections each with a
corresponding weight as well as a bias for each neuron in the next layer (10 in size, 1 for each
neuron). To illustrate this refer to this image below [4].

The pooling layer averages the input values via a 2x2 kernel and outputs the result to the
next layer. By averaging the input, this layer downsamples the input image to decrease its
resolution.
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We use bias in the convolution layer, but not in the fully connected layer. As the activation
function, we use ReLU in the convolution layer and sigmoid in the fully connected layer.

The input to the CNN is a grayscale 28x28 image.

Layer
Number

Type Kernel Size Output Size Parameters

1 Convolution 6 5x5 (150) 6x24x24 (3456) 156

2 Avg Pooling 6 2x2 (24) 6x12x12 (864) None

3 Convolution 6 groups of
12 5x5 (1800)

72x8x8 (4608) 10872

4 Avg Pooling 12 2x2 (48) 72x4x4 (1152) None

5 Fully
Connected

None 50 57600

Software/Hardware Interface:
Even though the accelerator is quite complex, the software/hardware interface is

surprisingly simple with 2 input registers for image data and parameters and 50 output registers
for the resulting classification vector.The image data will be preprocessed with downsampling
and conversion to 16-bit fixed point prior to being sent to the FPGA. The input image data
register will be a 16-bit register and the input parameter register will be a 16-bit register. The
data will be sent to these registers in serial and will be loaded into the FPGA’s memory. After the
accelerator completes, the 50 output values that are stored in 16-bit registers on the FPGA can be
sent back to the software. Controlling the accelerator will be accomplished by an 8-bit control
register. The first bit when set to ‘1’ will indicate to the accelerator that image data should be
loaded into memory. The second bit if set to ‘1’ will indicate to the accelerator that parameter
data should be loaded into memory. The third bit when set to ‘1’ will start the accelerator.
Finally, the fourth bit will indicate to the software when the accelerator is finished. The
remaining 4 bits will be reserved for the inclusion of more control signals if needed.
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Block Diagram:
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Resources:
Layer Data (Bits) Weights + Bias (Bits) Memory Needed(Bits)

Input 28x28x16 0 12544

1 6x24x24x16 6x5x5x16 + 6x16 57792

2 6x12x12x16 0 13824

3 72x8x8x16 72x6x5x5x16 + 72x16 247680

4 72x4x4x16 0 18432

5 50x16 57600x16 + 50x16 923200

Total: 1273472

As it can be seen from the table above our estimation for memory utilization is 1273472
bits or about 1300 Kb which is capable of fitting within the 4450 kb of embedded memory of the
FPGA. In addition to memory another potential bottleneck is the utilization of the DSP blocks.
For this accelerator 72 multiply and accumulate modules will be used to parallelize the
computations, especially in the convolution layers. Each multiply and accumulate module will
utilize a DSP block in a 16x16 multiplier adder mode. This will give us a remainder of 15 DSP
blocks that can be used for other functions needed such as proper memory addressing, the best fit
curves for the sigmoid function, and other mathematical functions.
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