
The Eval Monad and Strategies

Stephen A. Edwards

Columbia University

Fall 2021

The Eval Monad: rpar and rseq
Speeding up a Sudoku Solver

Static Partitioning
Dynamic Partitioning
Amdahl’s Law

Control.DeepSeq: Reducing to Normal Form
rnf for a Custom Data Type

Evaluation Strategies
Basic Strategies
Composing Strategies
Evaluating Lists in Parallel

Example: The K-Means Problem
Generating a Data Set
Parallelizing K-Means
Performance of Parallel K-Means

Garbage Collected Sparks
Parallelizing Lazy Streams

The Eval Monad: An Alternative to seq and par

When in doubt, create a Monad

module Control.Parallel.Strategies where

data Eval a = ...

instance Monad Eval where ...

runEval :: Eval a -> a −− Get the result

rpar :: a -> Eval a −− Spark evaluation
rseq :: a -> Eval a −− Wait for evaluation to WHNF

rpar/rpar

runEval $ do
 a <- rpar (f x)
 b <- rpar (f y)
 return (a, b)

Start parallel evaluation of f x and f y

Return immediately

rpar/rseq

runEval $ do
 a <- rpar (f x)
 b <- rseq (f y)
 return (a, b)

Start parallel evaluation of f x and f y

Wait for f y to finish, then return

Do we really know f y is faster?

rpar/rpar/rseq/rseq

runEval $ do
 a <- rpar (f x)
 b <- rseq (f y)
 rseq a
 return (a, b)

Equivalent and symmetrical:

runEval $ do
 a <- rpar (f x)
 b <- rpar (f y)
 rseq a
 rseq b
 return (a, b)

Start parallel evaluation of f x and f y

Wait for both to finish, then return

Marlow’s Sudoku Solver Example (single-threaded)
$ wget https://github.com/simonmar/parconc-examples/archive/master.tar.gz
$ tar --strip-components=1 -zxf master.tar.gz \

 parconc-examples-master/{Sudoku.hs,sudoku17.1000.txt}

import Sudoku ; import Control.Exception
import System.Environment ; import Data.Maybe

main :: IO ()
main = do [f] <- getArgs

 file <- readFile f
 let puzzles = lines file
 solutions = map solve puzzles
 print (length (filter isJust solutions))

$ stack ghc -- -O2 sudoku1.hs -rtsopts
$./sudoku1 sudoku17.1000.txt +RTS -s

Static Partitioning
import Sudoku
import Data.Maybe ; import System.Environment
import Control.Parallel.Strategies ; import Control.DeepSeq
main :: IO ()
main = do puzzles <- getArgs >>= \[f] -> lines <$> readFile f

 let (as,bs) = splitAt (length puzzles ̀ div` 2) puzzles

 solutions = runEval $ do
 as' <- rpar (force (map solve as)) −− To normal
 bs' <- rpar (force (map solve bs)) −− form
 _ <- rseq as'
 _ <- rseq bs'
 return (as' ++ bs')

 print (length (filter isJust solutions))

The Problem with Static Partitioning
$ stack install parallel
$ stack ghc -- -O2 -Wall sudoku2.hs -threaded -rtsopts -eventlog
$./sudoku2 sudoku17.1000.txt +RTS -N2 -s -ls
$ threadscope sudoku2.eventlog

Speedup on two cores: 1.37/0.891= 1.53×

Better Balancing using parMap
import Sudoku
import System.Environment ; import Data.Maybe
import Control.Parallel.Strategies hiding (parMap)

parMap :: (a -> b) -> [a] -> Eval [b]
parMap _ [] = return []
parMap f (a:as) = do b <- rpar (f a) −− Spark evaluation of f a

 bs <- parMap f as −− Recurse
 return (b:bs)

main :: IO ()
main = do puzzles <- getArgs >>= \[f] -> lines <$> readFile f

 let solutions = runEval (parMap solve puzzles)

 print (length (filter isJust solutions))

The Advantage of Dynamic Partitioning
$ stack ghc -- -O2 -Wall sudoku3.hs -threaded -rtsopts -eventlog
$./sudoku3 sudoku17.1000.txt +RTS -N2 -s -ls
$ threadscope sudoku3.eventlog

Speedup on two cores: 1.37/0.751= 1.82× versus 1.53× with static partitioning

Amdahl’s Law: Why Parallelism is Difficult

AFIPS Joint Computer Conference, 1967

P is the parallel fraction of the task

N is the degree of parallelism

S is the speedup

S= 1
(1−P)+P/N

lim
N→∞

S is the depressing part:

If P = 0.5, S→ 2 as N→∞
If P = 0.95, S→ 20 as N→∞

DeepSeq and Normal Form
Weak Head Normal Form = Top is data constructor or lambda, not application

Normal Form = Data constructors or lambdas all the way down

In Control.Deepseq,

class NFData a where
 rnf :: a -> () −− “Reduce to Normal Form”
 rnf a = a ̀ seq` () −− Default, e.g., for numbers

deepseq :: NFData a => a -> b -> b
deepseq a b = rnf a ̀ seq` b −− Evaluate a to NF; return b

force :: NFData a => a -> a
force a = a ̀ deepseq` a −− Evaluate a to NF; return it

($!!) :: NFData a => (a -> b) -> a -> b
f $!! x = x ̀ deepseq` f x −− evaluate x then f x

Control.Deepseq has instances of NFData for standard types (numbers,
characters, lists, tuples)

Normal Form vs. Weak Head Normal Form
Prelude> import Control.DeepSeq
Prelude Control.DeepSeq> let x = [1..10] :: [Int]
Prelude Control.DeepSeq> :sprint x
x = _
Prelude Control.DeepSeq> :sprint x
x = _
Prelude Control.DeepSeq> x ̀ seq` ()
()
Prelude Control.DeepSeq> :sprint x
x = 1 : _
Prelude Control.DeepSeq> (last $ take 3 x) ̀ seq` ()
()
Prelude Control.DeepSeq> :sprint x
x = 1 : 2 : 3 : _
Prelude Control.DeepSeq> x ̀ deepseq` ()
()
Prelude Control.DeepSeq> :sprint x
x = [1,2,3,4,5,6,7,8,9,10]

Roll-your-own NFData
import Control.DeepSeq
data Tree a = Empty | Branch (Tree a) a (Tree a)
instance NFData a => NFData (Tree a) where

 rnf Empty = ()
 rnf (Branch l a r) = rnf l ̀ seq` rnf a ̀ seq` rnf r

*Main> let singleton x = Branch Empty x Empty

*Main> let x = Branch (singleton 'a') 'b' (singleton 'c')

*Main> :sprint x
x = Branch _ 'b' _

*Main> x ̀ seq` ()
()

*Main> :sprint x
x = Branch _ 'b' _

*Main> rnf x
()

*Main> :sprint x
x = Branch (Branch Empty 'a' Empty) 'b' (Branch Empty 'c' Empty)

Evaluation Strategies

“Strategies are a means for modularizing parallel code by separating the
algorithm from the parallelism. Sometimes they require you to rewrite your
algorithm, but once you do so, you will be able to parallelize it in different
ways just by substituting a new Strategy.” —Simon Marlow

1. Build a lazy data structure representing the computation

2. Apply a Strategy that traverses the computation applying rpar and rseq

A Strategy: an identity function in the Eval monad (Control.Parallel.Strategies)

type Strategy = a -> Eval a

An Example: A Parallel Strategy for Pairs
rpar :: Strategy a −− Spark evaluation
runEval :: Eval a -> a −− Evaluate; return value

parPair :: Strategy (a,b) −− Simple parallel strategy for pairs
parPair (a,b) = do

 a' <- rpar a −− Spark parallel evaluation of
 b' <- rpar b −− a and b to WHNF
 return (a',b')

runEval (parPair (fib 35, fib 36))

More elegantly,

using :: a -> Strategy a -> a −− In Control.Parallel.Strategies
x ̀ using` s = runEval (s x) −− Apply s, return x

(fib 35, fib 36) ̀ using` parPair

Basic Strategies

In Control.Parallel.Strategies:

r0 :: Strategy a
r0 x = return x −− Do not evaluate x

rseq :: Strategy a −− Evaluate to WHNF; wait for completion

rdeepseq :: NFData a => Strategy a −− Fully evaluate then proceed
rdeepseq x = rseq (rnf x) >> return x

rpar :: Strategy a −− Spark evaluation (in parallel) to WHNF

rparWith :: Strategy a -> Strategy a
rparWith s x −− Spark evaluation of x ‘using‘ s

Building Strategies from Strategies

A skeleton for expressing stategies for evaluating tuples:

−− In Control.Parallel.Strategies,
evalTuple2 :: Strategy a -> Strategy b -> Strategy (a, b)
evalTuple2 sa sb (a, b) = do a' <- sa a

 b' <- sb b
 return (a', b')

parPair :: Strategy (a, b)
parPair = evalTuple2 rpar rpar −− Spark elements’ evaluation to WHNF

What if we wanted to fully evaluate the two elements in parallel?

parPair :: Strategy a -> Strategy b -> Strategy (a, b)
parPair sa sb = evalTuple2 (rparWith sa) (rparWith sb)

parPair rdeepseq rdeepseq (fib 25, fib 26)

parPair rdeepseq rdeepseq (a, b)

“Spark two parallel threads that fully evaluate a and b to normal form”

A cartoon of how this works:

parPair rdeepseq rdeepseq (a, b)
 = evalTuple2 (rparWith rdeepseq) (rparWith rdeepseq) (a, b)

 = do a' <- (rparWith rdeepseq) a
 b' <- (rparWith rdeepseq) b
 return (a', b')

 = do a' <- rpar (a ̀ using` \x -> rseq (rnf x) >> return x)
 b' <- rpar (b ̀ using` \x -> rseq (rnf x) >> return x)
 return (a', b')

Evaluating a List in Parallel

In Control.Parallel.Strategies,

evalList :: Strategy a -> Strategy [a] −− Apply a strategy
evalList _ [] = return [] −− to each list element
evalList s (x:xs) = do x' <- s x

 xs' <- evalList s xs
 return (x':xs')

parList :: Strategy a -> Strategy [a] −− Evaluate each list element
parList s = evalList (rparWith s) −− in parallel with strategy

Combining these to evaluate all list elements to WHNF in parallel:

parMap :: (a -> b) -> [a] -> [b]
parMap f xs = map f xs ̀ using` parList rseq

Simpler Parallel Sudoku
import Sudoku(solve)
import System.Environment(getArgs)
import Data.Maybe(isJust)
import Control.Parallel.Strategies(using, parList, rseq)

main :: IO ()
main = do [fname] <- getArgs

 puzzles <- lines <$> readFile fname

 let solutions = map solve puzzles ̀ using` parList rseq

 print $ length $ filter isJust solutions

Note that rseq only evaluates to WHNF, but that suffices for Sudoku

About the same performance as the “parMap” version presented earlier

Example: The K-Means Problem

Lloyd’s (approximation)
algorithm

Give a number of clusters k,

1. Guess a center for each
cluster

2. Group points by closest
centerpoint

3. Calculate the centroid
(average) of each group

4. Repeat steps 3–4 until
satisfied

Example: The K-Means Problem
$ wget https://github.com/simonmar/parconc-examples/archive/master.tar.gz
$ tar --strip-components=1 -zxf master.tar.gz \

 parconc-examples-master/kmeans

2D points (to simplify visualization) and clusters, in KMeansCore.hs,

data Point = Point !Double !Double −− ! disables laziness

zeroPoint :: Point
zeroPoint = Point 0 0

sqDistance :: Point -> Point -> Double −− Distance squared for speed
sqDistance (Point x1 y1) (Point x2 y2) = ((x1-x2)^2) + ((y1-y2)^2)

data Cluster = Cluster { clId :: Int −− number of this cluster
 , clCent :: Point −− centroid of this cluster
 }

Example: The K-Means Problem

For computing the centroids (average of all points in a cluster), in kmeans.hs,

data PointSum = PointSum !Int !Double !Double

addToPointSum :: PointSum -> Point -> PointSum
addToPointSum (PointSum count xs ys) (Point x y)

 = PointSum (count+1) (xs + x) (ys + y)

pointSumToCluster :: Int -> PointSum -> Cluster
pointSumToCluster i (PointSum count xs ys) = Cluster {

 clId = i
 , clCent = Point (xs / fromIntegral count)
 (ys / fromIntegral count)
 }

1. Accumulate Points in PointSums for Nearest Centroid
assign :: Int -> [Cluster] -> [Point] -> Vector PointSum
assign nclusters clusters points = Vector.create $ do

 vec <- MVector.replicate nclusters (PointSum 0 0 0)

 let addpoint p = do
 let c = nearest p ; cid = clId c
 ps <- MVector.read vec cid
 MVector.write vec cid $! addToPointSum ps p

 mapM_ addpoint points
 return vec
 where
 nearest p = fst $ minimumBy (compare ̀ on` snd)
 [(c, sqDistance (clCent c) p) | c <- clusters]

Vectors are Haskell’s fixed-length, random-access arrays that are “mutable” in
the right monad. See Data.Vector and Data.Vector.Mutable

2. Create New Clusters from PointSums

makeNewClusters :: Vector PointSum -> [Cluster]
makeNewClusters vec =

 [pointSumToCluster i ps
 | (i,ps@(PointSum count _ _)) <- zip [0..] (Vector.toList vec)
 , count > 0
]

One step of the algorithm: group by nearest centroid; calculate new centroids

step :: Int -> [Cluster] -> [Point] -> [Cluster]
step nclusters clusters points

 = makeNewClusters (assign nclusters clusters points)

The Sequential Loop: step until converged or give up
kmeans_seq :: Int -> [Point] -> [Cluster] -> IO [Cluster]
kmeans_seq nclusters points clusters =

 let loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany = do
 putStrLn "giving up."
 return clusters
 loop n clusters = do
 printf "iteration %d\n" n
 putStr (unlines (map show clusters))
 let clusters' = step nclusters clusters points
 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 in loop 0 clusters

tooMany = 80

Generating a Data Set

$ cabal install normaldistribution
$ ghc -O2 GenSamples.hs
$./GenSamples 5 50000 100000 1010
$ ls -l points.bin
-rw-rw-r-- 1 sedwards sedwards 16M Nov 23 14:58 points.bin
$ gnuplot -e 'set terminal png;set nokey;plot "points"' > points.png

Compiling and Running K-Means

$ stack install monad-par
$ cd kmeans
$ stack ghc -- -O2 -threaded -rtsopts -eventlog kmeans.hs

Run it in sequential mode:

$./kmeans seq
...
iteration 20
Cluster {clId = 0, clCent = Point -5.84359465 -5.46502314}
Cluster {clId = 1, clCent = Point 8.316354592 -8.33043084}
Cluster {clId = 2, clCent = Point -9.06455081 7.561852464}
Cluster {clId = 3, clCent = Point 9.243597731 6.138576051}
Cluster {clId = 4, clCent = Point -3.62170911 -1.82458124}
Total time: 0.73

Parallelizing K-Means
Computing nearest center for each point is the main operation to parallelize.
This is a fold with an associative accumulation function addToPointSum.

Too many points and not enough work per point for per-point parallelism;
overhead would dominate. Better to split work into coarser chunks.

split :: Int -> [a] -> [[a]] −− Divide into numChunks chunks
split numChunks xs = chunk (length xs ̀ quot` numChunks) xs

chunk :: Int -> [a] -> [[a]] −− Split into n-point chunks
chunk _ [] = []
chunk n xs = let (as,bs) = splitAt n xs in as : chunk n bs

addPointSums :: PointSum -> PointSum -> PointSum −− Accumulate PointSums
addPointSums (PointSum c1 x1 y1) (PointSum c2 x2 y2)

 = PointSum (c1+c2) (x1+x2) (y1+y2)

combine :: Vector PointSum -> Vector PointSum -> Vector PointSum
combine = Vector.zipWith addPointSums −− Accumulate vectors

Code for a Parallel step

Analyze the chunks in parallel; merge; and make new clusters:

parSteps_strat :: Int -> [Cluster] -> [[Point]] -> [Cluster]
parSteps_strat nclusters clusters pointss

 = makeNewClusters $
 foldr1 combine $ −− Merge the results from each chunk
 (map (assign nclusters clusters) pointss −− Analyze chunks
 ̀ using` parList rseq) −− in parallel

The Parallel Loop: Divide into chunks; apply parSteps_strat
kmeans_strat :: Int -> Int -> [Point] -> [Cluster] -> IO [Cluster]
kmeans_strat numChunks nclusters points clusters =

 let chunks = split numChunks points −− One big change

 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany = do
 printf "giving up."
 return clusters
 loop n clusters = do
 printf "iteration %d\n" n
 putStr (unlines (map show clusters))
 let clusters' = parSteps_strat nclusters clusters chunks
 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 in loop 0 clusters

Performance of kmeans_strat on 1–8 Cores

./kmeans strat 64 +RTS -N1

./kmeans strat 64 +RTS -N8

Cores Time (s) Speedup

1 0.77 1.00
2 0.40 1.91
3 0.29 2.70
4 0.22 3.45
5 0.23 3.28
6 0.22 3.45
7 0.22 3.47
8 0.25 3.10

Speedup

Threads
0 2 4 6 8

0

2

4

6

8 Ideal

Using “Total time” reported by the program; ignores reading point data

Threadscope on kmeans_strat: Overall

Lots of sequential file processing start: not being counted against speedup

kmeans_strat: Parallel Section Only

Off to a difficult start; iterations are periodic hiccups; big garbage collect

kmeans_strat: Iteration Boundary

Program suddenly turns completely sequential; darn Amdahl.

Marlow found printing was a major culprit, but removing it didn’t matter on
my machine.

kmeans_strat: Spark creation and conversion

Iteration: sudden spark creation activity in single HEC pool, then slow
conversion. Main thread migrated after 8 iterations. (Under the “Traces” tab)

The Effects of Granularity (N=8)

Time (ms)

Chunks

10 100 1000 10000
0

200

400

600

← unbalanced overhead dominates →

GC’ed Sparks and Speculative Parallelism [Marlow p. 48]

parList/evalList creates a new list,
which seems wasteful
parList :: Strategy a

 -> Strategy [a]
parList s =

 evalList (rparWith s)

evalList :: Strategy a
 -> Strategy [a]

evalList _ [] = return []
evalList s (x:xs) =

 do x' <- s x
 xs' <- evalList s xs
 return (x':xs') −− Cons

Consider this walk-the-list alternative
that “touches” elements with rparWith
parList :: Strategy a

 -> Strategy [a]
parList strat xs = do go xs

 return xs
 where
 go [] = return ()
 go (x:xs) = do rparWith strat x
 go xs

Doesn’t work: each spark created by
rparWith is garbage-collected because it
is never used. Critical that the result of
rpar/rparWith be returned.

Heap Layout of Working parList: New List Inhibits Spark GC

Marlow, fig. 3-8

Array of pointers to sparks

New list

← New list provides second pointer to each spark

Sparks: apply the strategy
to evaluate list elements

List elements

Original list

Parallelizing Lazy Streams: RSA Encoder/Decoder from Marlow

$ stack ghc -- -O2 -Wall -rtsopts rsa
$./rsa encrypt /usr/share/dict/words > /dev/null +RTS -s

 5,089,757,232 bytes allocated in the heap
 3,043,360 bytes copied during GC
 107,888 bytes maximum residency (3 sample(s))
 27,968 bytes maximum slop
 0 MB total memory in use

 Total time 5.740s (5.767s elapsed)

$ ls -sh /usr/share/dict/american-english
920K /usr/share/dict/american-english

Dictionary file is about 1 MB, but runtime only uses 107,888 bytes maximum
because of Data.ByteString.Lazy.Char8

Parallelizing RSA

Sequential implementation:

encrypt :: Integer -> Integer -> ByteString -> ByteString
encrypt n e = B.unlines −− Join results

 . map (B.pack . show . power e n . code) −− Encrypt
 . chunk (size n) −− Split

First try (rsa1.hs): use parList rdeepseq

encrypt n e = B.unlines
 . withStrategy (parList rdeepseq)
 . map (B.pack . show . power e n . code)
 . chunk (size n)

withStrategy s e = e `using` s

Speedup using parList rdeepseq
$ stack ghc -- -O2 -Wall -threaded -rtsopts rsa1
$./rsa1 encrypt /usr/share/dict/words > /dev/null +RTS -N8 -s

 5,319,033,432 bytes allocated in the heap
 18,619,728 bytes copied during GC
 3,029,464 bytes maximum residency (10 sample(s))
 570,920 bytes maximum slop
 2 MB total memory in use

 SPARKS: 9988
 (8254 converted, 1734 overflowed, 0 dud, 0 GC'd, 0 fizzled)

 Total time 14.403s (2.991s elapsed)

Speedup of 1.92 over sequential (rsa.hs) (4.8× itself)

Maximum memory use now 3 MB (cf. 107 KB): parList traverses the whole list.

Control.Parallel.Strategies.parBuffer: Regulate number of
outstanding sparks

parBuffer 100 creates 100 outstanding sparks; sparks more once consumed

parBuffer :: Int -> Strategy a -> Strategy [a]

encrypt n e = B.unlines −− rsa2.hs
 . withStrategy (parBuffer 100 rdeepseq) −− 100 max
 . map (B.pack . show . power e n . code)
 . chunk (size n)

$./rsa2 encrypt /usr/share/dict/words > /dev/null +RTS -N8 -s
 506,640 bytes maximum residency (18 sample(s))
 SPARKS: 9988
 (9987 converted, 0 overflowed, 0 dud, 0 GC'd, 1 fizzled)
 Total time 12.160s (1.641s elapsed)

Down to 500 KB residency, 3.5× over sequential, excellent 7.4× self-speedup

Spark Creation and Pool with parBuffer

HEC5 got the spark creation process No creation or pools on other HECs
Spark pool remains around 100 Gray on graph denotes variance
Hiccups primarily garbage collection About 11% overhead

RSA Strategies (parList, parBuffer) Compared

Technique Memory Sparks Time Speedup

(K) Converted Overflowed Dud GC’ed Fizzled (s)

Sequential 105 5.77 1

parList 2958 8254 1734 0 0 0 2.99 1.92

parBuffer 495 9987 0 0 0 1 1.64 3.52

Both generate the same number of sparks

parList forces the entire file to be loaded (memory consumption) and
generates all the sparks at the beginning (spark pool overflow).

	The Eval Monad: rpar and rseq
	Speeding up a Sudoku Solver
	Static Partitioning
	Dynamic Partitioning
	Amdahl's Law

	Control.DeepSeq: Reducing to Normal Form
	rnf for a Custom Data Type

	Evaluation Strategies
	Basic Strategies
	Composing Strategies
	Evaluating Lists in Parallel

	Example: The K-Means Problem
	Generating a Data Set
	Parallelizing K-Means
	Performance of Parallel K-Means

	Garbage Collected Sparks
	Parallelizing Lazy Streams

