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The Eval Monad: An Alternative to seq and par

When in doubt, create a Monad

module  Control.Parallel.Strategies  where

data  Eval  a  =  ...

instance  Monad  Eval  where  ...

runEval  ::  Eval  a  ->  a   −− Get the result

rpar  ::  a  ->  Eval  a    −− Spark evaluation
rseq  ::  a  ->  Eval  a    −− Wait for evaluation to WHNF



rpar/rpar

runEval  $  do
  a  <-  rpar  (f  x)
  b  <-  rpar  (f  y)
  return  (a,  b)

Start parallel evaluation of f x and f y

Return immediately



rpar/rseq

runEval  $  do
  a  <-  rpar  (f  x)
  b  <-  rseq  (f  y)
  return  (a,  b)

Start parallel evaluation of f x and f y

Wait for f y to finish, then return

Do we really know f y is faster?



rpar/rpar/rseq/rseq

runEval  $  do
  a  <-  rpar  (f  x)
  b  <-  rseq  (f  y)
  rseq  a
  return  (a,  b)

Equivalent and symmetrical:

runEval  $  do
  a  <-  rpar  (f  x)
  b  <-  rpar  (f  y)
  rseq  a
  rseq  b
  return  (a,  b)

Start parallel evaluation of f x and f y

Wait for both to finish, then return



Marlow’s Sudoku Solver Example (single-threaded)
$  wget  https://github.com/simonmar/parconc-examples/archive/master.tar.gz
$  tar  --strip-components=1  -zxf  master.tar.gz  \

   parconc-examples-master/{Sudoku.hs,sudoku17.1000.txt}

import  Sudoku  ;  import  Control.Exception
import  System.Environment  ;  import  Data.Maybe

main  ::  IO  ()
main  =  do  [f]  <-  getArgs

          file  <-  readFile  f
          let  puzzles    =  lines  file
              solutions  =  map  solve  puzzles
          print  (length  (filter  isJust  solutions))

$  stack  ghc  --  -O2  sudoku1.hs  -rtsopts
$  ./sudoku1  sudoku17.1000.txt  +RTS  -s



Static Partitioning
import  Sudoku
import  Data.Maybe  ;  import  System.Environment
import  Control.Parallel.Strategies  ;  import  Control.DeepSeq
main  ::  IO  ()
main  =  do  puzzles  <-  getArgs  >>=  \[f]  ->  lines  <$>  readFile  f

          let  (as,bs)  =  splitAt  (length  puzzles  ̀ div`  2)  puzzles

              solutions  =  runEval  $  do
                as'  <-  rpar  (force  (map  solve  as))  −− To normal
                bs'  <-  rpar  (force  (map  solve  bs))  −− form
                _  <-  rseq  as'
                _  <-  rseq  bs'
                return  (as'  ++  bs')

          print  (length  (filter  isJust  solutions))



The Problem with Static Partitioning
$  stack  install  parallel
$  stack  ghc  --  -O2  -Wall  sudoku2.hs  -threaded  -rtsopts  -eventlog
$  ./sudoku2  sudoku17.1000.txt  +RTS  -N2  -s  -ls
$  threadscope  sudoku2.eventlog

Speedup on two cores: 1.37/0.891= 1.53×



Better Balancing using parMap
import  Sudoku
import  System.Environment  ;  import  Data.Maybe
import  Control.Parallel.Strategies  hiding  (parMap)

parMap  ::  (a  ->  b)  ->  [a]  ->  Eval  [b]
parMap  _  []      =  return  []
parMap  f  (a:as)  =  do  b   <-  rpar   (f  a)  −− Spark evaluation of f a

                     bs  <-  parMap  f  as  −− Recurse
                     return  (b:bs)

main  ::  IO  ()
main  =  do  puzzles  <-  getArgs  >>=  \[f]  ->  lines  <$>  readFile  f

          let  solutions  =  runEval  (parMap  solve  puzzles)

          print  (length  (filter  isJust  solutions))



The Advantage of Dynamic Partitioning
$  stack  ghc  --  -O2  -Wall  sudoku3.hs  -threaded  -rtsopts  -eventlog
$  ./sudoku3  sudoku17.1000.txt  +RTS  -N2  -s  -ls
$  threadscope  sudoku3.eventlog

Speedup on two cores: 1.37/0.751= 1.82× versus 1.53× with static partitioning



Amdahl’s Law: Why Parallelism is Difficult

AFIPS Joint Computer Conference, 1967

P is the parallel fraction of the task

N is the degree of parallelism

S is the speedup

S= 1
(1−P)+P/N

lim
N→∞

S is the depressing part:

If P = 0.5, S→ 2 as N→∞
If P = 0.95, S→ 20 as N→∞



DeepSeq and Normal Form
Weak Head Normal Form = Top is data constructor or lambda, not application

Normal Form = Data constructors or lambdas all the way down

In Control.Deepseq,

class  NFData  a  where
  rnf  ::  a  ->  ()        −− “Reduce to Normal Form”
  rnf  a  =  a  ̀ seq`  ()    −− Default, e.g., for numbers

deepseq  ::  NFData  a  =>  a  ->  b  ->  b
deepseq  a  b  =  rnf  a  ̀ seq`  b  −− Evaluate a to NF; return b

force    ::  NFData  a  =>  a  ->  a
force  a  =  a  ̀ deepseq`  a      −− Evaluate a to NF; return it

($!!)    ::  NFData  a  =>  (a  ->  b)  ->  a  ->  b
f  $!!  x  =  x  ̀ deepseq`  f  x    −− evaluate x then f x

Control.Deepseq has instances of NFData for standard types (numbers,
characters, lists, tuples)



Normal Form vs. Weak Head Normal Form
Prelude>  import  Control.DeepSeq
Prelude  Control.DeepSeq>  let  x  =  [1..10]  ::  [Int]
Prelude  Control.DeepSeq>  :sprint  x
x  =  _
Prelude  Control.DeepSeq>  :sprint  x
x  =  _
Prelude  Control.DeepSeq>  x  ̀ seq`  ()
()
Prelude  Control.DeepSeq>  :sprint  x
x  =  1  :  _
Prelude  Control.DeepSeq>  (last  $  take  3  x)  ̀ seq`  ()
()
Prelude  Control.DeepSeq>  :sprint  x
x  =  1  :  2  :  3  :  _
Prelude  Control.DeepSeq>  x  ̀ deepseq`  ()
()
Prelude  Control.DeepSeq>  :sprint  x
x  =  [1,2,3,4,5,6,7,8,9,10]



Roll-your-own NFData
import  Control.DeepSeq
data  Tree  a  =  Empty  |  Branch  (Tree  a)  a  (Tree  a)
instance  NFData  a  =>  NFData  (Tree  a)  where

  rnf  Empty  =  ()
  rnf  (Branch  l  a  r)  =  rnf  l  ̀ seq`  rnf  a  ̀ seq`  rnf  r

*Main>  let  singleton  x  =  Branch  Empty  x  Empty

*Main>  let  x  =  Branch  (singleton  'a')  'b'  (singleton  'c')

*Main>  :sprint  x
x  =  Branch  _  'b'  _

*Main>  x  ̀ seq`  ()
()

*Main>  :sprint  x
x  =  Branch  _  'b'  _

*Main>  rnf  x
()

*Main>  :sprint  x
x  =  Branch  (Branch  Empty  'a'  Empty)  'b'  (Branch  Empty  'c'  Empty)



Evaluation Strategies

“Strategies are a means for modularizing parallel code by separating the
algorithm from the parallelism. Sometimes they require you to rewrite your
algorithm, but once you do so, you will be able to parallelize it in different
ways just by substituting a new Strategy.” —Simon Marlow

1. Build a lazy data structure representing the computation

2. Apply a Strategy that traverses the computation applying rpar and rseq

A Strategy: an identity function in the Eval monad (Control.Parallel.Strategies)

type  Strategy  =  a  ->  Eval  a



An Example: A Parallel Strategy for Pairs
rpar  ::  Strategy  a              −− Spark evaluation
runEval  ::  Eval  a  ->  a          −− Evaluate; return value

parPair  ::  Strategy  (a,b)       −− Simple parallel strategy for pairs
parPair  (a,b)  =  do

  a'  <-  rpar  a                  −− Spark parallel evaluation of
  b'  <-  rpar  b                  −− a and b to WHNF
  return  (a',b')

runEval  (parPair  (fib  35,  fib  36))

More elegantly,

using  ::  a  ->  Strategy  a  ->  a   −− In Control.Parallel.Strategies
x  ̀ using`  s  =  runEval  (s  x)     −− Apply s, return x

(fib  35,  fib  36)  ̀ using`  parPair



Basic Strategies

In Control.Parallel.Strategies:

r0        ::  Strategy  a
r0  x      =  return  x      −− Do not evaluate x

rseq      ::  Strategy  a   −− Evaluate to WHNF; wait for completion

rdeepseq  ::  NFData  a  =>  Strategy  a  −− Fully evaluate then proceed
rdeepseq  x  =  rseq  (rnf  x)  >>  return  x

rpar      ::  Strategy  a   −− Spark evaluation (in parallel) to WHNF

rparWith  ::  Strategy  a  ->  Strategy  a
rparWith  s  x             −− Spark evaluation of x ‘using‘ s



Building Strategies from Strategies

A skeleton for expressing stategies for evaluating tuples:

−− In Control.Parallel.Strategies,
evalTuple2  ::  Strategy  a  ->  Strategy  b  ->  Strategy  (a,  b)
evalTuple2  sa  sb  (a,  b)  =  do   a'  <-  sa  a

                              b'  <-  sb  b
                              return  (a',  b')

parPair  ::  Strategy  (a,  b)
parPair  =  evalTuple2  rpar  rpar  −− Spark elements’ evaluation to WHNF

What if we wanted to fully evaluate the two elements in parallel?

parPair  ::  Strategy  a  ->  Strategy  b  ->  Strategy  (a,  b)
parPair  sa  sb  =  evalTuple2  (rparWith  sa)  (rparWith  sb)

parPair  rdeepseq  rdeepseq  (fib  25,  fib  26)



parPair rdeepseq rdeepseq (a, b)

“Spark two parallel threads that fully evaluate a and b to normal form”

A cartoon of how this works:

parPair  rdeepseq  rdeepseq  (a,  b)
  =  evalTuple2  (rparWith  rdeepseq)  (rparWith  rdeepseq)  (a,  b)

  =  do  a'  <-  (rparWith  rdeepseq)  a
       b'  <-  (rparWith  rdeepseq)  b
       return  (a',  b')

  =  do  a'  <-  rpar  (a  ̀ using`  \x  ->  rseq  (rnf  x)  >>  return  x)
       b'  <-  rpar  (b  ̀ using`  \x  ->  rseq  (rnf  x)  >>  return  x)
       return  (a',  b')



Evaluating a List in Parallel

In Control.Parallel.Strategies,

evalList  ::  Strategy  a  ->  Strategy  [a]  −− Apply a strategy
evalList  _  []      =  return  []           −− to each list element
evalList  s  (x:xs)  =  do  x'   <-  s  x

                       xs'  <-  evalList  s  xs
                       return  (x':xs')

parList  ::  Strategy  a  ->  Strategy  [a]  −− Evaluate each list element
parList  s  =  evalList  (rparWith  s)      −− in parallel with strategy

Combining these to evaluate all list elements to WHNF in parallel:

parMap  ::  (a  ->  b)  ->  [a]  ->  [b]
parMap  f  xs  =  map  f  xs  ̀ using`  parList  rseq



Simpler Parallel Sudoku
import  Sudoku(solve)
import  System.Environment(getArgs)
import  Data.Maybe(isJust)
import  Control.Parallel.Strategies(using,  parList,  rseq)

main  ::  IO  ()
main  =  do  [fname]  <-  getArgs

          puzzles  <-  lines  <$>  readFile  fname

          let  solutions  =  map  solve  puzzles  ̀ using`  parList  rseq

          print  $  length  $  filter  isJust  solutions

Note that rseq only evaluates to WHNF, but that suffices for Sudoku

About the same performance as the “parMap” version presented earlier



Example: The K-Means Problem

Lloyd’s (approximation)
algorithm

Give a number of clusters k,

1. Guess a center for each
cluster

2. Group points by closest
centerpoint

3. Calculate the centroid
(average) of each group

4. Repeat steps 3–4 until
satisfied



Example: The K-Means Problem
$  wget  https://github.com/simonmar/parconc-examples/archive/master.tar.gz
$  tar  --strip-components=1  -zxf  master.tar.gz  \

   parconc-examples-master/kmeans

2D points (to simplify visualization) and clusters, in KMeansCore.hs,

data  Point  =  Point  !Double  !Double  −− ! disables laziness

zeroPoint  ::  Point
zeroPoint  =  Point  0  0

sqDistance  ::  Point  ->  Point  ->  Double  −− Distance squared for speed
sqDistance  (Point  x1  y1)  (Point  x2  y2)  =  ((x1-x2)^2)  +  ((y1-y2)^2)

data  Cluster  =  Cluster  {  clId     ::  Int     −− number of this cluster
                       ,  clCent   ::  Point   −− centroid of this cluster
                       }



Example: The K-Means Problem

For computing the centroids (average of all points in a cluster), in kmeans.hs,

data  PointSum  =  PointSum  !Int  !Double  !Double

addToPointSum  ::  PointSum  ->  Point  ->  PointSum
addToPointSum  (PointSum  count  xs  ys)  (Point  x  y)

     =  PointSum  (count+1)  (xs  +  x)  (ys  +  y)

pointSumToCluster  ::  Int  ->  PointSum  ->  Cluster
pointSumToCluster  i  (PointSum  count  xs  ys)  =   Cluster  {

    clId     =  i
  ,  clCent   =  Point  (xs  /  fromIntegral  count)
                    (ys  /  fromIntegral  count)
  }



1. Accumulate Points in PointSums for Nearest Centroid
assign  ::  Int  ->  [Cluster]  ->  [Point]  ->  Vector  PointSum
assign  nclusters  clusters  points  =  Vector.create  $  do

    vec  <-  MVector.replicate  nclusters  (PointSum  0  0  0)

    let  addpoint  p  =  do
          let  c  =  nearest  p  ;  cid  =  clId  c
          ps  <-  MVector.read  vec  cid
          MVector.write  vec  cid  $!  addToPointSum  ps  p

    mapM_  addpoint  points
    return  vec
 where
  nearest  p  =  fst  $  minimumBy  (compare  ̀ on`  snd)
               [  (c,  sqDistance  (clCent  c)  p)  |  c  <-  clusters  ]

Vectors are Haskell’s fixed-length, random-access arrays that are “mutable” in
the right monad. See Data.Vector and Data.Vector.Mutable



2. Create New Clusters from PointSums

makeNewClusters  ::  Vector  PointSum  ->  [Cluster]
makeNewClusters  vec  =

  [  pointSumToCluster  i  ps
  |  (i,ps@(PointSum  count  _  _))  <-  zip  [0..]  (Vector.toList  vec)
  ,  count  >  0
  ]

One step of the algorithm: group by nearest centroid; calculate new centroids

step  ::  Int  ->  [Cluster]  ->  [Point]  ->  [Cluster]
step  nclusters  clusters  points

   =  makeNewClusters  (assign  nclusters  clusters  points)



The Sequential Loop: step until converged or give up
kmeans_seq  ::  Int  ->  [Point]  ->  [Cluster]  ->  IO  [Cluster]
kmeans_seq  nclusters  points  clusters  =

  let  loop  ::  Int  ->  [Cluster]  ->  IO  [Cluster]
      loop  n  clusters  |  n  >  tooMany  =  do
        putStrLn  "giving  up."
        return  clusters
      loop  n  clusters  =  do
        printf  "iteration  %d\n"  n
        putStr  (unlines  (map  show  clusters))
        let  clusters'  =  step  nclusters  clusters  points
        if  clusters'  ==  clusters
           then  return  clusters
           else  loop  (n+1)  clusters'
  in  loop  0  clusters

tooMany  =  80



Generating a Data Set

$  cabal  install  normaldistribution
$  ghc  -O2  GenSamples.hs
$  ./GenSamples  5  50000  100000  1010
$  ls  -l  points.bin
-rw-rw-r--  1  sedwards  sedwards  16M  Nov  23  14:58  points.bin
$  gnuplot  -e  'set  terminal  png;set  nokey;plot  "points"'  >  points.png



Compiling and Running K-Means

$  stack  install  monad-par
$  cd  kmeans
$  stack  ghc  --  -O2  -threaded  -rtsopts  -eventlog  kmeans.hs

Run it in sequential mode:

$  ./kmeans  seq
...
iteration  20
Cluster  {clId  =  0,  clCent  =  Point  -5.84359465  -5.46502314}
Cluster  {clId  =  1,  clCent  =  Point  8.316354592  -8.33043084}
Cluster  {clId  =  2,  clCent  =  Point  -9.06455081  7.561852464}
Cluster  {clId  =  3,  clCent  =  Point  9.243597731  6.138576051}
Cluster  {clId  =  4,  clCent  =  Point  -3.62170911  -1.82458124}
Total  time:  0.73





Parallelizing K-Means
Computing nearest center for each point is the main operation to parallelize.
This is a fold with an associative accumulation function addToPointSum.

Too many points and not enough work per point for per-point parallelism;
overhead would dominate. Better to split work into coarser chunks.

split  ::  Int  ->  [a]  ->  [[a]]       −− Divide into numChunks chunks
split  numChunks  xs  =  chunk  (length  xs  ̀ quot`  numChunks)  xs

chunk  ::  Int  ->  [a]  ->  [[a]]       −− Split into n-point chunks
chunk  _  []  =  []
chunk  n  xs  =  let  (as,bs)  =  splitAt  n  xs  in    as  :  chunk  n  bs

addPointSums  ::  PointSum  ->  PointSum  ->  PointSum  −− Accumulate PointSums
addPointSums  (PointSum  c1  x1  y1)  (PointSum  c2  x2  y2)

  =  PointSum  (c1+c2)  (x1+x2)  (y1+y2)

combine  ::  Vector  PointSum  ->  Vector  PointSum  ->  Vector  PointSum
combine  =  Vector.zipWith  addPointSums             −− Accumulate vectors



Code for a Parallel step

Analyze the chunks in parallel; merge; and make new clusters:

parSteps_strat  ::  Int  ->  [Cluster]  ->  [[Point]]  ->  [Cluster]
parSteps_strat  nclusters  clusters  pointss

  =  makeNewClusters  $
     foldr1  combine  $          −− Merge the results from each chunk
      (map  (assign  nclusters  clusters)  pointss  −− Analyze chunks
        ̀ using`  parList  rseq)                   −− in parallel



The Parallel Loop: Divide into chunks; apply parSteps_strat
kmeans_strat  ::  Int  ->  Int  ->  [Point]  ->  [Cluster]  ->  IO  [Cluster]
kmeans_strat  numChunks  nclusters  points  clusters  =

  let  chunks  =  split  numChunks  points      −− One big change

      loop  ::  Int  ->  [Cluster]  ->  IO  [Cluster]
      loop  n  clusters  |  n  >  tooMany  =  do
        printf  "giving  up."
        return  clusters
      loop  n  clusters  =  do
        printf  "iteration  %d\n"  n
        putStr  (unlines  (map  show  clusters))
        let  clusters'  =  parSteps_strat  nclusters  clusters  chunks
        if  clusters'  ==  clusters
           then  return  clusters
           else  loop  (n+1)  clusters'
  in  loop  0  clusters



Performance of kmeans_strat on 1–8 Cores

./kmeans  strat  64  +RTS  -N1

./kmeans  strat  64  +RTS  -N8

Cores Time (s) Speedup

1 0.77 1.00
2 0.40 1.91
3 0.29 2.70
4 0.22 3.45
5 0.23 3.28
6 0.22 3.45
7 0.22 3.47
8 0.25 3.10

Speedup

Threads
0 2 4 6 8

0

2

4

6

8 Ideal

Using “Total time” reported by the program; ignores reading point data



Threadscope on kmeans_strat: Overall

Lots of sequential file processing start: not being counted against speedup



kmeans_strat: Parallel Section Only

Off to a difficult start; iterations are periodic hiccups; big garbage collect



kmeans_strat: Iteration Boundary

Program suddenly turns completely sequential; darn Amdahl.

Marlow found printing was a major culprit, but removing it didn’t matter on
my machine.



kmeans_strat: Spark creation and conversion

Iteration: sudden spark creation activity in single HEC pool, then slow
conversion. Main thread migrated after 8 iterations. (Under the “Traces” tab)



The Effects of Granularity (N=8)

Time (ms)

Chunks

10 100 1000 10000
0

200

400

600

← unbalanced overhead dominates →



GC’ed Sparks and Speculative Parallelism [Marlow p. 48]

parList/evalList creates a new list,
which seems wasteful
parList  ::  Strategy  a

        ->  Strategy  [a]
parList  s  =

     evalList  (rparWith  s)

evalList  ::  Strategy  a
         ->  Strategy  [a]

evalList  _  []      =  return  []
evalList  s  (x:xs)  =

  do  x'   <-  s  x
     xs'  <-  evalList  s  xs
     return  (x':xs')  −− Cons

Consider this walk-the-list alternative
that “touches” elements with rparWith
parList  ::  Strategy  a

        ->  Strategy  [a]
parList  strat  xs  =  do  go  xs

                      return  xs
 where
  go  []      =  return  ()
  go  (x:xs)  =  do  rparWith  strat  x
                 go  xs

Doesn’t work: each spark created by
rparWith is garbage-collected because it
is never used. Critical that the result of
rpar/rparWith be returned.



Heap Layout of Working parList: New List Inhibits Spark GC

Marlow, fig. 3-8

Array of pointers to sparks

New list

← New list provides second pointer to each spark

Sparks: apply the strategy
to evaluate list elements

List elements

Original list



Parallelizing Lazy Streams: RSA Encoder/Decoder from Marlow

$  stack  ghc  --  -O2  -Wall  -rtsopts  rsa
$  ./rsa  encrypt  /usr/share/dict/words  >  /dev/null  +RTS  -s

   5,089,757,232  bytes  allocated  in  the  heap
       3,043,360  bytes  copied  during  GC
         107,888  bytes  maximum  residency  (3  sample(s))
          27,968  bytes  maximum  slop
               0  MB  total  memory  in  use

  Total    time     5.740s   (   5.767s  elapsed)

$  ls  -sh  /usr/share/dict/american-english
920K  /usr/share/dict/american-english

Dictionary file is about 1 MB, but runtime only uses 107,888 bytes maximum
because of Data.ByteString.Lazy.Char8



Parallelizing RSA

Sequential implementation:

encrypt  ::  Integer  ->  Integer  ->  ByteString  ->  ByteString
encrypt  n  e  =  B.unlines                               −− Join results

            .  map  (B.pack  .  show  .  power  e  n  .  code)  −− Encrypt
            .  chunk  (size  n)                          −− Split

First try (rsa1.hs): use parList rdeepseq

encrypt  n  e  =  B.unlines
            .  withStrategy  (parList  rdeepseq)
            .  map  (B.pack  .  show  .  power  e  n  .  code)
            .  chunk  (size  n)

withStrategy s e = e `using` s



Speedup using parList rdeepseq
$  stack  ghc  --  -O2  -Wall  -threaded  -rtsopts  rsa1
$  ./rsa1  encrypt  /usr/share/dict/words  >  /dev/null  +RTS  -N8  -s

   5,319,033,432  bytes  allocated  in  the  heap
      18,619,728  bytes  copied  during  GC
       3,029,464  bytes  maximum  residency  (10  sample(s))
         570,920  bytes  maximum  slop
               2  MB  total  memory  in  use

 SPARKS:  9988
        (8254  converted,  1734  overflowed,  0  dud,  0  GC'd,  0  fizzled)

  Total    time    14.403s   (   2.991s  elapsed)

Speedup of 1.92 over sequential (rsa.hs) (4.8× itself)

Maximum memory use now 3 MB (cf. 107 KB): parList traverses the whole list.



Control.Parallel.Strategies.parBuffer: Regulate number of
outstanding sparks

parBuffer 100 creates 100 outstanding sparks; sparks more once consumed

parBuffer  ::  Int  ->  Strategy  a  ->  Strategy  [a]

encrypt  n  e  =  B.unlines    −− rsa2.hs
            .  withStrategy  (parBuffer  100  rdeepseq)  −− 100 max
            .  map  (B.pack  .  show  .  power  e  n  .  code)
            .  chunk  (size  n)

$  ./rsa2  encrypt  /usr/share/dict/words  >  /dev/null  +RTS  -N8  -s
     506,640  bytes  maximum  residency  (18  sample(s))
  SPARKS:  9988
         (9987  converted,  0  overflowed,  0  dud,  0  GC'd,  1  fizzled)
  Total    time    12.160s   (   1.641s  elapsed)

Down to 500 KB residency, 3.5× over sequential, excellent 7.4× self-speedup



Spark Creation and Pool with parBuffer

HEC5 got the spark creation process No creation or pools on other HECs
Spark pool remains around 100 Gray on graph denotes variance
Hiccups primarily garbage collection About 11% overhead



RSA Strategies (parList, parBuffer) Compared

Technique Memory Sparks Time Speedup

(K) Converted Overflowed Dud GC’ed Fizzled (s)

Sequential 105 5.77 1

parList 2958 8254 1734 0 0 0 2.99 1.92

parBuffer 495 9987 0 0 0 1 1.64 3.52

Both generate the same number of sparks

parList forces the entire file to be loaded (memory consumption) and
generates all the sparks at the beginning (spark pool overflow).
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