Newtonian Particles

Nathan Cuevas (njc2150)
December 2021

Introduction

This report will discuss my findings as | implement a Newtonian
particle simulation program in parallel Haskell. The simulation consists of
m particles (of even mass and size) that are enclosed in a rectangular 2-D
container, the particles each have an initial position and velocity, and are
free to bounce around the container and each other. Intuitively, since
particle motion is largely independent of other particles (until there is a
collision), it is tempting to explore the extent it can be parallelized.

Given the initial conditions for each particle, this program will
generate a list of lists (can be thought of as a n x m matrix) where the
rows of the matrix will represent the state of each particle (position and
velocity) and the columns of the matrix will represent the state of a
particle at each step that the simulation was run for. This program will
also have an animation component, which allows the user to have a
tangible understanding of the data. The animation feature is more of an
“add-on” and will not be subject to parallel optimizations and
benchmarking. Each particle will adhere to basic Newtonian physics and
will be influenced by gravitational forces, conservation of energy and
conservation of linear momentum, friction and inelastic energy loss.
Factors such as spin, angular momentum, aerodynamic drag will not be
simulated here.

Numerical Simulation

The simulation technique that will be used here (albeit not an
extremely sophisticated one), sees similar techniques used for many real
world problems in computation. These techniques form the basis for
numerical analysis, which models real world phenomena (particle motion,
heat transfer, fluid flow, etc.) by iterating their governing equations to best
approximate its behavior. These simulations can be computationally

intensive, and it is not uncommon to see real world numerical simulations
run for hours or days.

Simulations similar to these are also used in games where having
realistic physics is required. Games also need this simulation process to
be performant since slow implementations can lead to losing valuable
framerate and/or latency in a multiplayer setting.

Model

This section will discuss the governing rules that are required to
simulate this system. These rules mostly follow real life physics but are
not completely exact; however, these approximations are enough to get
realistic particle motion. This model also isn’t based on any particular
algorithm, just my recollection of college Physics.

Throughout this report, | will define the “state” of a particle as a
data type that contains following four floating point numbers: x velocity
(v,) y velocity (v)) x position (x) y position (y), which is represented in
my Haskell program as the ParticleState record. The movement of the
particles is governed by fundamental physics. Let’s discuss the 3

computations that are involved in this simulation.

Basic Motion:
The following are the equations that calculate the state of a particle
at step n, written in terms of the state of the particle atn - 7:

- X(n) = X(n'7) + VX(”)At
- n) — -1 (n)
y® =yt + v VAt
— -1
- VX(n) — VX(n)

- M) — (1) _
v, =v, g At

Where g is the acceleration due to gravity. The above logic is
implemented in the function updateState.

Wall Collision:
We can say that a particle has collided with a wall if one of the
following is satisfied:

X - r < left wall x position

X + r > right wall x position

y - r < bottom wall y position
y + r > top wall y position

Where r is the radius of the particle. If one of the above conditions is
satisfied, we will update the state using the following instructions:

- negate the velocity normal to the wall and multiply by «

- multiply the velocity tangent to the wall by g

- move the particle back into the box by shifting its position into
the box by the same amount of distance it went into the wall

Where 0 < p < 1 is the friction loss coefficient and 0 < a < 7 is the elastic
coefficient. adjustForWallBounce implements this wall bounce logic.

Particle Collision:

Finally, the last case that can happen in this simulation is a
collision between two particles. Two particles A and B are colliding if the
distances of their centers is less than 2r. The calculations of this case are
similar to the previous wall bounce case, except with the extra
complication of momentum transfer between the particles. Also the
calculations will be done in the normal and tangential basis (instead of the
x and y basis) to simplify the math. First define the new basis by finding
the normal and tangential component

- getting the normal vector: This is the unit vector that is in the
direction of the line that connects the center points of the 2
colliding particles.

- getting the tangent vector: define the tangent vector as the
unit vector that is perpendicular to the normal vector

The directions of these vectors are arbitrary, just be sure to stick with it
for the remainder of the calculation. Now update the states of the
colliding particles A and B.

- In the tangential direction: the velocities of A and B will be
scaled by p.

- In the normal direction: the velocities of A and B will be
swapped, then scaled by a.

The above logic for particle collisions is implemented in collision.

Sequential Implementation

The first challenge is designing a robust sequential implementation
for this program. One of the most powerful things about Haskell is the
ease of parallelization once a sequential implementation is created. To
begin, an initial condition is fed into the program’s core algorithm (which
resides in Compute.hs) which is of type [ParticleState]. We get this
initial condition by parsing a csv file whose path is specified as an
argument to the executable. The entry point to the algorithm is
computeMatrix or compute (the latter only spits out a list of the final
states of each particle while the former computes the entire n x m matrix).
The following is the core algorithm:

First Attempt at Sequential Algorithm:

1. For each particle:
- update the state of the particle by using the basic motion
equations
2. For each particle:
- if wall collision:
- update the state using the wall collision logic
3. For each particle:
- if collided with another particle:
- update the state of the colliding particles by using
the particle collision logic
4. Save updated state
5. goto (1.)

As the program runs, we are accumulating the updated state at each
step.

During my first implementation of this algorithm, | ran into
excessive garbage collecting by the ghc compiler. The below figure
shows the threadscope result of my first go at implementing this
algorithm.

Os 58 10s 158 20s 258 30s 358 40s 45s 50s 558 60s
I T I T O A A W (S [O IO A

Figure 1:
Threadscope Profile of First Sequential Implementation

As observed, a significant amount of time is spent garbage collecting. It
turns out that the reason for this is because of Haskell’s laziness. Since
we don’t actually evaluate the output of computeMatrix or compute until
the very end of the program (in my case, | print the result of the particle’s
final states to force evaluation), we basically have a chain of thunks that
are evaluated all at once at the end causing significant activity by the
garbage collector and hereby draining system resources.

Forcing the algorithm to do a strict evaluation at each iteration of
the algorithm is critical to prevent the evaluation of the thunk chain all at
once. There is a convenient function in the Control.deepSeq module
called force that performs a strict evaluation of the arguments. Now we
can rewrite the sequential algorithm as:

Updated Sequential Algorithm:

1. For each particle:
- update the state of the particle by using the basic motion
equations
2. For each particle:
- if wall collision:
- update the state using the wall collision algorithm
3. For each particle:
- if collided with another particle:
- update the state of the colliding particles by using
the patrticle collision algorithm
4. Do a strict evaluation of the updated state then save
goto (1.)

o

Rewriting this algorithm with this simple change caused significant
speedup:

0s 0.5s 1s

Figure 2:
Threadscope Profile of Updated Sequential Impl

Notice that this implementation now runs in ~1.5s as opposed to ~65s
before. The time spent garbage collecting is now negligible.

When implementing force into the algorithm, the ParticleState
record had to be updated to be an instance of NFData. Doing so will
provide force with instructions on how to strictly evaluate
ParticleState.

(s)

execution time

data ParticleState = ParticleState

{ xPos :: !Float
, yPos :: IFloat
, xVel :: !Float
, yvel :: IFloat

} deriving Show

instance NFData ParticleState where
rnf (ParticleState x' y' vx' vy') =
rnf x' “seq’ rnf y' “seq rnf vx' “seq rnf vy'

The following are the performance figures of the sequential
algorithm running the simulation for n = 2700.

20.0 A

17.5 A

15.0 +

12.5 A

10.0

7.5

5.0 1

2.5 4

0.0

100 200 300 400 500
number of particles
Figure 3:
Runtime of Sequential Impl w/ Varying Number of Particles

Notice that the plot seems to run in polynomial time w.r.t the input size.
This intuitively makes sense since step 3 of the sequential algorithm is
essentially a “double for loop” since checking for collisions involves
checking the distance to each individual.

Parallel Implementation

In the source code, the function called nextStep is what runs each
step of our sequential algorithm.

nextStep :: Float -> Config -> [ParticleState] -> Int ->

[ParticleState]

nextStep dt config currStates step = force $

adjustForWallBounce stepped config

where

postCollisions, stepped :: [ParticleState]
postCollisions = adjustForCollisions currStates config
stepped = map (updateState dt config) postCollisions

Which is a subroutine of the compute function (which gets our initial
states as an argument).

compute :: [ParticleState] -> Float -> Int -> Config ->
[ParticleState]
compute initial dt nSteps config =

foldl (nextStepParCollision dt config 50) initial [1..nSteps]

(Note that the order of steps 1-3 in nextStep is slightly different from the
order in the pseudo code for the sequential implementation. This order
doesn’t actually matter too much)

In this section, | will be discussing two major tests | did to parallelize this
simulation algorithm. To test a new parallel algorithm, just put it in place
of nextStep inside of the compute function.

First Attempt at Parallelizing:

The first thing | tried to parallelize is step 1 of the sequential
algorithm. | thought this was an obvious place to parallelize since this
step doesn’t require any interactions with the other particles, so the
computations for the state updates can be done in parallel. | created a
new function called nextStepChunkedDeep which is a chunked parallel
version of nextStep which uses the rdeepseq strategy on step 1. | then
put this function in place of nextStep. Running some quick benchmark
testing on it, it was clear that this was slower than the sequential
implementation.

—e— sequential impl
80 - step 1 parallelized
)
o 60
£
s
S 40
>
(9]
7}
=<
3
. _///
0 o

100 200 300 400 500
number of particles
Figure 4:
Benchmark of First Parallel Attempt Compared to Sequential
(Note: the chunk size for this parallel tests was arbitrarily fixed to (num
particles)/10, the number of cores was fixed to 4)

This poor parallel performance is likely due to the overhead of
creating the sparks outweighing the cost of just running it sequentially.
Since step 1 is a pretty lightweight computation in its own right (just
simple arithmetic), it appears to be cheaper to not parallelize it.

A Much Better Parallelizing Attempt:

| decided to scrap parallelizing step 1 and step 2 completely. This
is because these computations are inexpensive and it is clear from the
results in the previous step that there is negative performance gain when
parallelizing since the overhead of spark creation dominates. However,
step 3 in the sequential algorithm could potentially be parallelized. Step 3
can be imagined as a “double for loop”. This is because checking for
particle collisions requires us to loop through all the other particles and
check if there is another particle within collision range. This “inner loop”
can be run in parallel to save time; however, there is a tradeoff that some
computations might be done more than once (imagine the case that there
is a collision between 2 particles, the computation for the new state will
happen twice because we are evaluating in parallel). By defining a new
function called nextStepParCollision, which is a parallel chunked
implementation of step 3 using the rdeepseq strategy, | was able to

10

benchmark this new optimization and conclude that the program runs
significantly faster as a result.

20.0 A —
—e— sequential impl

17.5 1 step 3 parallelized
15.0
12.5 +
10.0 -+

7.5 A

execution time (s)

5.0 1

2.5 1

0.0

100 200 300 400
number of particles

Figure 5:
Benchmark of New Parallel Algorithm Compared to Sequential
(Note: the chunk size for this parallel tests was arbitrarily fixed to (num
particles)/10, the number of cores was fixed to 4)

It is clear that the performance of this new parallel optimization
makes the program run significantly faster compared to the sequential
version. It also seems as if the program runs in essentially linear time,
which follows intuition since we are parallelizing the “inner for loop.”

500

11

—e— 250 chunks
100 chunks
8 —&— 50 chunks
—&— 10 chunks
—®— 5 chunks
— 7 - —e&— 2 chunks
L
(5]
e
S 54
[
2
-+
>
D 5
>
(<5}
4 -
3]
1 2 3 4 5 6 7 8
number of cores
Figure 6:
Execution Time of The New Parallel Algorithm vs. Num Cores. Ran w/ 500
Particles.

On my machine with 4 physical cores with up to 8 core hyper
threading, | observed that at as low as 10 chunks (for 500 particles) is
sufficient enough to see these performance gains (see figure 5). In the
case of 4 cores, 500 particles and a chunk size of 50, around 95% of the
sparks were converted. Judging from the threadscope profile, the load
balancing was also very good. Overall, the benchmarking stats of this
new parallel algorithm looks healthy.

SPARKS: 135000 (129407 converted, © overflowed, © dud, 3205
GC'd, 2388 fizzled)

12

0Os 0.5 1s 1.58 2s 2.5s 3s 3.58

Figure 7:
Threadscope Profile of Better Parallel Attempt

Conclusion

Parallelization does indeed give significant performance gains over
the sequential version. It is seen from this exercise that there is a tradeoff
when choosing to parallelize a part of a program. Additionally, the parts
that seem to parallelize well at first inspection, sometimes don't work out
in the end, so it is crucial to benchmark parallel prototypes to justify the
performance gains (if any). | also found that while Haskell’s laziness is one
of the best features of the language, it leads to detrimental performance
losses if not understood properly.

Source Code
Main.hs

module Main where

import System.Environment(getArgs, getProgName)
import System.Exit(die)

import Animate

import Compute

import Parse

import Types

totalTime ,steps, maxSize :: Int
totalTime = 60
steps = totalTime * fps

13

maxSize = 7000000

dt :: Float
dt = 1 / (fromIntegral fps)

extractPosVectors :: [[ParticleState]] -> [[PosVector]]
extractPosVectors pS11l = map helper pS1l
where
helper :: [ParticleState] -> [PosVector]
helper pSl1 = map helper2 pS1
helper2 :: ParticleState -> PosVector
helper2 pS = PosVector (xPos pS) (yPos pS)

main :: I0 ()
main =
do
args <- getArgs
(filename, configPath, animate) <-
case args of
[f, c] ->
return (f, c, False)
[f, ¢, "-animate"] ->
return (f, c, True)
->
do
pn <- getProgName
die $ "Usage: "++pn++" <filename> <config>

[-animate]”
contents <- readFile filename
configContents <- readFile configPath

let
config = extractConfig configContents
preset = contentsToData contents

m = length preset
if steps * m > maxSize then
error "exceeded max size"
else if animate then
runAnimation $ extractPosVectors $ computeMatrix preset
dt steps config
else

print $ compute preset dt steps config

Compute.hs

module Compute where

import Types
import Control.Parallel.Strategies
import Control.DeepSeq

getParticleData :: ParticleState -> (Float, Float, Float,
Float)
getParticleData pS = (xPos pS, yPos pS, xVel pS, yVel pS)

getConfigData :: Config -> (Float, Float, Float)
getConfigbhata cG = (g cG, alpha cG, beta cG)

updateState :: Float -> Config -> ParticleState ->
ParticleState
updateState dt cG prevState =
prevState {xPos = xPrev + vxPrev * dt, yPos = yPrev + vyNew *
dt, yVel = vyNew}
where
(xPrev, yPrev, vxPrev, vyPrev) = getParticleData prevState
vyNew = vyPrev - g * dt
(g, _, _) = getConfigData cG

inWall :: Float -> Float -> Maybe Wall
inWall x y
| x - r < leftWalllLoc
| x + r > rightWallLoc
| y + r > topWalllLoc
| v - r < bottomWalllLoc
| otherwise = Nothing
where r = (fromIntegral radius) :: Float

Just LeftWall
Just RightWall
Just TopWall
Just BottomWall

adjustForWallBounce :: [ParticleState] -> Config ->

15

[ParticleState]
adjustForWallBounce pS1 cG = map bounce pSl
where
bounce :: ParticleState -> ParticleState
bounce pS =
case inWall x y of
Just LeftWall ->
ParticleState (x+2*(leftWalllLoc-x+r)) y
(alpha*(negate vx)) (beta*vy)
Just RightWall -»>
ParticleState (x-2*(x+r-rightWallloc)) y
(alpha*(negate vx)) (beta*vy)
Just TopWall ->
ParticleState x (y-2*(y+r-topWallLoc)) (beta*vx)
(alpha*(negate vy))
Just BottomWall ->
ParticleState x (y+2*(bottomwWalllLoc-y+r)) (beta*vx)
(alpha*(negate vy))
Nothing -> pS
where
(x, y, vx, vy) = getParticleData pS
(_, alpha, beta) = getConfigData cG
r = (fromIntegral radius) :: Float

collision :: ParticleState -> ParticleState -> Config ->
(ParticleState, ParticleState)
collision pS1 pS2 cG
| d >= 2 * r = (pS1, pS2)
| otherwise = (newl, new2)
where
(_, alpha, beta) = getConfigData cG
r = (fromIntegral radius) :: Float
d = sgrt $ (x2-x1)72 + (y2-yl1)~2

(x1,y1,vx1,vyl) = getParticleData pS1
(x2,y2,vx2,vy2) = getParticleData pS2
nx = x2 - x1
ny = y2 -yl

thetaN = posAtan2 ny nx
thetal = posAtan2 vyl vx1
theta2 = posAtan2 vy2 vx2
phil = thetal - thetaN

16

phi2 = theta2 - t
magl = sqrt $ vx1
mag2 = sqrt $ vx2
vnl = magl * (cos
vtl = magl * (sin
vn2 = mag2 * (cos
vt2 = mag2 * (sin
vt2' = beta * vt2
vtl' = beta * vtl
vnl' = alpha * wvn
vhn2' = alpha * wvn

magl' = sqrt $ vn
mag2' = sqrt $ vn
phil' = posAtan2
phi2' = posAtan2
thetal' = thetaN
theta2' thetaN
angle = posAtan2
pen =2 *pr - d
newl = ParticleSt
(sin thetal'))
new2 = ParticleSt
angle) (mag2' * (cos

posAtan2 :: Float
posAtan2 y x
| res <o =2
| otherwise = r

where res = ata

split :: Int -> [a] -
split numChunks xs =

chunk :: Int -> [a] -
chunk n [] =[]
chunk n xs = as : chu

where (as,bs) = spl

adjustForCollisions
[ParticleState]

hetaN

N2+ vylnh2

N2+ vy2”h2
phil)
phil)
phi2)
phi2)

2

1

1'22 + vtl'”~2
2'722 + vt2'"2
vtl' vnl'
vt2' vn2'

+ phil’

+ phi2’

ny nx

ate x1 y1 (magl' * (cos thetal')) (magl' *
ate (x2 + pen * cos angle) (y2 + pen * sin
theta2')) (mag2' * (sin theta2'))

-> Float -> Float

* pi + res

es
n2y x

> [[al]
chunk (length xs “quot™ numChunks) xs
> [[al]

nk n bs
itAt n xs

:: [ParticleState] -> Config ->

17

adjustForCollisions [] _
adjustForCollisions (pS1:[])
adjustForCollisions (pSl:rem) cG
remNew cG)
where
(pS1New, remNew) = helper pS1 rem
helper :: ParticleState -> [ParticleState] ->
(ParticleState, [ParticleState])
helper pS [] = (pS, [1)
helper pS (x:xs) = (a, newX : r)
where
(newPS, newX) = collision pS x cG
(a, r) = helper newPS xs

[]
[pS1]
pS1New: (adjustForCollisions

adjustForCollisions2 :: [ParticleState] -> Config ->
[ParticleState]
adjustForCollisions2 pS1 cG = map helper pS1
where
helper :: ParticleState -> ParticleState
helper pS = foldl helper2 pS pSl
where
helper2 :: ParticleState -> ParticleState ->

ParticleState

helper2 s e
| e == pS =s
| first == pS = s
| otherwise = first

where (first,) = collision pS e cG

adjustForCollisions2Chunked :: [ParticleState] -> Config -> Int
-> [ParticleState]
adjustForCollisions2Chunked pS1 c¢G numChunks = concat (map (map
helper) splitted “using™ parlList rdeepseq)
where

splitted = split numChunks pS1

helper :: ParticleState -> ParticleState

helper pS = foldl helper2 pS pSl

where
helper2 :: ParticleState -> ParticleState ->

ParticleState

18

helper2 s e

| e == pS =s
| first == pS = s
| otherwise = first

where (first, _) = collision pS e cG

nextStep :: Float -> Config -> [ParticleState] -> Int ->

[ParticleState]

nextStep dt config currStates step = force $

adjustForWallBounce stepped config

where

postCollisions, stepped :: [ParticleState]
postCollisions = adjustForCollisions currStates config
stepped = map (updateState dt config) postCollisions

nextStepChunkedForce :: Float -> Config -> Int ->
[ParticleState] -> Int -> [ParticleState]
nextStepChunkedForce dt config numChunks currStates step =
force $ adjustForWallBounce stepped config
where

postCollisions, stepped :: [ParticleState]

postCollisions = adjustForCollisions currStates config

splitted = split numChunks postCollisions

stepped = concat (map (map (updateState dt config))
splitted “using® parList rseq)

nextStepChunkedDeep :: Float -> Config -> Int ->
[ParticleState] -> Int -> [ParticleState]
nextStepChunkedDeep dt config numChunks currStates step =
adjustForWallBounce stepped config
where

postCollisions, stepped :: [ParticleState]

postCollisions = adjustForCollisions currStates config

splitted = split numChunks postCollisions

stepped = concat (map (map (updateState dt config))
splitted “using ™ parList rdeepseq)

nextStepParCollision :: Float -> Config -> Int ->

19

[ParticleState] -> Int -> [ParticleState]
nextStepParCollision dt config numChunks currStates step =
force $ adjustForWallBounce stepped config
where
postCollisions, stepped :: [ParticleState]
postCollisions = adjustForCollisions2Chunked currStates
config numChunks
stepped = map (updateState dt config) postCollisions

compute :: [ParticleState] -> Float -> Int -> Config ->
[ParticleState]
compute initial dt nSteps config =

foldl (nextStep dt config) initial [1..nSteps]

computeMatrix :: [ParticleState] -> Float -> Int -> Config ->
[[ParticleState]]
computeMatrix initial dt nSteps config =
reverse $ foldl helper [initial] [1..nSteps]
where
helper :: [[ParticleState]] -> Int -> [[ParticleState]]
helper matrix@(front:) step = (nextStep dt config front
step) : matrix
helper _ = error "computeMatrix helper error"

Types.hs

module Types where
import Control.DeepSeq

data ParticleState = ParticleState

{ xPos :: !Float
, yPos :: IFloat
, xVel :: !Float
, yvel :: IFloat

} deriving Show

instance NFData ParticleState where

20

rnf (ParticleState x' y' vx' vy') =

rnf x' “seq’ rnf y' “seq rnf vx' “seq rnf vy'

instance Eq ParticleState where
pS1l == pS2 =
(xPos pS1 == xPos pS2) &&
(yPos pS1 == yPos pS2) &&
(xVel pS1 == xVel pS2) &&
(yvel pS1 == yVel pS2)

data PosVector = PosVector
{ xComp :: !Float
, yComp :: !Float
} deriving Show

data Wall =
LeftiWall
| RightWall
| TopWall
| BottomWall
deriving Show

data Config = Config

{g :: IFloat
, alpha :: IFloat
, beta :: IFloat

} deriving Show

defaultConfig :: Config
defaultConfig =
Config { g = 9.81, alpha = 0.93, beta

fps, width, height, radius :: Int

fps = 45
width = 740
height = 740

= 0.98 }

21

radius = 3

rightWalllLoc, leftWalllLoc, topWalllLoc, bottomWalllLoc :: Float
rightWallLoc = fromIntegral $ width “div" 2
leftWallLoc = negate rightWallloc
topWallLoc = fromIntegral $ height “div" 2
bottomWallLoc = negate topWallloc

Parse.hs

module Parse where

import Data.lList
import Types

splitComma :: String -> [String]
splitComma s =
case span (/= "',"') s of
(start , "") -> [start]
(start , ',"':rem) -> start:(splitComma rem)
-> error "parse error in splitComma"

listToParticleState :: [String] -> ParticleState
listToParticleState (x:y:vx:vy:[]) =

ParticleState (read x) (read y) (read vx) (read vy)
listToParticleState _ = error "mismatched dimensions in data
file"

contentsToData :: String -> [ParticleState]
contentsToData contents =
map (listToParticleState . splitComma) $ words contents

extractConfig :: String -> Config
extractConfig contents =
foldl helper defaultConfig $ splitComma contents
where
helper :: Config -> String -> Config

22

helper c s

isPrefixOf "g=" s =

c { g = stripPrefixFloat "g=" s }
isPrefixOf "alpha=" s =

¢ { alpha = stripPrefixFloat "alpha=" s }
isPrefix0f "beta=" s =

c { beta = stripPrefixFloat "beta=" s }
otherwise = error "invalid config file"

stripPrefixFloat :: String -> String -> Float
stripPrefixFloat prefix s=
case stripPrefix prefix s of

Just post -> read post

update

render
render

update ::

update _ _

Nothing -> error "invalid config file"

Animate.hs

module Animate where

import Graphics.Gloss

import Graphics.Gloss.Data.ViewPort

import Types

offset :: Int

offset = 100

window :: Display

window = InWindow "Particles" (width, height) (offset, offset)
background :: Color

background = black

ViewPort -> Float -> [[PosVector]] -> [[PosVector]]
__ [l =[]
(_:ps) = ps
:: [[PosVector]] -> Picture
[] = blank -- when the simulation is done, show a

23

blank screen

render (p:_) =
pictures $ map getTranslation p
where
getTranslation :: PosVector -> Picture

getTranslation state =
translate x y $ ¢ $ circleSolid $ fromIntegral radius
where
X = xComp state

y = yComp state
¢ = color red
runAnimation :: [[PosVector]] -> IO ()

runAnimation ds = simulate window background fps ds render
update

The source code can also be found on:
github.com/nathanjcuevas/Newtonian-Particles

| will be tagging my submission on github as well so it can easily be
reverted to if needed.

https://github.com/nathanjcuevas/Newtonian-Particles

