
Parallelizing Huffman Encoding / Decoding

Malcolm Mashig (mjm2396)

COMS 4995: Parallel Functional Programming
Columbia University, Fall 2021

Huffman Coding Overview

1) Creation of a code tree based on character likelihood/frequency

2) Encode each character in the text via traversal of the tree

3) Decode bit sequences via traversal of the tree

Purpose: optimize compression ratio by giving small codes to frequent characters

Compression Ratio: (# of bits in compressed text) / (# of bits in original text)

…as I define it

Parallelization

1. Split input text into batches, then encode in parallel
2. Split encoded bit sequence into batches, then decode in parallel

Caveats:

- What about creating the code tree?
- Should we create a separate code tree per batch?
- How do we store the code tree so that it can be independently known during decoding

- How do we split encoded bit sequence into batches?
- Character codes vary in length, and so our batches may split up individual characters

Approach

Example Parallel Huffman Encoding File:

4

828

1657

2469

0000000011000111101111101110001110110101000
1111000011001101000101100110111101110101011
0001011001100111111110000100110001001001010
0010001000110101010100010000111011010100001
1111110…

Number of Batches:

First Index:

Second Index:

Third Index:

Encoding:

Indices are determined by
generating a cumulative sum of the
bit sequence lengths during
encoding

Implementation

Small-Scale Test
ORIGINAL TEXT:

 But there is a problem. To decode the message, you need the coding tree for that message. I'm sure there are a variety of techniques to transmit the tree as part of the message. One of the things Apfelmus did that intrigued me was develop a stack
based language and interpreter to represent the morse code tree as a string of characters. I think this would make a fine way to encode the tree into the front of the message. We should be able to extract a string of characters from the Huffman tree for
a particular message and use that string of characters to reconstruct the tree on the other side. Now this will add some significant overhead to the output for a given message, but I'm not necessarily concerned with space efficiency here as much as
learning about these kinds of transformations.

ENCODED:

000000001100011110111110111000111011010100011110000110011010001011001101111011101010110001011001100111111110000100110001001001010001000100011010101010001000011101101010000111111100101010101011110110
100110111010000110000010111111000111101001000100000111011010100000110101010100011001111101101100011100111100100000100101010111001110110101011111000111111100101010101011110110100110000100110111011110
001101111111001010111110011110000111011010100011110000101101111000010110011011100101101111100110011100110000000101010010011101000110111010111101100111000100001111101001010001110010100111001111011111
101010111111110011110001110110101000011100111100100001011101000110111110110111111000010101001001110110101000011111110010101010101111011010011000010011000111011111010000010101001001110110101000011101
101011001111101101101010001100011001110111101001100011001111111111110101000010001100101000001110110101011111000110011111011100111110011101101111101000100000111111100001100000101110100001000100110111
001000110010101110111100101100101011101011011011100010100011000110111010100010000001100110111111011011011111010111101101000010111111001000001100111110111010001111101111011110011101000111001110010100
011110011011110111100101010011110111000111011010100001111110101011110101000001101010101000100001110011110010000101110100010110010101110011111001111101101100001010100100011011101010110111101101101111
010001111010110000100110111011001110110101100111110110001010011101101011001101000110000001011111100110010100000111111101111000101100001011000100111001111101000011000001011011000000111001010010011110
011010101010001000011101101010000111001111001000011001111101110010100111011010100000100101110101111101110000101010010011101101010000111111100101010101011110110100110000100110001001110000101011010010
111111001100101000000110001100001011011000101100110000111001010010011000100011110011110110110111100010110010101110011111001111101101100001010100100011011101010110111101101101111010001111010000100101
110101111111001110110101000011000111111111100100101001111111101111110001110011110010000010010101011100101100110111110110111111011001011011111100110011011011100111111100101010101011110110100001011111
100100000111110101010000111011010101111100010101110011111001111101101100001010100100011011101010110111101101101111010001111010001110010100011110001101010111110101011100111111110011011110001110110101
000011100111100100000101111100011101101010000010111101101010001110010101100101000100110000100110001110001011100000001110110101100110100011000001100101100101100100101101000010000010100101111111100001
010110011101101111011001010011100101101101111110111000010111011100100011111010100101101000001110010100111011010100000101111110111011011111111101110000100101010111001011001101101100111011100100111100
011111110010101010101111011010011011101000011000111111011100011011101111000110111111100111100101111000111101000110110010101010101101111100101100101100000001101010111110011011000111111101000100000110
000011001111011010001010110111110110110110000100010010100111001011011100110011110011010110000001101010001111000010111010001111111111100110111010001011101000011001100101101111111011001111101101100010
1101100010101111110111000111011010100101010000110001011100111110010001010000101010010011100111101111110101001001010101111111111011111011001010111110101011000011100011000

DECODED:

 But there is a problem. To decode the message, you need the coding tree for that message. I'm sure there are a variety of techniques to transmit the tree as part of the message. One of the things Apfelmus did that intrigued me was develop a stack
based language and interpreter to represent the morse code tree as a string of characters. I think this would make a fine way to encode the tree into the front of the message. We should be able to extract a string of characters from the Huffman tree for
a particular message and use that string of characters to reconstruct the tree on the other side. Now this will add some significant overhead to the output for a given message, but I'm not necessarily concerned with space efficiency here as much as
learning about these kinds of transformations.

LOSSLESS?
True

Large-Scale Test

Shakespeare Works: http://www.gutenberg.org/files/100/100-0.txt

Length: 5,716,512 characters

Compression Ratio: ~0.60

real 18.236s (100 batches)
real 16.432s (500 batches)
real 16.064s (2000 batches)
real 13.146s (10000 batches)

http://www.gutenberg.org/files/100/100-0.txt

Threadscope

What I’ve Learned + Next Steps

- Still investigating improvements to achieve speedup
- Compression is sequential by nature, and parallelization is difficult

Next steps:

- Attempt other parallelization strategies and compare

