Parallelized Min-Max Chess Engine (PM)*

Feitong Qiao (flq2101), Yuanyuting Wang (yw3241)
December 2021

1 Introduction

The primary objective of a simple chess engine, given the state of a chess game
as input, is to generate an optimal next move for the current player based on
preset heuristics. To that end, algorithms like minimax and alpha-beta pruning
are commonly used: the core idea is to construct a tree of possible next moves of
the 2 players, and by recursively evaluating the chess boards at different nodes,
to find the child that could lead to an end state with optimal accumulative
”score” for the player. That node would then be the optimal next move that
the program returns.

While conventionally this algorithm is sequentially executed, parts of the
algorithm, especially the construction and evaluation of the game trees, are
computationally heavy and could potentially improve in execution time through
parallelization. In this project, we aimed to construct a simple sequential chess
engine based on the aforementioned algorithms, and then to optimize its execu-
tion time through various parallelization strategies.

2 Problem Formulation

The basic data structure used throughout the program is a minimax tree where
each node represents a potential game state (current board and player). A
minimax tree has a conventional tree structure, except that each layer represents
either a "maximizing” (White) or ”minimizing” (Black) player. In this way, each
node selects the child leading to the optimal end state by its standards, and in
the end, the program simply outputs the first-level child node with the optimal
score as the next move.

A program using pure minimiax algorithm would traverse the entirety of the
tree of possible game states to an arbitrary depth, which could be highly compu-
tationally heavy, as the number of possible game states increase exponentially

*If it doesn’t work so well, this name refers to Parallel Min-Max; otherwise, please call it
Parallel Master (inspired by Grandmaster (GM) in the international chess ranking system)

over the levels. In this project, we tested out three main approaches that could
improve the computation time:

1. Simple parallelization of the computation threads. That is, utilize Haskell’s
parallel evaluation strategies to generate a thread/spark per node, which
would be dedicated to the evaluation of the subtree under that node. With
this method, we also experimented for the optimal ratio of sequential vs.
parallel levels of the tree during evaluation.

2. Adaption of alpha-beta pruning. This sequential algorithm specializes in
”pruning” the minimax tree by discarding nodes that represent obviously
subpar options that are very unlikely to appear in actual gameplay. While
this method significantly increases exec time by reducing the size of the
minimax tree to traverse, its evaluation of each node is dependent on the
alpha and beta values accumulated through evaluation of preceding nodes,
which makes it hard to parallelize.

3. A combination of both methods. While we want to adapt alpha-beta prun-
ing to construct the most time-efficient minimax trees, we also want to
utilize the resources of multiple cores. Therefore, we experimented by
creating parallel threads, and using a sequentially alpha-beta pruned min-
imax tree on each thread.

In this project, we aimed to implement the 3 strategies with two primary
objectives: to provide maximum program execution time reduction, and also
to compare the performances of the strategies in an investigation of the trade-
off between sequential, algorithmic optimizations and multi-threaded workload
distribution through parallelization.

3 Implementation

3.1 Chess

To implement a chess engine, we first needs to have an implementation of the
chess game itself. The following data types are defined in the cness module:

data Game = Game
{ gamePlayer :: Player
, gameBoard :: Board

deriving (Read, Show, Eq)

data Player = Black | White deriving (Read, Show, Eq)

© 0N UA W

newtype Board = Board (Matrix BoardPiece) deriving Eq
type BoardPiece = Maybe (Player, Piece)

data Piece =
Pawn

| Knight

| Bishop

| Rook

| Queen

| King

deriving (Read, Show, Eq)

type Position = (Int, Int)

In other components of the game engine, the interfaces mostly use the came
data type to represent the state of the game. The cness module also defines
useful helpers that, for example, gets the Boararicce at a position, defines the
default initial game state, pretty-prints the current game state, etc.

3.2 Chess Rules

The rues module contains the following important functions:

® isGameOver :: Game —> Bool: determines whether the game has been won by a
player

® inner :: Game —> Maybe Player: Te€turns the winning Player, if there is one

® lcgalMoves = Game —> [Game]: giVen a game state, return a list of next legal game
states

The 1egaimoves function is especially important for this project, because it is
the function that is used to produce the branches in a minimax search tree.

3.3 Board Score

To determine a best move in our chess engine algorithm, we need to assign score
to a particular game board. The score module provides the following function
that evaluates the score of a came:

® gameScore :: Game —> Score

Note that the score type is defined to be a rioat:

type Score = Float

The Game score is the sum of all BoardPiece scores. A BoardPiece score is
calculated as this:

e an empty BoardPiece is 0

e a White BoardPiece is the sum of piece score and position score

a Black BoardPiece is the negative value of the sum of piece score and
position bonus

e piece score: Pawn = 10, Knight = 30, Bishop = 30, Rook = 50, Queen =
90, King = 900

position bonus: given a chess piece, the position it is currently in on
the chessboard also matters. For example, a Rook is more powerful in
a central position, but quite weak in the corners. To reflect this, we use
the positionBonus :: BoardPicce —> Position —> score fUnction to calculate the position
bonus score. Note that this bonus can be negative to discourage disad-
vantageous positions.

0O U A WN

3.4 Best-move Search

The best-move searching algorithm is the heart of the project. The base idea/al-
gorithm that this chess engine builds upon is the minimax search algorithm.
There are currently a total of 4 versions of the search algorithm:

e Sequential minimax (Minimax.Seq)

e Parallel minimax (Minimax.Par)

e Sequential minimax with alpha-beta pruning (Minimax.SeqAB)
e Parallel minimax with alpha-beta pruning (Minimax.ParAB)

Each of these 4 modules contains a submodule called move that exports a vestmove
function. However, since these searching strategy have different parameters (e.g.
parallel depth), the outer minimax.move module defines the following function to
have a cleaner interface:

bestMove :: PMStrategy —> Game —> Game

data PMStrategy
= MinimaxSeq Depth —— depth

| MinimaxPar Depth Depth —— parDepth , depth
| MinimaxSeqAB Depth — depth
| MinimaxParAB Depth Depth —— parDepth , depth

deriving (Read, Show, Eq)

Note that the pepwn type here is defined as an integer in the minimax.common module.

3.5 Sequential Minimax (MinimaxSeq)

The minimaxseq search strategy is the base minimax algorithm. It takes the fol-
lowing parameter:

e depth: the number of moves to look into the future; in other words, it is
the depth of the game tree to search

The minimax algorithm is naturally recursive. Without loss of generality, sup-
pose the minimax algorithm is determining the best move for Black player. It
tries to evaluate the score of the game state of each possible next move, and it
would select the move that yields the minimum score. It assumes that White
player is also trying to optimize their move; hence White would consider all
possible next moves and select the move that yields the maximum score. But
White player would hold the same assumptions about Black, and the same rea-
soning occurs again. Each of these turns is a level in our game tree, and when
we reach the level of the parametrized depth, the score is calculated using the
gamescore function instead of recursing on minimax.

The implementation of the algorithm is rather straightforward and can be
found in the minimax.seq.Mmove module.

©00NO U W

3.6 Parallel Minimax (MinimaxPar)

The minimaxpar search strategy is the parallel version of minimax algorithm. It
takes the following parameters:

e parDepth: the depth of spark generating minimax
e depth: the total depth of the game tree

Similar to the depth parameter, we decrease the parDepth parameter by 1
each time we recurse. The main difference in this version is that, depending on
whether parDepth is greater than 0, different Eval Strategies are applied to the
evaluation of the scores variable:
minimax :: Depth —> Depth —> Game —> Score
minimax parDepth depth g

| depth > 0
= let

evalStrat = if parDepth > 0 then parList rseq else rseq
scores =
map (minimax (parDepth — 1) (depth — 1)) (legalMoves g)
‘using ¢ evalStrat

optimalScore =
if shouldMaximize g then maximum scores else minimum scores
in
optimalScore
| otherwise
= gameScore g

If parpepsn is greater than 0, the evaluations of each subtree is sparked and
run in parallel; otherwise, they are run sequentially.

3.7 Sequential Minimax with Alpha-Beta Pruning (Mini-
maxSeqAB)

The minimaxseaan search strategy add alpha-beta pruning optimization to the base
minimax algorithm. It takes the same depth parameter as minimaxseq:

e depth: the number of moves to look into the future; in other words, it is
the depth of the game tree to search

The addition of alpha-beta pruning does not change the output of the min-
imax algorithm; it only takes advantage of an observation to prevent unneeded
exploration of the game tree. The observation is that when the maximum score
that the minimizing player (i.e. the ”beta” player) is assured of becomes less
than the minimum score that the maximizing player (i.e., the ”alpha” player) is
assured of (i.e. beta j alpha), the maximizing player need not consider further
descendants of this node, as they will never be reached in the actual play. !

3.8 Parallel Minimax with Alpha-Beta Pruning (Minimax-
ParAB)

The minimaxparan search strategy is the parallel version of minimax with alpha-
beta pruning algorithm. It takes the following parameters:

Thttps://en.wikipedia.org/wiki/Alpha-beta_pruning

e parDepth: the depth of spark generating minimax
e depth: the total depth of the game tree

For this implementation, we essentially run the parallel minimax for parDepth
levels, and run the remaining (depth - parDepth) levels with the sequential min-
imax with alpha-beta pruning.

4 Evaluation

4.1 Experiment Settings

All the following measurements are performed on a Macbook Pro (16-inch, 2019)
with the 2.3 GHz 8-Core Intel Core 19, and a memory of 16 GB 2667 MHz DDRA.

We ran the program using a series of different strategies with the following
codenames and specifications:

1. Seq,depth::Int: Simple sequential minimax tree traversal until depth.

2. Par,parDepth::Int,depth: :Int: Parallel threads generated for each node
until parDepth, and then simple sequential minimax tree traversal until
the fixed overall depth reaches depth.

3. SegAB,depth: :Int: Alpha-beta pruned sequential minimax tree until
depth.

4. ParAB,parDepth: :Int,depth: :Int: Parallel thread generation until parDepth,
and then sequential traversal of alpha-beta pruned minimax tree until
overall depth of depth.

Additionally, each test is run with a given starting chess board, and com-
pletes after the program executes twice (i.e. generate the optimal move for 2
consecutive player turns). The starting chess board can be one of the following:

1. B1: Default clean chess board.
2. B2: The Sicilian Defense opening?.
3. B3: A combination by Phillip Stamma?®.

4. BJ: The Ruy Lopez opening?.

4.2 Execution Time Analysis

We ran the program on different chess boards using the various aforementioned
strategies, with a fixed tree depth of 4. The resultant execution time statistics
is shown in Table 1.

Based on the results, several observations can be made:

2https://www.chess.com/openings/Sicilian-Defense
Shttps://thechessworld.com/articles/problems/7-most-famous-chess-combinations/
4https:/ /www.chess.com/openings/Ruy-Lopez-Opening

Total Time (s) | Bl | B2 | B3 B4 | Avg. % of Seq time
Seq,4 12.5 | 28.7 | 111 54.1 NA
Par,1,4 2.21 | 498 | 15.6 | 8.32 16.1%
Par,2,4 2.13 | 4.10 | 14.5 | 7.28 14.5%
SeqAB, 4 1.96 | 3.90 | 17.9 | 12.83 17.3%
ParAB,1,4 0.69 | 1.26 | 3.48 | 2.42 4.38%
ParAB,2,4 0.81 | 1.49 | 3.94 | 2.86 5.13%

Table 1: Execution time comparison of different stratgies.

1. All 3 optimizing methods provided substantial improvement to the execu-
tion time of the program, with a exec time reduction of 85% — 95%.

2. Regarding the Par strategy, increasing the levels of parallelization from 1
to 2 only offered insignificant improvements. This is potentially because
with the workload of multiple levels of tree nodes being put into parallel
threads, the workload of nodes in the upper levels become insignificant
(simply calling spark generation on all of its child nodes).

3. Comparing Par and SeqAB strategies, we discovered that their exec time
improvements are on a similar magnitude, which went to suggest that
a strong sequential optimization to the algorithm was on the same par
performance-wise as a straightforward parallelization of work threads for
this program.

4. Regarding the ParAB strategy, it offered the most exec time improvement
out of all strategies (95%), proving that this combination of sequential and
parallel strategies did improve the outcome by quite a margin, instead of
being counterproductive.

However, we noticed having 2 parallel levels was suboptimal compared to
having only 1. This is potentially due to 1) the same reason as for the mild
difference between Par,1,4 and Par,2,4 and 2) the fact that increasing
a parallel level means ”losing” a level that could have been utilized by
the pruning algorithm, which is more potent when it has access to more
information in the tree.

4.3 Spark Generation and Load-Balancing Analysis

With a given starting board (B3), we ran the program using Par and ParAB
strategies; the resultant event log and visualization via Threadscope® is shown
in Figure 1.

Based on the logs, several observations regarding load-balancing efficacy of
the strategies:

Shttps://github.com/haskell/ ThreadScope

®
®
§
&
®
®
i

(b) Par,2,4

i [Hoso GG ar s Sk iz rocess | aw vens
HEG |t Conver | Ovrtoned rzzes

ova oy

(c) ParAB,1,4 (d) ParAB,2,4

Figure 1: Threadscope visualizations of program run.

1. Both Par,1,4 and ParAB,1,4 resulted in the generation of 39 sparks,
which is supposedly the number of legal next moves given the start state
(i.e. immediate child nodes of the tree roo). Par,2,4 and ParAB,2,4
resulted in the generation of 1740 sparks, which is supposedly the number
of nodes on the second AND third layers of the tree. This matches our
expectation.

2. Given the greater number of sparks generated, strategies with 2 parallel
levels did better in terms of load-balancing than those with 1, as workload
is divided more granularly over a larger number of sparks. Throughout
the course of the execution, the work done on the 8 cores for Par,2,4 and
ParAB,2,4 remained consistent without obvious gaps (except for at the
end, small gaps to make up for minor exec time differences). There was
also no significant surges of garbage collection.

3. Regarding strategies with only 1 parallel level: given only 39 sparks in
total, there was only 4-6 sparks of heavy computation distributed to each
core. More susceptible to the fluctuations of the computation time of each
thread, load balancing for Par,1,4 and ParAB,1,4 was thus worse.

This phenomenon is especially pronounced in ParAB,1,4: depending on
the actual outcome of alpha-beta pruning on different subtrees, the compu-
tation time for each spark (one sequential traversal of a pruned tree) could
vary greatly. This leads to a general difficulty to reasonably balance work-
load without more sophisticated preemptive workload-estimating mecha-
nisms to guide the balancing.

4.4 Conclusion and Discussion

As the above analysis has shown, the combination of parallel threading and se-
quential alpha-beta pruning strategies was successfully in reducing the program
execution time by around 95%. Otherwise, pure parallelization and sequen-
tial alpha-beta pruning methods yielded similar improvements of around 85%.
It can then be argued that a careful combination of parallel and sequential
strategies could yield the maximal efficacy of optimization for this problem of
constructing a chess engine.

However, considering mainly the parallel strategies Par and ParAB, we no-
ticed that there’s an interesting trade-off between having 1 or 2 parallel levels:
having 1 level results in suboptimal load-balancing, whereas having 2 levels triv-
ializes the work done in most sparks, and hence unnecessarily creates a large
number of sparks without actually increasing the efficiency of each core.

To address this shortcoming, one possible method would be having a user-
input parameter that acts as the cap for threadcounts to more precisely control
the number of sparks to generate and distribute onto the cores. In the traversal
of the minimax tree, we could enforce the threadcount by dividing up the nodes
to be traversed into ”chunks”, assigning each chunk to a dedicated thread. We
can then do a breadth-first-search, instead of depth-first-search, of the tree,
where we list the nodes in each level, evaluate all the nodes in chunks, and then
synchronize and collapse the resultant ”child scores” back into the root node
through our maximizing/minimizing heuristics.

Another potential method that could optimize the engine is Principle Vari-
ation Splitting, an advance and more chess-specific parallel algorithm®. This
method approximates a ”parallel version” of alpha-beta pruning and is another
way of bringing together the sequential pruning process and efficient paralleliza-
tion. In the future, it would be interesting to try out both of these methods
and compare the results to the current strategies.

Appendix A Important Code Listings

app/Main.hs:

Shttp://worldcomp-proceedings.com/proc/p2011/SER3956.pdf

© 0O U W

module Main where

import System . Console . GetOpt
import System . Environment
import System . Exit

import System .IO

import Chess

import Control . Monad
import Data . Char

import Data.List.Split
import Data . Monoid

import Minimax . Common
import Minimax . Move
import Rules

data Mode
= Interactive
| Test
deriving (Read, Show, Eq)

data Options = Options
optPMStrategy :: PMStrategy
, optMode Mode
, optPlayer :: Player
, optBoardSrc :: String
deriving (Show, Eq)
defaultOptions :: Options
defaultOptions = Options { optPMStrategy = MinimaxSeq 5
, optMode = Interactive
, optPlayer = Black
, optBoardSrc = "”
}
usage IO Options
usage do
prg <— getProgName
let header = ”"Usage: ” 4+ prg ++ 7 [option]... [player]

hPutStrLn stderr (usagelnfo header options)
exitSuccess

(ArgDescr

(NoArg

, ReqArg

)

ArgOrder

(RequireOrder

)
, OptDescr (..)

, getOpt
usageln

getArgs

hFlush

print

fo

hPutStrLn

, readFile

, stderr
stdout

Board (.

unless
isSpace
splitOn

Depth)

P N

[file]”

)

Game (. .)
Player (..)
defaultBoard
defaultGame
parseBoard
prettyBoard

)
)
)

getProgName

exitSuccess)

Alt (getAlt))

PMStrategy (..)
bestMove

isGameOver)

options :: [OptDescr (Options —> IO Options)]
options =
[Option "m”
[”mode”]
(ReqArg (\mode opt —> return opt { optMode = read mode }) “<mode>")
”Mode to run the engine”
, Option
ngr
[”strategy” |
(ReqArg
(\pmStrat opt —>
let splitStrat = splitOn ”,” pmStrat
pmStrat’ = case head splitStrat of
”MinimaxSeq” —> MinimaxSeq (read $ splitStrat !! 1)
”MinimaxPar”? —>
MinimaxPar (read $ splitStrat !! 1) (read $ splitStrat !! 2)
”MinimaxSeqAB” —> MinimaxSeqAB (read $ splitStrat !! 1)
”MinimaxParAB” —> MinimaxParAB (read $ splitStrat !! 1) (read $§

splitStrat !l 2)
_ —> error ”"Invalid PMStrategy”

10

91
92
93

95
96

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

© 00N U AW

in return opt { optPMStrategy = pmStrat’ }

)
"<strategy >”

)
”Strategy for minimax”

, Option
"
[” player” |
(ReqArg (\player opt —> return opt { optPlayer = read player }) "<player>")
"Player that the engine is playing as”

, Option
»
[?boardSrc”]
(ReqArg (\boardSrc opt —> return opt { optBoardSrc = boardSrc })

”"<boardSrc>”

)
” File path specifying custom initial board layout”

, Option ”"h” [”help”] (NoArg (const usage)) ”Print help”

]

main :: IO ()
main = do
args <— getArgs
let (actions, filenames, errors) = getOpt RequireOrder options args

opts <— foldl (>>=) (return defaultOptions) actions
mapM_ putStrLn filenames

print opts

startGame opts

where
startGame opts@Options { optBoardSrc = src, optPlayer = player } = do
g <— initGame src player
loop 1 g opts
initGame src player
| null src || all isSpace src = return Game { gamePlayer = player
, gameBoard = defaultBoard
| otherwise = do
contents <— readFile src
return Game { gamePlayer = player, gameBoard = parseBoard contents }
loop turn g opts = do
unless (optMode opts == Test) $ do
putStrLn
$ 7> Turn ”
++ show turn
++ 7,
++ show (gamePlayer g)
4+ ”’s move:”
putStrLn $ prettyBoard $ gameBoard g
putStrLn 7
unless ((turn >= 3 && optMode opts == Test) || isGameOver g) $ do
let g’ = bestMove (optPMStrategy opts) g
loop (turn + 1) g’ opts
src/Chess.hs:
—— | Chess representations
module Chess
(Board (..)
, board
, BoardPiece (..)
, Game (..)
, Piece (..)
, Position
, Player (..)
, atPos
, getBoardMatrix
, setBoardPiece
, setPlayer
prettyGame
, prettyBoard
, parseBoard
, defaultGame
, defaultBoard
) where
import Data.Bifunctor (first)
import Data . Char (toLower)
import Data. List (intercalate)
import Data.Matrix [GED]
., Matrix
, fromLists
, matrix
, setElem
, toLists
, nrows
, ncols
)
data Game = Game
{ gamePlayer :: Player

11

, gameBoard Board

deriving (Read, Show, Eq)

data Player = Black | White

deriving (Read,

Show, Eq)

newtype Board = Board (Matrix BoardPiece) deriving Eq

type BoardPiece =

instance Show Board where
show (Board b) = show §

instance Read Board where

Maybe (Player ,

Piece)

toLists b

readsPrec prec s = map (first (Board fromLists)) (readsPrec prec s)
—— checks dimension on the 2D list
board [[BoardPiece]] —> Board
board b = if isValidBoard
then Board $ fromLists b
else error "Dimension of board is not 8x%8”
where
validNumOfRows = length b == 8
validNumOfColumns = all (\row —> length row == 8) b
isValidBoard = validNumOfRows && validNumOfColumns
data Piece =
Pawn
| Knight
| Bishop
| Rook
| Queen
| King
deriving (Read, Show, Eq)
type Position = (Int, Int)
—— unsafe: get piece at position
atPos Game —> Position —> BoardPiece
atPos g pos = getBoardMatrix g ! pos
getBoardMatrix Game —> Matrix BoardPiece
getBoardMatrix Game { gameBoard = Board b } = b
—— wupdate game board
setBoardPiece Game —> Position —> BoardPiece —> Game
setBoardPiece g@Game { gameBoard = Board b } pos bp =

g { gameBoard = Board $ setElem bp pos b }
setPlayer Game —> Player —> Game
setPlayer g p = g { gamePlayer = p }
—— pretty print Game
prettyGame Game —> String
prettyGame g =
»> Player: ” ++ show (gamePlayer g) 4+ ”"\n” ++ prettyBoard (gameBoard g)
prettyBoard Board —> String
prettyBoard (Board b) = intercalate ”\n” map prettyRow toLists $ fmap
prettyBoardPiece
b
where
prettyRow row = ”|” 4+ intercalate ”|[” row ++ 7|7
prettyBoardPiece Nothing = 7 ”
prettyBoardPiece (Just p) = prettyPiece p
prettyPiece (player, piece) =
let player’ = toLower head show $ player
piece ' = toLower head show $ piece
in [player’, piece ’]
parseBoard String —> Board
parseBoard text = case (nrows board, ncols board) of
(8, 8) —> Board board
- —> error ”ill —formatted initial board”
where board = fromLists $ map parseRow (lines text)
parseRow line = do w <— wordsWhen (’,’) line
return $ parsePiece w
parsePiece word = case word of
» » _> Nothing
(pl:pi:_) —>
let player = case toLower pl of
b’ —> Black
'w’ —> White
- —> error (”invalid piece ++ word) in
let piece = case toLower pi of
'p’ —> Pawn
'k’ —> Knight
'b’ —> Bishop
'r’ —> Rook

12

127 ’q’ —> Queen

128 x’ —> King
129 - —> error (”invalid piece 7 44 word) in
130 Just (player, piece)
131 - —> error (”invalid piece 7 44 word)
132
133 —— reference: https://stackoverflow.com/questions /4978578/how—to—split —a—string —in—
haskell
134 wordsWhen :: (Char —> Bool) —> String —> [String]
135 wordsWhen p s = case dropWhile p s of
136 »r > []
137 s’ —> w : wordsWhen p s’’’
138 where (w, s’’') = break p s’
139
140 default start game state
141 defaultGame Game
142 defaultGame = Game { gamePlayer = Black, gameBoard = defaultBoard }
143
144 defaultBoard :: Board
145 defaultBoard = board b
146 where
147 b =
148 [[Just (Black, Rook)
149 , Just (Black, Knight)
150 , Just (Black, Bishop)
151 , Just (Black, Queen)
152 , Just (Black, King)
153 , Just (Black, Bishop)
154 , Just (Black, Knight)
155 , Just (Black, Rook)
156]
157 , [Just (Black, Pawn)
158 , Just (Black, Pawn)
159 , Just (Black, Pawn)
160 , Just (Black, Pawn)
161 , Just (Black, Pawn)
162 , Just (Black, Pawn)
163 , Just (Black, Pawn)
164 , Just (Black, Pawn)
165]
166 , [Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing]
167 , [Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing]
168 , [Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing]
169 , [Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing]
170 , [Just (White, Pawn)
171 , Just (White, Pawn)
172 , Just (White, Pawn)
173 . Just (White, Pawn)
174 , Just (White, Pawn)
175 , Just (White, Pawn)
176 , Just (White, Pawn)
177 , Just (White, Pawn)
178]
179 , [Just (White, Rook)
180 , Just (White, Knight)
181 , Just (White, Bishop)
182 . Just (White, Queen)
183 , Just (White, King)
184 , Just (White, Bishop)
185 , Just (White, Knight)
186 , Just (White, Rook)
187]
188]
src/Rules.hs:

1 —— | Chess rules

2

3 module Rules

4 isGameOver

5 . winner

6 , legalMoves

7 , legalMovesForPos

8) where

9

10 import Chess (Board (..)
11 , Game (..)
12 , Piece (..)
13 , Player (..)
14 , Position
15)

16 import Data. Foldable (find)
17 import Data.Matrix [GED)

18 , setElem
19)

20 import Data . Maybe (fromJust)
21

22 isGameOver :: Game —> Bool

23 isGameOver Game { gameBoard = Board b } = not $ hasBlackKing && hasWhiteKing
24 where

13

25 hasBlackKing = Just (Black, King) ‘elem‘ b

26 hasWhiteKing = Just (White, King) ‘elem‘ b

27

28 winner :: Game —> Maybe Player

20 winner g@Game { gameBoard = Board b } = if isGameOver g

30 then Just . fst . fromJust . fromJust $ find isKing b

31 else Nothing

32 where

33 isKing (Just (-, King)) = True

34 isKing - = False

35

36 legalMoves :: Game —> [Game]

37 legalMoves g =

38 let allPositions = [(r, ¢) | r <— [1 .. 8], ¢ < [1 .. 8]]
39 in concatMap (legalMovesForPos g) allPositions

40

41

42 legalMovesForPos :: Game —> Position —> [Game]

43 legalMovesForPos g@Game { gamePlayer = player , gameBoard = Board b } pos@(r, c)
44 = case b ! pos of

45 Nothing —> []

46 Just (piecePlayer, piece) —>

a7 if piecePlayer == player then movesForPiece piece else []
48 where

49 movesForPiece Pawn = case player of

50 Black —>

51 let normalStep = validEmpty [(r + 1, c¢)]

52 doubleStep = if r == 2 && isEmpty (b ! (3, c))

53 then validEmpty [(r + 2, c¢)]

54 else []

55 takes = validTake [(r 4+ 1, ¢ — 1), (r 4+ 1, ¢ + 1)]
56 poses = normalStep 44+ doubleStep ++ takes

57 newBoards newpos@(r, c)

58 | r ==

59 = let promotions = [Pawn, Knight, Bishop, Rook, Queen]
60 in map (makeMove pos newpos) promotions

61 | otherwise

62 = [makeMove pos newpos Pawn]

63 in map makeGame $ concatMap newBoards poses

64 White —>

65 let normalStep = validEmpty [(r — 1, c)]

66 doubleStep = if r == 7 && isEmpty (b ! (6, c))

67 then validEmpty [(r — 2, ¢)]

68 else []

69 takes = validTake [(r — 1, ¢ — 1), (r — 1, ¢ + 1)]
70 poses = normalStep 44 doubleStep ++ takes

71 newBoards newpos@ (r, c)

72 | r o=

73 = let promotions = [Pawn, Knight, Bishop, Rook, Queen]
74 in map (makeMove pos newpos) promotions

75 | otherwise

76 = [makeMove pos newpos Pawn]

77 in map makeGame $ concatMap newBoards poses

78 movesForPiece Knight =

79 let poses = validEmptyOrTake

80 [(r 4+ 1, ¢ + 2)

81 Co(r + 1, ¢ 2)

82 L(r 4+ 2, ¢ + 1)

83 ,(r 4+ 2, ¢ — 1)

84 ,o(r — 1, ¢ + 2)

85 L (r — 1, ¢ — 2)

86 L (r — 2, ¢ + 1)

87 , (r — 2, ¢ — 1)

88

89 in map (\newpos —> makeGame $ makeMove pos newpos Knight) poses
90 movesForPiece Bishop =

91 let dir = [(1, 1), (1, —1), (=1, 1), (=1, —1)]

92 poses = concatMap (allPosInDirection 1) dir

93 in map (\newpos —> makeGame $ makeMove pos newpos Bishop) poses
94 movesForPiece Rook =

95 let dir = [(1, 0), (~1, 0), (0, 1), (0, —1)]

96 poses = concatMap (allPosInDirection 1) dir

97 in map (\newpos —> makeGame $ makeMove pos newpos Rook) poses
98 movesForPiece Queen =

99 let

100 dir =

101 [(1, 0)

102 L (=1, 0)

103 L (0, 1)

104 , (0, —1)

105 (1, 1)

106 (1, —1)

107 L (=1, 1)

108 ,o(—1, —1)

109 1

110 poses = concatMap (allPosInDirection 1) dir

111 in

112 map (\newpos —> makeGame $ makeMove pos newpos Queen) poses
113 movesForPiece King =

114 let poses = validEmptyOrTake

115 [(r7, ¢)

14

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

© 0N U AW

in map (\newpos —> makeGame $ makeMove pos newpos King) poses

validEmpty = filter (\pos —> isEmpty $ b ! pos) . filter inRange
validTake = filter (\pos —> isEnemy $ b ! pos) . filter inRange
validEmptyOrTake —

filter (\pos —> isEmpty (b ! pos) || isEnemy (b ! pos)) . filter
inRange (r, c) = >= 1 && r <= 8 && ¢ >= 1 && ¢ <= 8

r
isEmpty (Just _-) = False

isEmpty Nothing True

isMine (Just (player’, .)) = player’ == player

isMine Nothing = False

isEnemy (Just (player’, _-)) = player’ == otherPlayer player
isEnemy Nothing = False

allPosInDirection mult (rDir, cDir)
| not (inRange newPos)
| isEnemy dest
| isMine dest =
| otherwise = newPos : allPosInDirection (mult + 1) (rDir, cDir)
where
newPos = (r 4+ mult * rDir, ¢ + mult %= cDir)
dest = b ! newPos
makeMove oldpos newpos newpiece =
let bl = setElem Nothing oldpos b
b2 = setElem (Just (player, newpiece)) newpos bl
in Board b2
makeGame b = Game { gamePlayer = otherPlayer player, gameBoard = b }

[newPos]

otherPlayer :: Player —> Player
otherPlayer Black = White
otherPlayer White = Black

src/Score.hs:
—— | Chess board evaluation

module Score
(gameScore
, boardScore
, Score
) where
import Chess

Board (..)

, BoardPiecce (..

Game (. .)
Piece (..)
Player (..)
Position (..)

(D)

Matrix (..)
, fromLists

, switchRows

import Data . Matrix

type Score = Float

gameScore :: Game —> Score
gameScore g = boardScore $ gameBoard g

boardScore :: Board —> Score
boardScore (Board b) = foldl
(\score pos —> score + positionScore (b ! pos) pos)

indicies
where indicies = [(r, c¢) | r < [1 .. 8], ¢ < [1 .. 8]]

positionScore :: BoardPiece —> Position —> Score
positionScore bp pos = score + bonus
where
score
bonus

= boardPieceScore bp

= positionBonus bp pos

boardPieceScore :: BoardPiece —> Score
boardPieceScore Nothing =

boardPieceScore (Just (Black, p)) = —1 % pieceScore p
boardPieceScore (Just (White, p)) = pieceScore p

pieceScore :: Piece —> Score
pieceScore Pawn 10
pieceScore Knight 30
pieceScore Bishop 30
pieceScore Rook 50
pieceScore Queen 90
pieceScore King 900

positionBonus :: BoardPiece —> Position —> Score
positionBonus Nothing . =

15

inRange

4 5 mat

! pos
switchRows

piece
3 6 $

bonusMap player

switchRows

reflectOverX $ pieceBonusMap piece

27 3

piece)) pos
—> Matrix Score

pieceBonusMap piece
switchRows

fmap negate $

—> Piece
18 %

bonusMap White piece

bonusMap Black piece
mat

positionBonus (Just (player,
Player
where
reflectOverX
switchRows

bonusMap

54
55
56
58
59
61

@
g
3
¢]
=) =) =) =) =) (=) cooooo
0 0 ~ ~ ~ ~ MMM N~
—_ [— | | | |
n =) =)
o 0%000040 cooooooo 000 0 0 coow _ooo ccococoo
]]]]] > ? R P S 2eengees eeees
eeewe o T YT .Y OTTTIVTIT °mYTITTe 7YYV VViVifes
cw~oog -0 o) oo o | &~
o PP R -
co oL nW,OSO_a < Coowoow® - "O0000O0 - Qooo ~oo®@ eeoeceQ -~ -
cocowo) co "o -o oo
L L e ® ocooco © “ocococoro™ cocococo . “ococo oo™ N ?
cwHoOOO O [- | o~ <) | <) LI O B A
- o o -~ -0 Sononm S om e o -
R c~owwo - - cowwooo ~ ~ooo0oo - coww ~wo -+ o s s e s - - -
coocoo |l mo oo~ . .-oco o- NN ER 0o oo I~ 0 T 0 cocoocooso
. : : coo~-o . . oococoo 000 00 s s
cwaN~O - -0 o i - o~ o e o ° 0000 WA o
oo w | PO S [| [..
e e © ¥ ooococoo - rO0000O0 - @ oW "o - - n o °
nooowo@ o 2 L R Nl =] N [N i) cowm sttt "00 &
- i | .m M00111100 £ . .0000O0C NINOOO -00W +HOOO0OOOO 5 fe] s .o
.m053220,10 o EE - A= .2 Qo ... ° o fovowsa”® n = ..m
R R R 6l cocoocoo 2 - -cocococo - Eloww -wo = B R B S = N
Ecoomwo®@y0 = = Eoo - w9 o g co S
s . & & -O-=H=HO - 5. .00000 S 000 00 - g .+~ - Py [0)
cowmaan -lo =) o Jo~ o wo o © Jcoocoooo “~ =
- < It (e Bl coo o ATt T4 Ydd<voa o - o @
R | S jowmwooo - fO0000O0 - :,055.55 R . =g 2
loocococoo oo =10 - s al - - K leo o Y] Il co (&) = 2
At [p—— o5 ococor=HO T ocoooco s o000 .00 . N 8 £ ~ ¢
SOMNHO HO [- -~ MOH o o - =] T o~ 5 3 g ™ > O
z - 290 - -+ 90 GO -0 0 BT ¢o --- - -2 goo9eoQ g 3 am,
@ - ononom oD e owow ~ loowoow 9 - -~ocococoo - 000 ~wo o " - = O - .
g ™ ~ - - — - oo s
Lloocowogoco XY - I R roo - o C o EAE oo g = - E g .-
L L L2 ' loooco || locococoro .coocoo looo oo [- - S % - e
pow—=oco l-do g o no = ST o o) a § s a su
@ R e § ~r~ o @ nmnem g Il g§00
S -------- 500000000 5000000O0C 5 --WWWBWY - F000W -000 5000000 - - a0z = Hu B
? neeecees i ~2en > 2 < o - =
OO0 WOoRNO Yhdmmmmdy Aammmmmma 499000009 GammoC-ana nommmmanOO m g E., 2 m inme
Zowrooococo S 011 R Boollllle Z1 11 lcll Sl laa O FEs o2 05 ZFati
g g == = S S 3 e
o o ° ° ° ° g O o09f A O 0208w
Q... B - DU DU : S [B R, 2A% n oSES% %
o o o o o o _ = 0 3 0
° o o o o o T o T - Q
%] %] 5] 5] 5] [| o - 0 - m
a a a a a a [S £ =
NN FVOENROANNFNONNDOANNFNOENIOANNTNOLE NN A NNIVOEDNNIO A NN TN OIS 0DO OO ~N om0 o
CECOOCOOOREEEENNEENE 0NN 0NN DDNNODIPRDDIDRDDRHOCOO00C00000 ot = AN
R L L L R R = =g =papapapapuieh

(Depth)

as

16

.Move

Minimax . Common

import qualified Minimax.Par

import

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

© 00U W=

© 0Ok WN

import qualified Minimax.ParAB.Move

as PAB

import qualified Minimax.Seq.Move as S
import qualified Minimax.SeqAB.Move as SAB
data PMStrategy

= MinimaxSeq Depth

| MinimaxPar Depth Depth —— parDepth , depth

| MinimaxSeqAB Depth

| MinimaxParAB Depth Depth

deriving (Read, Show, Eq)
bestMove PMStrategy —> Game —> Game
bestMove pmStrat g = case pmStrat of

MinimaxSeq depth > S.bestMove depth g

MinimaxPar parDepth depth —> P.bestMove
MinimaxSeqAB depth —> SAB.bestMove
MinimaxParAB parDepth depth —> PAB.bestMove

src/Minimax/Seq/Move.hs:

—— | Move generation by sequential minimaz al

module Minimax .Seq.Move
(bestMove
) where

parDepth depth g

depth g
parDepth depth g

gorithm

import Chess (Game(..)
, Player (..)
)
import Minimax . Common (Depth)
import Rules (legalMoves)
import Score (Score
, gameScore
)
bestMove Depth —> Game —> Game
bestMove d g =
let movesWithScores = [(move, minimax (d — 1) move) | move <— legalMoves g]
comparator = if shouldMaximize g
then \x@(., xscore) y@(-, yscore) —> if xscore >= yscore then x else y
else \x@Q(-, xscore) y@(-, yscore) —> if xscore <= yscore then x else y
optimalMove = fst $ foldrl comparator movesWithScores
in optimalMove
shouldMaximize Game —> Bool
shouldMaximize Game { gamePlayer = White } = True
shouldMaximize Game { gamePlayer = Black } = False
minimax Depth —> Game —> Score
minimax d g
| d <=0
= gameScore g
| otherwise
= let scores = [minimax (d — 1) move move <— legalMoves g]
optimalScore =
if shouldMaximize g then maximum scores else minimum scores
in optimalScore
src/Minimax/Par/Move.hs:
—— | Move generation by parallel minimaz algorithm
module Minimax.Par.Move
(bestMove
) where
import Chess (Game (..)
, Player (..)
)
import Minimax . Common (Depth)
import Rules (legalMoves)
import Score (Score
, gameScore
)
import Control. Parallel . Strategies (evalTuple2
, parList
, rseq
, using
)
bestMove Depth —> Depth —> Game —> Game
bestMove parDepth depth g =
let evalStrat = if parDepth > 0 then parList (evalTuple2 rseq rseq) else rseq

movesWithScores =

map (\move —> (move,
(legalMoves g)
‘using ¢ evalStrat

minimax (parDept

17

h — 1) (depth — 1) move))

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

©ON® U WN

0O A WN

if
xscore) y@(-,
xscore) y@(-,
fst $ foldril

comparator =

then \x@(._,

else \x@(-,

optimalMove =

in optimalMove
Game —> Bool

shouldMaximize Game { gamePlayer

shouldMaximize Game { gamePlayer

shouldMaximize

minimax Depth —> Depth —> Game
minimax parDepth depth g
| depth > 0
= let
evalStrat =
scores =
map (minimax (parDepth —
‘using ¢* evalStrat
optimalScore =
if shouldMaximize g then

if parDepth > 0

in
optimalScore

shouldMaximize g

yscore) —>
yscore) —>
comparator

if xscore >= yscore then x else
if xscore <= yscore then x else
movesWithScores

= White } = True
= Black } = False
—> Score

then parList

1))

rseq else rseq

1) (depth — (legalMoves g)

maximum scores else minimum scores

otherwise
gameScore g

src/Minimax/SeqAB/Move.hs:

— | Move generation by sequentia

module Minimax .SeqAB . Move
(bestMove
) where

import Chess

import Minimax . Common
import Rules

import Score

bestMove Depth —> Game —> Game

bestMove d g =
let movesWithScores =
[(move, minimax (d
comparator = if
then \x@Q(., xscore) y@(_,
else \x@(., xscore) y@(_,
optimalMove = fst $ foldrl
optimalMove

1)

in

shouldMaximize Game —> Bool

| minimaz algorithm with alpha—beta pruning

shouldMaximize g

(Game(..)

, Player (..)

)

(Depth)

(legalMoves)

(Score

, gameScore

)
(—10000) 10000 move) | move <— legalMoves g
yscore) —> if xscore >= yscore then x else
yscore) —> if xscore <= yscore then x else

comparator movesWithScores

shouldMaximize Game { gamePlayer = White } = True
shouldMaximize Game { gamePlayer = Black } = False
minimax Depth —> Score > Score > Game —> Score
minimax d alpha beta g
| d <=0
= gameScore g
| shouldMaximize g
= let optimalScore - prevBest [] = prevBest
optimalScore alpha’ prevBest (move moves) =
let currBest = max prevBest (minimax (d — 1) alpha’ beta move)
alpha ’’ = max alpha’ currBest
in if beta <= alpha’’
then currBest
else optimalScore alpha’’ currBest moves
in optimalScore alpha (—9999) (legalMoves g)
| otherwise
= let optimalScore prevBest [] = prevBest
optimalScore beta’ prevBest (move moves) =
let currBest = min prevBest (minimax (d — 1) alpha beta’ move)
beta ’’ = min beta’ currBest
in if beta’’ <= alpha
then currBest
else optimalScore beta’’ currBest moves
in optimalScore beta 9999 (legalMoves g)
src/Minimax/ParAB/Move.hs:
—— | Move generation by parallel minimaz algorithm with alpha—beta pruning

module Minimax.ParAB.Move
(bestMove
) where

import Chess

(Game (..)
, Player (..)

18

y
y

1

y
y

75
76
T

79
80
81
82
83
84

86
87
88

~—

import Control. Parallel . Strategies evalTuple2
, parList
, rseq
, using
)
import Minimax . Common (Depth)
import Rules (legalMoves)
import Score (Score
, gameScore
)
bestMove Depth —> Depth —> Game —> Game
bestMove parDepth d g
| parDepth <= 1
= let
movesWithScores =
[(move, minimaxAB (d — 1) (—10000) 10000 move) | move <— legalMoves g |
‘using ‘* parList (evalTuple2 rseq rseq)
comparator = if shouldMaximize g
then \x@Q(., xscore) y@(-, yscore) —> if xscore >= yscore then x else y
else \x@Q(-, xscore) y@(-, yscore) —> if xscore <= yscore then x else y
optimalMove = fst $ foldrl comparator movesWithScores
in

optimalMove
| otherwise
= let movesWithScores =

[(move, minimax (parDepth — 1) (d — 1) move) | move <— legalMoves g]
‘using ¢ parList (evalTuple2 rseq rseq)

comparator = if shouldMaximize g
then \x@(., xscore) y@(., yscore) —> if xscore >= yscore then x else y
else \x@Q(., xscore) y@(., yscore) —> if xscore <= yscore then x else y

optimalMove = fst $ foldrl

in optimalMove

shouldMaximize Game —> Bool
shouldMaximize Game { gamePlayer =
shouldMaximize Game { gamePlayer =

minimax

comparator movesWithScores

White } = True

Black } = False

Depth —> Depth —> Game —> Score

minimax parDepth d g
d <=0
= gameScore g
| parDepth <= 1
= let scores =
[minimaxAB (d — 1) (—10000) 10000 move | move <— legalMoves g]
‘using ¢ parList rseq
optimalScore =
if shouldMaximize g then maximum scores else minimum scores
in optimalScore
| otherwise
= let scores =
[minimax (parDepth — 1) (d — 1) move | move <— legalMoves g]
‘using ¢ parList rseq

optimalScore =
if shouldMaximize g then
in optimalScore
minimaxAB
minimaxAB d alpha beta g
| d <=0

= gameScore g
| shouldMaximize g
= let optimalScore - prevBest []
optimalScore alpha’

Depth —> Score —> Score

prevBest

maximum scores else minimum scores

—> Game —> Score

= prevBest

(move moves) =

let currBest = max prevBest (minimaxAB (d — 1) alpha’ beta move)
alpha’’ = max alpha’ currBest
in if beta <= alpha’’
then currBest
else optimalScore alpha’’ currBest moves
in optimalScore alpha (—9999) (legalMoves g)
| otherwise
= let optimalScore - prevBest [] = prevBest
optimalScore beta’ prevBest (move moves) =

let currBest = min prevBest
beta ’’ = min beta’
in if beta’’ <= alpha

then currBest
else optimalScore

in optimalScore beta 9999 (leg

beta ’’

(minimaxAB (d —
currBest

1) alpha beta’ move)

currBest moves
alMoves g)

19

