
N-Queens

Leveraging Parallel Functional Programming to

calculate the number of solutions the classic N-Queens
Problem

Alexandra Holguin

anh2150

COMS 4995, Fall 2021

Introduction

Inspired by the game of Chess, N-Queens is a classic

problem in computer science. Given a natural number N, the

problem is to find the number of ways N queens can be

arranged on an NxN chessboard such that no queen threatens

another. In other words, there must be one and only one

queen in every row, column and diagonal of a square chess

board of a given size.

For values of N greater than 10, both the amount of

calculation and the number of solutions grows at an

exponential rate, making this a very good problem that can be

parallelized.

Example of a solution for N = 4

Approach

A naive approach of checking every possible configuration

of N queens on an NxN board would be a colossal task.

Consider N = 8. Checking every possible configuration would

mean checking 178,462,987,637,760 configurations.

So, we can use some heuristics and intuitive rules of

thumb to cut down on the total amount of work needed to be

done. If we start with all the queens arranged on a major

diagonal of the board, we have already ensured that there is

only a single queen per row and column. Now we can

generate permutations of the rows to generate all such

configurations. For N = 8, this cuts down the total number of

permutations to consider to just 8!, or 40,320. And all that

needs be done is to check for diagonal conflicts in the

generated permutations.

Data Modeling

The most naive approach would be to use a list of lists of

ints and directly map each block on a chess board to an Int in

a two-dimensional data structure.

However, given the large number of permutations

involved, using the least amount of RAM possible becomes

important. So a much better approach is to encode the

configuration of each row as a number and use a list of

integers instead.

In my solution, I used a Word32 to encode the

configuration of each row. This Word32 is comprised

exclusively of 0-bits, except the specific bit that represents

where the queen is present. For example, if the queen is in the

last column, the value 0000…0001 is used to represent it. If

the queen is in the second-to-last column, the value 000…

0010 is used to represent it and so on.

As a result, a board configuration is represented as

[Word32]. An Array instead of a list would likely save me some

additional RAM usage, but the laziness of Haskell lists, helps

keeps the total working memory in check.

An alternate approach would be to use the integer value of the column that the

queen is in. Doing this would also change the operations required to check for

diagonals, which we will talk about later.

Preparation

Before the actual computation can begin, I generate a list

of all possible configurations that need to checked for

diagonal conflicts. This part was very simple by using the

standard library function permutations.

diagonalOfQueens :: Int -> [Word32]

diagonalOfQueens n = [shiftL 1 i | i <- [0 .. (n -1)]]

-- generating all board configurations

diagonal = diagonalOfQueens n

boards = permutations diagonal

Checking For Diagonals

To check if there is a diagonal conflict, I take the first row

of the board and shift all the bits left by one and compare it

against the next row. A simple bitwise-And is enough to

ensure that no two queens are in the same diagonal. This

process is repeated for the rest of the rows, by shifting the

bits for every step down the board. The same process is also

repeated for the rest of the rows of the board. Finally the

whole process is also repeated while shifting the rows to the

right.

hasConflictWithFirstRow :: ShiftFn -> Word32 -> [Word32] -> Int -> Bool

hasConflictWithFirstRow _ _ [] _ = False

hasConflictWithFirstRow shiftFn queen (x : xs) offset =

 ((queen `shiftFn` offset) .&. x) /= 0 || hasConflictWithFirstRow shiftFn
queen xs (offset + 1)

hasAnyDiagonalConflict :: [Word32] -> Bool

hasAnyDiagonalConflict board =

 isDiagonalConflict shiftL board || isDiagonalConflict shiftR board

 where

 isDiagonalConflict _ [] = False

 isDiagonalConflict dir (x : xs) =

 hasConflictWithFirstRow dir x xs 1 || isDiagonalConflict dir xs

This whole process is computationally efficient as it relies

on fast bit shifting and bitwise AND operations.

If we had used the column index as the number instead, we would need to add or

subtract 1 as we went down the rows, and check for integer equality instead. While

the difference between the two approaches is minimal, the bitwise operators were

marginally faster in my testing.

Parallelization

Naive Initial Approach

Checking a long list of board configurations is an

inherently parallelizable task. The first approach was to map

over the entire list in parallel. This approach worked for

smaller values of N, but quickly broke down due to a large

number of spark overflowing. There was far too much GC

pressure too and the cost of creating Sparks was as bad or

worse than the computational speedup.

Better Approach

Next, I tried to control the number of sparks being created

by generating the the list of permutations and chunking it up

into 10 roughly equal lists of permutations. From there, I was

able to run the 10 chunks in parallel which was able to utilize

the 10 cores available on my CPU.

This approach was quite effective, and was able to get a

speedup of around 2.5x. However, the memory usage was still

quite high, and after further testing, I realized that it wasn’t

even able to calculate the solutions for N = 12 or greater as it

would use up too much memory and get killed by the OS.

Other Exploration

I looked into reducing the memory usage by not

generating the permutations up-front. I was able to generate a

permutation by index. This meant that I would be able to

simply generate a list of N! elements, and the parallel tasks

would be able to generate the relevant permutations in

parallel.

nthPermutation :: [Word32] -> Int -> [Word32]

nthPermutation [] _ = []

nthPermutation diagonal n =

 let

 len = length diagonal

 (position, subN) = n `divMod` factorial (len - 1)

 first = diagonal !! position

 rest = diagonal \\ [first]

 in

 (diagonal !! position) : nthPermutation rest subN

When testing this approach, I saw a very minimal decrease

in GC-time, but at a significant cost to MUT time. So, after a

few tests, I abandoned this approach.

Final Solution

After iterating on the previous approaches, I landed on a

good balance between the previous two approaches.

In the final solution, instead of generating a set number of

sparks, I’m generating N sparks. To start, I just create a list

from 0 to n. This list is then computed in parallel. Each

computation involves taking this Int as the index of the first

row of all permutations within. The permutations for the rest

of the rows are generated within each spark.

As a result, the work that needs to be sequentially is

reduced to generating a list N elements long, and then adding

N Ints towards to end to count the total number of solutions

for a given N. Meanwhile, each spark generates and checks

(N-1)! permutations. Overall, this is also means that other than

the sparks themselves, this approach has no other memory

overhead.

Results

While testing different values of N, I was able to see a 6X

improvement in elapsed time comfortably, while often getting

close to a 7X speedup. The GC performance is also quite

reasonable. I’m seeing productivity rates of around 70%.

Linear Scale

N Single Threaded Multi-Threaded Time Delta

8 0.099s 0.023s 31.5%

9 0.598s 0.111s 18.5%

10 6.276s 1.002s 16%

11 100.235s 18.118s 18%

12 4400.081s 169.454s 3.8%

0

18m 20s 23ms

36m 40s 45ms

55m 0s 68ms

1h 13m 20s 90ms

8 9 10 11 12

Single Threaded Multi-Threaded

Logarithmic Scale

Threadscope

I’m seeing extremely good usage across threads. The

productivity rate is close to the single threaded version.

10ms

1s

1m 40s

2h 46m 40s

8 9 10 11 12

Single Threaded Multi-Threaded

Conclusion

As described, it is easy to see the significant speedups

available by using parallel computing to calculate the number

of solutions for N-queens.

The final solution I landed on works extremely well and is

able to get much faster results with little overhead. I’m testing

on an M1 Max ARM processor which has 8 performance cores

and 2 efficiency cores. However, clock speeds are somewhat

slower for parallel tasks. As such, it is fair to assume that a

6.5x speed up is close to ideal, and this implementation has

little to no overhead.

	Introduction
	Approach
	Data Modeling
	Preparation
	Checking For Diagonals
	Results
	Threadscope
	Conclusion

