1 Introduction

In this project, I implemented three algorithms for polynomial multiplication in Haskell. The first one is the native approach with a time complexity of $O(n^2)$, where n is the degree of the polynomial; the second one utilizes recursive fast fourier transform (FFT) and has a time complexity of $O(n \log n)$; the third one also utilizes Cooley-Tukey (CT) algorithm, which is an iterative algorithm for FFT, and also has a time complexity of $O(n \log n)$. Testing with 4 cores and polynomials of length 10000, the parallel brute force approach achieved a 5.87x speedup, the parallel FFT achieved a 1.78x speedup, and the parallel CT achieved a 1.73x speedup on Intel i7-10750H CPU.

2 Implementation

A degree-(n-1) polynomial can be represented by an n-element array storing its coefficients. For implementation, I use Haskell List to store these coefficients.

2.1 Brute Force

2.1.1 Sequential Solution (BF)

Suppose we have array A representing polynomial $a(x) = \sum_{i=0}^{n-1} A[i]x^i$ and B representing polynomial $b(x) = \sum_{i=0}^{n-1} B[i]x^i$, the array C for the product of $a(x)$ and $b(x)$ can be calculated by Alg. 1.

Algorithm 1: Brute Force Approach for Polynomial Multiplication

1. for $i \leftarrow 0$ to $n-1$

2. for $j \leftarrow 0$ to $n-1$

3. $C[i + j] \leftarrow C[i + j] + A[i] \times B[j];$

4. end for

5. end for

I implemented two parallel solutions for brute force approach, using divide and conquer and map reduce framework respectively.

2.1.2 Parallel Solution with Divide and Conquer (BFPAR)

Similar to the logic of integer multiplication, multiplying two polynomials A, B is equivalent to multiplying each coefficient of A with B and then shift and add them together. Therefore, we can break A into two parts, $A_1 = A[0..(n/2 - 1)]$ and $A_2 = A[(n/2..(n - 1)]$, and $C = (A_1 \times B) + ((A_2 \times B) \ll (n/2))$, where $X \ll l$ means append an zero array of length l to X. The calculation of $A_1 \times B$ and $A_2 \times B$ can be parallelized. The corresponding algorithm is shown in Alg. 2.
Algorithm 2: Parallel Brute Force Approach

Input: two polynomials A and B, parallel depth d

Output: polynomial C = A * B

1. **Function** ParBF(A, B, d):

 1. \(l_A \leftarrow \text{length}A; \)
 2. \(l_B \leftarrow \text{length}B; \)
 3. if d <= 0 or \(l_A = 1 \) then

 4. for \(i \leftarrow 0 \) to \(l_A - 1 \) do

 5. for \(j \leftarrow 0 \) to \(l_B - 1 \) do

 6. \(C[i + j] \leftarrow C[i + j] + A[i] * B[j]; \)

 7. return C;
 8. end for
 9. end for
 10. end if
 11. \(C_1 = \text{ParBF}(A[0..(l_A/2 - 1)], B, d - 1); \)
 12. \(C_2 = \text{ParBF}(A[l_A/2..(l_A - 1)], B, d - 1); \)
 13. \(C = C_1 + C_2 << (l_A/2); \)
 14. return C;

2.1.3 Parallel Solution with Map Reduce (BFMP)

Observing that for any \(k, q \in \{0, 1, ..., \text{length}C\} \), the formulation of \(C[k] \) is independent of that of \(C[j] \), I considered using map reduce framework to solve this problem. The mapper takes pairs of coefficient of two input polynomials \((A[i], B[j])\), multiplies them, and sends (key: \(i+j \), value: \(A[i] * B[j] \)) to the reducer. The reducer sums the received products and gives output coefficient at index \((i+j)\). To send the mapper result to the reducer, there is a shuffle function that gathers all mapper results and sort them according to the key.

This approach failed miserably, which is analyzed in Experiments section.

2.2 Recursive Fast Fourier Transform

2.2.1 Sequential Solution (FFT)

The polynomial multiplication can be speed up to \(O(n \log n) \) by fast fourier transforming the input polynomials, multiplying them and the inverse fourier transforming the product.

The discrete fourier transform (DFT) of an \(n \)-element sequence \(A \) is another \(n \)-element sequence \(P \) given by

\[
P[m] = \sum_{k=0}^{n-1} A[k] \omega_n^{mk}, \quad m = 0, 1, ..., n - 1
\]

where \(\omega_n = e^{2\pi i/n} \) is the primitive \(n \)th root of unity.

For \(0 \leq m < n/2 \), DFT satisfies

\[
P[m] = P_1[m] + \omega^m P_2[m]
\]

(1)

\[
P[n/2 + m] = P_1[m] - \omega^m P_2[m]
\]

(2)

where

\[
P_1[m] = \sum_{k=0}^{n/2-1} A[2k] \omega_n^{2mk}
\]

\[
P_2[m] = \sum_{k=0}^{n/2-1} A[2k + 1] \omega_n^{2mk}
\]
FFT utilizes the above property (Eq 1, 2). The algorithm for FFT is shown in Algorithm 3.

Algorithm 3: Fast Fourier Transform

| Input : array A of length n, \(n\)th root of unity \(\omega\) |
| Output: Fourier transform of A |
| Function \(\text{FFT}(A, n, \omega)\):
| 1 if \(n = 1\) then |
| 2 | return \(A\); |
| 3 | end if |
| 4 else |
5	for \(k \leftarrow 0\) to \(n/2 - 1\) do
6	\(A_1[k] = A[2k];\)
7	\(A_2[k] = A[2k + 1];\)
8	end for
9	\(P_1 \leftarrow \text{FFT}(A_1, n/2, \omega^2);\)
10	\(P_2 \leftarrow \text{FFT}(A_2, n/2, \omega^2);\)
11	// combine \(P_1\) and \(P_2\)
12	for \(m \leftarrow 0\) to \(n - 1\) do
13	\(P[m] \leftarrow P_1[m mod (n/2)] + \omega^m P_2[m mod (n/2)];\)
14	end for
15	end if
16	end

Since FFT can only be applied on array with length equal to some power of 2, we need to extend both polynomials to have length equal to the closest power of 2 by appending 0, i.e. \(a(x) = \sum_{i=0}^{l_A-1} A[i]x^i = \sum_{i=0}^{l_A-1} A[i]x^i + \sum_{i=l_A}^{n} 0x^i\).

Algorithm 4: Polynomial Multiplication via FFT

| Input : Two polynomials A and B of degree smaller then \(n/2\), with \(n\) a power of 2, primitive \(n\)th root of unity \(\omega\) |
| Output: \(C = AB\) |
| 1 Expand A, B to have length \(n\); |
| 2 \(P \leftarrow \text{FFT}(A, \omega);\) |
| 3 \(Q \leftarrow \text{FFT}(B, \omega);\) |
| 4 \(S \leftarrow PQ;\) |
| 5 \(C \leftarrow \frac{1}{n} \text{FFT}(S, \omega^{-1});\) |
| 6 return \(C\); |

2.2.2 Parallel Solution (FFTPar)

The parallel solution is done by parallelizing the fast fourier transform algorithm. In Alg. 3, the calculation of \(P_1\) and \(P_2\) are independent of each other, which can be parallelized.

```haskell
fft l n w d = runEval $ do
  p1 <- rpar (force (fft l1 (n `div` 2) (w ** 2) (d - 1)))
  p2 <- rpar (force (fft l2 (n `div` 2) (w ** 2) (d - 1)))
  _ <- rseq p1
  _ <- rseq p2
  return $ combine p1 p2 w
where
  (l1, l2) = split l
```

3
2.3 Iterative Fast Fourier Transform (Cooley-Tukey Algorithm)

2.3.1 Sequential Solution (FFTCT)

Fig. 1 and Fig. 2 shows the computational graph of Cooley-Tukey algorithm [5]. Before multiplying with ω, it needs to re-order the input. This process is called bit-reverse, which can be done in $O(n)$ with Array but $O(n\log n)$ with List. Then at each stage m, where $1 \leq m \leq \log n$, the list breaks into the $n/2^m$ parts; each part l is transformed into l_{new}, where

$$l_{\text{new}}[i] = l[i \mod (n/2)] + \omega^i l[i \mod (n/2) + n/2], 0 \leq i \leq 2^m \quad (3)$$

2.3.2 Parallel Solution (FFTCTPAR)

Fig. 2 shows the computational graph of parallel Cooley-Tukey algorithm (without bit-reverse part), which is also called Binary Exchange algorithm [5]. Suppose there are 2^d threads and the calculation of FFT is distributed equally to these threads ($P_0...P_3$) as shown in Fig. 2.

During the first $\log n - d$ stages, there is no interaction among different threads. Therefore, I split the whole list of polynomial into 2^d lists, and use parMap to calculate the result of each list after the first $\log n - d$ stages, and concatenate 2^d result lists into one. For the last $d - 1$ stages, I use parListChunk to parallel calculation of Eq. 3.

3 Experiments

The experiments are performed on Ubuntu virtual machine with 2.60GHz 4-core Intel(R) Core(TM) i7-10750H CPU and 4GB memory.

3.1 Brute Force

3.1.1 Parallel Solution with Divide and Conquer

Table 1 shows the speed up of the parallel brute force approach with divide and conquer. The leftmost column is the length of both polynomials. The maximum speedup reached 6.93, which is even larger than the number of cores. A possible reason is that divide and conquer decreases the size of memory used from $O(n^2)$ to $O((\frac{n}{2})^2)$, which reduces the IO time.

Figure 3 shows a satisfying threadscope analysis of the parallel brute force approach with divide and conquer.
Figure 2: 16-point FFT on four processes

Table 1: Runtime of Brute Force Approach with Divide and Conquer.

<table>
<thead>
<tr>
<th>length</th>
<th>Brute Force</th>
<th>Parallel Divide and Conquer</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.284</td>
<td>0.252</td>
<td>1.126984</td>
</tr>
<tr>
<td>2000</td>
<td>0.605</td>
<td>0.287</td>
<td>2.108014</td>
</tr>
<tr>
<td>3000</td>
<td>1.15</td>
<td>0.383</td>
<td>3.002611</td>
</tr>
<tr>
<td>4000</td>
<td>2.151</td>
<td>0.542</td>
<td>3.968635</td>
</tr>
<tr>
<td>5000</td>
<td>2.89</td>
<td>0.74</td>
<td>3.905405</td>
</tr>
<tr>
<td>6000</td>
<td>4.56</td>
<td>1.026</td>
<td>4.444444</td>
</tr>
<tr>
<td>7000</td>
<td>7.41</td>
<td>1.45</td>
<td>5.110345</td>
</tr>
<tr>
<td>8000</td>
<td>11.32</td>
<td>1.848</td>
<td>6.125541</td>
</tr>
<tr>
<td>9000</td>
<td>15.52</td>
<td>2.239</td>
<td>6.931666</td>
</tr>
<tr>
<td>10000</td>
<td>19.82</td>
<td>3.378</td>
<td>5.867377</td>
</tr>
</tbody>
</table>
3.1.2 Parallel Solution with Map Reduce

Table 2 shows the runtime of the brute force approach paralleled with Map Reduce. For small input size, it takes longer time than the non-parallel version, and it even gets killed when the length of polynomial reaches 4000. Analyzed in ThreadScope (Figure 4), we can see that there is a long time that only one core works in the middle, which is taken up by the shuffle function. For polynomial multiplication, the calculation done by each mapper and reducer is little, while the shuffle function takes a lot of time and memory to sort all key-value pairs on a single machine, which also indicates that Map Reduce suits better for distributed system [7].

<table>
<thead>
<tr>
<th>length</th>
<th>Brute Force</th>
<th>Map Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.284</td>
<td>1.087</td>
</tr>
<tr>
<td>2000</td>
<td>0.605</td>
<td>3.512</td>
</tr>
<tr>
<td>3000</td>
<td>1.15</td>
<td>8.357</td>
</tr>
<tr>
<td>4000</td>
<td>2.151</td>
<td>killed</td>
</tr>
</tbody>
</table>

Table 2: Runtime of Brute Force Approach with Map Reduce.

3.2 Parallel Recursive Fast Fourier Transform

Table 3 shows the runtime of parallel recursive fast fourier transform. The speedup is around 2x. As shown in Figure 5, there is overhead in the parallel implementation at both the beginning and the end, which is due to $O(n)$ list split at the beginning and recombination at the end.

One interesting thing about FFT is that its result was incorrect at first and it turned out to be a precision problem. Changing Float to Double solves this problem, which indicates FFT requires higher precision than the brute force approach.
Figure 4: Threadscape of Brute Force Approach with Map Reduce (length of polynomials: 2000).

<table>
<thead>
<tr>
<th>length</th>
<th>FFT</th>
<th>Parallel FFT</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>1.016</td>
<td>0.571</td>
<td>1.779335</td>
</tr>
<tr>
<td>20000</td>
<td>2.1</td>
<td>1.048</td>
<td>2.003817</td>
</tr>
<tr>
<td>30000</td>
<td>2.265</td>
<td>1.161</td>
<td>1.950904</td>
</tr>
<tr>
<td>40000</td>
<td>4.079</td>
<td>1.932</td>
<td>2.111284</td>
</tr>
<tr>
<td>50000</td>
<td>4.296</td>
<td>2.102</td>
<td>2.043768</td>
</tr>
<tr>
<td>60000</td>
<td>4.528</td>
<td>2.185</td>
<td>2.072311</td>
</tr>
<tr>
<td>70000</td>
<td>8.469</td>
<td>3.7729</td>
<td>2.244692</td>
</tr>
<tr>
<td>80000</td>
<td>8.536</td>
<td>3.928</td>
<td>2.173116</td>
</tr>
</tbody>
</table>

Table 3: Runtime of Parallel Recursive Fast Fourier Transform.
Figure 5: Threadscope of Parallel Recursive Fast Fourier Transform (length of polynomials: 20000).
3.3 Parallel Iterative Fast Fourier Transform (Cooley-Tukey)

Table 4 shows the runtime of parallel Cooley-Tukey algorithm. The speedup is also around 2x. The threadscope image of it (Figure 6) is similar to that of parallel recursive FFT.

<table>
<thead>
<tr>
<th>Length</th>
<th>Cooley-Tukey</th>
<th>Parallel Cooley-Tukey</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>1.339</td>
<td>0.773</td>
<td>1.732212</td>
</tr>
<tr>
<td>20000</td>
<td>2.644</td>
<td>1.412</td>
<td>1.872521</td>
</tr>
<tr>
<td>30000</td>
<td>2.789</td>
<td>1.613</td>
<td>1.729076</td>
</tr>
<tr>
<td>40000</td>
<td>5.288</td>
<td>2.724</td>
<td>1.941263</td>
</tr>
<tr>
<td>50000</td>
<td>5.416</td>
<td>2.866</td>
<td>1.889742</td>
</tr>
<tr>
<td>60000</td>
<td>5.641</td>
<td>3.107</td>
<td>1.815578</td>
</tr>
<tr>
<td>70000</td>
<td>10.585</td>
<td>5.342</td>
<td>1.981468</td>
</tr>
<tr>
<td>80000</td>
<td>11.028</td>
<td>5.421</td>
<td>2.034311</td>
</tr>
</tbody>
</table>

Table 4: Runtime of Parallel Iterative Fast Fourier Transform.

![Threadscope of Parallel Iterative Fast Fourier Transform (length of polynomials: 20000).](image)

3.4 Further Analysis

Figure 7 shows the runtime of three parallel algorithms vs. cores. As expected, runtime decreases as cores increases.

Figure 8 and Table 5 shows the runtime comparison of all implementations versus the length of polynomials. We can see that though parallelization helps, time complexity dominates. When length of polynomials is small (smaller than 3000), the parallel brute force algorithm can be faster than the sequential fast fourier transform. However, as length of polynomials increases, FFT wins and the difference of runtime between FFT and Brute Force gets larger and larger.

Also, from Figure 8, we can see that the runtime of all FFT implementation is stepwise. This is because that FFT needs to extend the length of polynomials to the closest power of 2, so polynomials with length
close to the same power of 2 will have similar runtime.

Is it impossible for Brute Force implementation to beat FFT when length of polynomials is large? No. See Table 6. The above runtime analysis are all performed on polynomials with equal length. When the length of two polynomials for multiplication differ a lot, the sequential Brute Force implementation beats the parallel FFT implementation. This is because that FFT needs to extend the shorter polynomial to the same size as the longer one so that they can be mapped to the same frequency space. In this case, instead of \(O(n^2) \) vs. \(O(n \log n) \), the time complexity becomes \(O(mn) \) vs. \(O(n \log n) \), where \(m, n \) is the length of two polynomials and \(m < n \).
<table>
<thead>
<tr>
<th>length</th>
<th>BF</th>
<th>BFPAR</th>
<th>BFMR</th>
<th>FFT</th>
<th>FFTPAR</th>
<th>FFTCT</th>
<th>FFTCTPAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.284</td>
<td>0.252</td>
<td>1.087</td>
<td>0.259</td>
<td>0.242</td>
<td>0.277</td>
<td>0.24</td>
</tr>
<tr>
<td>2000</td>
<td>0.605</td>
<td>0.287</td>
<td>3.512</td>
<td>0.303</td>
<td>0.255</td>
<td>0.324</td>
<td>0.273</td>
</tr>
<tr>
<td>3000</td>
<td>1.15</td>
<td>0.383</td>
<td>8.357</td>
<td>0.406</td>
<td>0.293</td>
<td>0.473</td>
<td>0.329</td>
</tr>
<tr>
<td>4000</td>
<td>2.151</td>
<td>0.542</td>
<td>killed</td>
<td>0.43</td>
<td>0.316</td>
<td>0.48</td>
<td>0.342</td>
</tr>
<tr>
<td>5000</td>
<td>2.89</td>
<td>0.74</td>
<td>0.629</td>
<td>0.39</td>
<td>0.705</td>
<td>0.458</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>4.56</td>
<td>1.026</td>
<td>0.65</td>
<td>0.403</td>
<td>0.763</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>7.41</td>
<td>1.45</td>
<td>0.656</td>
<td>0.396</td>
<td>0.772</td>
<td>0.493</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>11.32</td>
<td>1.848</td>
<td>0.675</td>
<td>0.415</td>
<td>0.784</td>
<td>0.502</td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>15.52</td>
<td>2.239</td>
<td>1.047</td>
<td>0.575</td>
<td>1.305</td>
<td>0.727</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>19.82</td>
<td>3.378</td>
<td>1.016</td>
<td>0.571</td>
<td>1.339</td>
<td>0.773</td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td>89.564</td>
<td>16.693</td>
<td>2.1</td>
<td>1.048</td>
<td>2.644</td>
<td>1.412</td>
<td></td>
</tr>
<tr>
<td>30000</td>
<td>226.616</td>
<td>30.896</td>
<td>2.265</td>
<td>1.161</td>
<td>2.789</td>
<td>1.613</td>
<td></td>
</tr>
<tr>
<td>40000</td>
<td>423.338</td>
<td>85.157</td>
<td>4.079</td>
<td>1.932</td>
<td>5.288</td>
<td>2.724</td>
<td></td>
</tr>
<tr>
<td>50000</td>
<td>1341.603</td>
<td>151.333</td>
<td>4.296</td>
<td>2.102</td>
<td>5.416</td>
<td>2.866</td>
<td></td>
</tr>
<tr>
<td>60000</td>
<td>>1341.603</td>
<td>265.218</td>
<td>4.528</td>
<td>2.185</td>
<td>5.641</td>
<td>3.107</td>
<td></td>
</tr>
<tr>
<td>70000</td>
<td>>1341.604</td>
<td>411.472</td>
<td>8.469</td>
<td>3.772</td>
<td>10.585</td>
<td>5.342</td>
<td></td>
</tr>
<tr>
<td>80000</td>
<td>>1341.605</td>
<td>643.82</td>
<td>8.536</td>
<td>3.928</td>
<td>11.028</td>
<td>5.421</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Runtime vs. length of polynomials.

<table>
<thead>
<tr>
<th>length</th>
<th>BF</th>
<th>BFPAR</th>
<th>FFT</th>
<th>FFTPAR</th>
<th>FFTCT</th>
<th>FFTCTPAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,10000</td>
<td>0.361</td>
<td>0.341</td>
<td>0.987</td>
<td>0.559</td>
<td>1.189</td>
<td>0.825</td>
</tr>
<tr>
<td>100,100000</td>
<td>1.841</td>
<td>1.239</td>
<td>7.769</td>
<td>4.622</td>
<td>10.274</td>
<td>8.613</td>
</tr>
</tbody>
</table>

Table 6: Runtime with polynomials of unequal length.

4 References

1. Polynomial Multiplication
 https://cse.hkust.edu.hk/mjg_lib/Classes/COMP3711H_Fall14/lectures/DandC_Multiplication_Handout.pdf

2. Polynomial Multiplication via Fast Fourier Transforms

3. Parallel Fast Fourier Transform
 https://courses.engr.illinois.edu/cs554/fa2015/notes/13_fft_8up.pdf

4. Ocaml Implementation of Cooley-Tukey Algorithm
 https://github.com/akabe/ocaml-numerical-analysis/blob/master/fft/fft.ml

5. Computation graph of Cooley-Tukey Algorithm

6. Binary Exchange Algorithm
 http://users.atw.hu/parallelcomp/ch13lev1sec2.html

7. Fork/Join vs. Map Reduce

5 Code
module Main where

import System.IO(Handle, hGetLine, stdin, getLine, readLn, openFile, IOMode(ReadMode))

import qualified BruteForce.MultPoly (mult_polys)
import qualified BruteForce.MapReduce (mult_polys)
import qualified BruteForce.ParMultPoly (mult_polys)
import qualified FFT.FMultPoly (mult_polys)
import qualified FFT.CTMultPoly (mult_polys)
import qualified FFT.ParFMultPoly (mult_polys)
import qualified FFT.ParCTMultPoly (mult_polys)

import Data.Complex

get_nums :: Handle -> IO [Double]
get_nums = to_nums . hGetLine
 where
 to_nums line = do
 line_str <- line
 return $ map read $ words line_str

get_int :: IO Int
get_int = readLn

mult_polys :: String -> Int -> [Double] -> [Double] -> [Double]
mult_polys "BF" _ x y = BruteForce.MultPoly.mult_polys x y -- sequential
mult_polys "BFMP" d x y = BruteForce.MapReduce.mult_polys d x y -- parallel
mult_polys "BFPAR" d x y = BruteForce.ParMultPoly.mult_polys d x y -- parallel
mult_polys "FFT" _ x y = FFT.FMultPoly.mult_polys x y -- sequential
mult_polys "FCT" _ x y = FFT.CTMultPoly.mult_polys x y -- sequential
mult_polys "FFTPAR" d x y = FFT.ParFMultPoly.mult_polys d x y -- parallel
mult_polys "FCTPAR" d x y = FFT.ParCTMultPoly.mult_polys d x y -- parallel
mult_polys ver _ _ _ _ = error ("unknown version " ++ ver)

main :: IO ()
main = do
 _ <- putStrLn "version:"
 ver <- getLine
 _ <- putStrLn "input file path:"
 file_path <- getLine
 _ <- putStrLn "depth:"
 depth <- get_int
 handle <- System.IO.openFile file_path System.IO.ReadMode
 x <- get_nums handle
 y <- get_nums handle
 mapM_ print (mult_polys ver depth x y)

BruteForce/MultPoly.hs

-- Brute Force Polynomial Multiplication in Serialization

module BruteForce.MultPoly
\[
\text{BruteForce/MapReduce.hs}
\]

```
-- Brute Force Polynomial Multiplication in Parallelization with MapReduce

module BruteForce.MapReduce
(
  map_reduce,
  mult_polys
) where

import qualified Data.Map as M
import Control.Parallel(pseq)
import Control.Parallel.Strategies(NFData, parMap, rdeepseq, parListChunk, runEval)

{-
  map_reduce :: (NFData a, NFData b, NFData c, NFData d)
  => Int -> (a -> b) -> ([b] -> [c]) -> (c -> d) -> [a] -> [d]
  map_reduce depth mapper shuffle reducer input =
    let par_size = (length input) `div` depth in
    let mapper_result = runEval £ parListChunk par_size rdeepseq (map mapper input) in
    let shuffle_result = shuffle mapper_result in
    let reducer_result = runEval £ parListChunk par_size rdeepseq (map reducer
      shuffle_result) in
    mapper_result `pseq` reducer_result
-
  map_reduce :: (NFData a, NFData b, NFData c, NFData d)
  => Int -> (a -> b) -> ([b] -> [c]) -> (c -> d) -> [a] -> [d]
  map_reduce _ mapper shuffle reducer input =
    let mapper_result = parMap rdeepseq mapper input in
    let shuffle_result = shuffle mapper_result in
    let reduce_result = parMap rdeepseq reducer shuffle_result in
    mapper_result `pseq` reduce_result
-
preprocess_polys :: [Double] -> [Double] -> [[Int, Int, Double, Double]]
preprocess_polys l1 l2 = [(i1, i2, f1, f2) | (i1, f1) <- l1, (i2, f2) <- l2]
```
where
\[i_{l1} = \text{zip [1..(length \ l1)] \ l1} \]
\[i_{l2} = \text{zip [1..(length \ l2)] \ l2} \]

\[\text{mult_poly_mapper} :: (\text{Int}, \text{Int}, \text{Double}, \text{Double}) \rightarrow (\text{Int}, [\text{Double}]) \]
\[\text{mult_poly_mapper} \ (i1, i2, f1, f2) = (i1 + i2, [f1 * f2]) \]

-- \(O(n\log n) \) overhead
\[\text{mult_poly_shuffle} :: [(\text{Int}, [\text{Double}])] \rightarrow [(\text{Int}, [\text{Double}])] \]
\[\text{mult_poly_shuffle} \ l = \text{M.toList} \ M.\text{fromListWith} (++) \ l \]

-- since shuffle_result comes from Map, it is already sorted
-- and therefore index can be discarded
\[\text{mult_poly_reducer} :: (\text{Int}, [\text{Double}]) \rightarrow \text{Double} \]
\[\text{mult_poly_reducer} \ (_, l) = \text{sum} \ l \]

\[\text{mult_polys} :: \text{Int} \rightarrow [\text{Double}] \rightarrow [\text{Double}] \rightarrow [\text{Double}] \]
\[\text{mult_polys} \ d \ x \ y = \]
\[\text{map_reduce} \ d \ \text{mult_poly_mapper} \ \text{mult_poly_shuffle} \ \text{mult_poly_reducer} \]
\[\text{preprocess_polys} \ x \ y \]

\text{BruteForce/ParMultPoly.hs}

\text{-- Brute Force Polynomial Multiplication in Parallelization with Par}
\text{module BruteForce.ParMultPoly}
\{
\text{ mult_polys}
\}
where

\text{import BruteForce.MultPoly(mult_poly_num, add_polys)}
\text{import Control.Parallel.Strategies(rseq, rpar, runEval)}
\text{import Control.DeepSeq(force)}

\[\text{mult_polys} :: \text{Int} \rightarrow [\text{Double}] \rightarrow [\text{Double}] \rightarrow [\text{Double}] \]
\[\text{mult_polys} \ 0 \ x \ y = \text{foldr} \ \text{shift_add} \ [0] \$ \text{map} \ (\text{mult_poly_num} \ x) \ y \]
where
\[\text{shift_add} \ a \ z = \text{add_polys} \ a \ (0 : z) \]
\[\text{mult_polys} \ d \ x \ y = \text{runEval} \$ \text{do} \]
\[\text{a_prods} \leftarrow \text{rpar} \ (\text{force} \ (\text{mult_polys} \ (d - 1) \ x \ ay)) \]
\[\text{b_prods} \leftarrow \text{rpar} \ (\text{force} \ (\text{mult_polys} \ (d - 1) \ x \ by)) \]
\[_ \leftarrow \text{rseq \ a_prods} \]
\[_ \leftarrow \text{rseq \ b_prods} \]
\[\text{return} \$ \text{add_polys} \ a_prods \ ((\text{take} \ \text{half_l} \$ \text{repeat} \ 0) \ \text{++} \ b_prods) \]
where
\[\text{half_l} = (\text{length} \ y) \div 2 \]
\[(ay, by) = \text{splitAt} \ \text{half_l} \ y \]

\text{FFT/FMultPoly.hs}

\text{-- Polynomial Multiplication using Recursive Fast Fourier Transform in Serialization}
\text{module FFT.FMultPoly}
(mult_polys,
fft,
ifft,
convert,
split,
combine)

where

import Data.Complex

split :: [a] -> ([a], [a])
split l = split_helper l True

where
split_helper [] _ = ([], [])
split_helper (x:xs) is_odd
 | is_odd = (x:o, e)
 | otherwise = (o, x:e)

where (o, e) = split_helper xs (not is_odd)

combine :: [Complex Double] -> [Complex Double] -> Complex Double -> [Complex Double]
combine p1 p2 w = pf ++ ps

where
zip_p = zip3 [0..((length p1) - 1)] p1 p2
pf = map (\(i, a, b) -> a + (w ** (fromIntegral i)) * b) zip_p
ps = map (\(i, a, b) -> a - (w ** (fromIntegral i)) * b) zip_p

-- n is length of l and it must be power of 2;
-- w is nth root of unity: exp (2*pi*(0 :+ (-1))/n)
fft :: [Complex Double] -> Int -> Complex Double -> [Complex Double]
fft l n w = combine p1 p2 w

where
(l1, l2) = split l
p1 = fft l1 (n `div` 2) (w ** 2)
p2 = fft l2 (n `div` 2) (w ** 2)

ifft :: [Complex Double] -> Int -> Complex Double -> [Complex Double]
ifft l n w = map (\x -> x / (fromIntegral n)) (fft l n (1 / w))

convert :: [Double] -> Int -> [Complex Double]
convert x l = map (\f -> (f ++ 0)) (x ++ (take l (repeat 0)))

mult_polys :: [Double] -> [Double] -> [Double]
mult_polys x y =
take (length_x + length_y - 1) $ map (\a -> realPart a) (ifft fft_r n w)

where
length_x = length x
length_y = length y
-- n > 2*l, n is power of 2
n = 2 * (ceiling $ logBase 2 (max length_x length_y)))
w = exp (- 2 * pi * (0 :+ 1)) / (fromIntegral n)
fft_x = fft (convert x (n - length_x)) n w
fft_y = fft (convert y (n - length_y)) n w
fft_r = map (\(a, b) -> a * b) (zip fft_x fft_y)

FFT/ParFMultPoly.hs
-- Polynomial Multiplication using FFT in Parallelization with Par

module FFT.ParFMultPoly
(
 fft,
 mult_polys
) where

import Data.Complex
import Control.Parallel.Strategies(rseq, rpar, runEval)
import Control.DeepSeq(force, NFData)
import FFT.FMultPoly(split, convert)
import qualified FFT.FMultPoly(fft)

-- without paring combine, at the end there is a long period that only one core works
-- unable to do the same thing on split
combine :: [Complex Double] -> [Complex Double] -> Complex Double -> [Complex Double]
combine p1 p2 w = runEval $ do
 pf <- rpar (force (map (\(i, a, b) -> a + (w ** (fromIntegral i)) * b) zip_p))
 ps <- rpar (force (map (\(i, a, b) -> a - (w ** (fromIntegral i)) * b) zip_p))
 _ <- rseq pf
 _ <- rseq ps
 return $ pf ++ ps
where
 zip_p = zip3 [0..((length p1) - 1)] p1 p2

-- parallel fft with depth
fft :: [Complex Double] -> Int -> Complex Double -> Int -> [Complex Double]
fft l 1 _ _ = l
fft l n w 0 = FFT.FMultPoly.fft l n w
fft l n w d = runEval $ do
 p1 <- rpar (force (fft l1 (n `div` 2) (w ** 2) (d - 1)))
 p2 <- rpar (force (fft l2 (n `div` 2) (w ** 2) (d - 1)))
 _ <- rseq p1
 _ <- rseq p2
 return $ combine p1 p2 w
where
 (l1, l2) = split l

ifft :: [Complex Double] -> Int -> Complex Double -> Int -> [Complex Double]
ifft l n w d = map (\x -> x / (fromIntegral n)) (fft l n (1 / w) d)

mult_polys :: Int -> [Double] -> [Double] -> [Double]
mult_polys depth x y =
 take (length_x + length_y - 1) $ map (\a -> realPart a) (ifft fft_r n w depth)
where
 length_x = length x
 length_y = length y
\[n > 2*l, \ n \text{ is power of } 2 \]
\[n = 2 ^ {\left(\text{ceiling} \left(\log_{2} (2 * (\text{max length}_x \ \text{length}_y)) \right) \right)} \]
\[w = \exp \left(-2 * \pi * (0 :+ 1) / (\text{fromIntegral n}) \right) \]
\[\text{fft}_x = \text{fft} \ (\text{convert x} \ (n - \text{length}_x)) \ n \ w \ \text{depth} \]
\[\text{fft}_y = \text{fft} \ (\text{convert y} \ (n - \text{length}_y)) \ n \ w \ \text{depth} \]
\[\text{fft}_r = \text{map} \ (\text{\textbackslash}(a, \ b) \rightarrow a * b) \ (\text{\textbackslash} \text{zip} \ \text{fft}_x \ \text{fft}_y) \]

FFT/CTMultPoly.hs

```
-- Polynomial Multiplication with Iterative Fast Fourier Transform (Cooley-Tukey Algorithm) in Serialization

module FFT.CTMultPoly

import Data.Complex
import FFT.FMultPoly(split, convert)

bit_reverse_l :: [a] -> [a]
bit_reverse_l [] = []
bit_reverse_l [x] = [x]
bit_reverse_l x =
    l_rev ++ r_rev
    where
        (left, right) = split x
        l_rev = bit_reverse_l left
        r_rev = bit_reverse_l right

split_l :: [a] -> Int -> ([a], [a])
split_l l interval = split_l_helper l interval 0
    where
        half_interval = interval `div` 2
        split_l_helper [] _ _ = ([], [])
        split_l_helper (x:xs) interval index
            | index `mod` interval < half_interval = (x:left, right)
            | otherwise = (left, x:right)
            where
                (left, right) = split_l_helper xs interval (index + 1)

combine_l :: [a] -> [a] -> Int -> [a]
combine_l left right interval = combine_l_helper left right interval 0
    where
        half_interval = interval `div` 2
        combine_l_helper [] [] _ _ = []
        combine_l_helper [] right _ _ = right
        combine_l_helper left [] _ _ = left
        combine_l_helper left@([l:ls]) right@([r:rs]) interval index
            | index `mod` interval < half_interval = l : (combine_l_helper ls right interval (index + 1))
            | otherwise = r : (combine_l_helper left rs interval (index + 1))
```
Iterative Fast Fourier Transform (iter_fft):

```
iter_fft :: [Complex Double] -> [Complex Double]
iter_fft l =
    foldl fold_butterfly rev_l [1..num_bits]
where
    len = length l
    num_bits = ceiling $ logBase 2 (fromIntegral len)
    rev_l = bit_reverse_l l -- O(nlogn)

-- O(n)

butterfly m n l =
    combine_l fft_j_l fft_k_l n
where
    half_n = n `div` 2
    half_len = (length l) `div` 2
    (j_l, k_l) = split_l l n
    w_l = map (\i -> (exp (-2 * pi * (0:+1) * (fromIntegral ((i `mod` half_n) * m)) / (fromIntegral len)))) [0..(half_len - 1)]
    j_k_w_l = zip3 j_l k_l w_l
    fft_j_l = map (\(j, k, w) -> j + w * k) j_k_w_l
    fft_k_l = map (\(j, k, w) -> j - w * k) j_k_w_l

fold_butterfly l iter = butterfly (2 ^ (num_bits - iter)) (2 ^ iter) l
```

Inverse Iterative Fast Fourier Transform (inverse_iter_fft):

```
inverse_iter_fft :: [Complex Double] -> [Complex Double]
inverse_iter_fft l =
    map (\x -> (conjugate x) / (fromIntegral len)) fft_con_l
where
    len = length l
    con_l = map conjugate l
    fft_con_l = iter_fft con_l
```

Multiplying Polynomials (mult_polys):

```
mult_polys :: [Double] -> [Double] -> [Double]
mult_polys x y =
    take (length_x + length_y - 1) $ map (\a -> realPart a) (inverse_iter_fft fft_r)
where
    length_x = length x
    length_y = length y
    n = 2 ^ (ceiling $ logBase 2 (fromIntegral (2 * (max length_x length_y)))))
    fft_x = iter_fft (convert x (n - length_x))
    fft_y = iter_fft (convert y (n - length_y))
    fft_r = map (\(a, b) -> a * b) (zip fft_x fft_y)
```

Importing libraries:

```
module FFT.ParCTMultPoly
  (
    be_fft,
    splitChunks,
    mult_polys
  ) where

import Data.Complex
import Control.Parallel(pseq)
```
import Control.Parallel.Strategies(rseq, rpar, runEval, parListChunk, parMap, rdeepseq, → NFData, Eval)
import Control.DeepSeq(force)

import FFT.FMultPoly(split, convert)

bit_reverse_l :: NFData a => [a] -> Int -> [a]
bite_reverse_l [] _ = []
bite_reverse_l [x] _ = [x]
bite_reverse_l x 0 = (bit_reverse_l left 0) ++ (bit_reverse_l right 0)
where (left, right) = split x
bit_reverse_l x d = runEval $ do
 l_rev <- rpar (force (bit_reverse_l left (d - 1)))
 r_rev <- rpar (force (bit_reverse_l right (d - 1)))
 _ <- rseq l_rev
 _ <- rseq r_rev
 return $ l_rev ++ r_rev
where
 (left, right) = split x

split_l :: [a] -> Int -> ([a], [a])
split_l l interval = split_l_helper l interval 0
where
 half_interval = interval `div` 2
 split_l_helper [] _ _ = ([], [])
 split_l_helper (x:xs) interval index
 | index `mod` interval < half_interval = (x:left, right)
 | otherwise = (left, x:right)
where
 (left, right) = split_l_helper xs interval (index + 1)

combine_l :: [a] -> [a] -> Int -> [a]
combine_l left right interval = combine_l_helper left right interval half_interval 0
where
 half_interval = interval `div` 2
 combine_l_helper [] [] _ _ _ = []
 combine_l_helper [] right _ _ _ = right
 combine_l_helper left [] _ _ _ = left
 combine_l_helper left@(l:ls) right@(r:rs) interval half_interval index
 | index < half_interval = l : (combine_l_helper ls right interval half_interval
 | (index + 1))
 | index == interval - 1 = r : (combine_l_helper left rs interval half_interval 0)
 | otherwise = r : (combine_l_helper left rs interval half_interval (index + 1))

splitChunks :: Int -> [a] -> [[a]]
splitChunks _ [] = []
splitChunks n l = f : splitChunks n s
where
 (f, s) = splitAt n l

butterfly :: Int -> Int -> [Complex Double] -> Int -> [Complex Double]
butterfly m n l len = combine_l fft_j_l fft_k_l n
where
 half_n = n `div` 2
half_len = (length l) `div` 2
(j_l, k_l) = split_l l n
w_l = map (\i -> (exp (-2 * pi * (0:+1) * (fromIntegral ((i `mod` half_n) * m)) /
(fromIntegral len)))) [0..(half_len - 1)]
j_k_w_l = zip3 j_l k_l w_l
fft_j_l = map (\(j, k, w) -> j + w * k) j_k_w_l
fft_k_l = map (\(j, k, w) -> j - w * k) j_k_w_l

code
len = length l
con_l = map conjugate l
fft_con_l = be_fft con_l num_c

mult_polys :: Int -> [Double] -> [Double] -> [Double]
mult_polys num_c x y =
take (length_x + length_y - 1) $ map (\a -> realPart a) (inverse_be_fft fft_r num_c)
where
 -- num_c = 4
 length_x = length x
 length_y = length y
 num_bits = ceiling $ logBase 2 (fromIntegral (2 * (max length_x length_y)))
 n = 2 ^ num_bits
 fft_x = be_fft (convert x (n - length_x)) num_c
 fft_y = be_fft (convert y (n - length_y)) num_c
 fft_r = map (\(a, b) -> a * b) (zip fft_x fft_y)