
Partially Filled Magic Squares Solver
Zijian Zhang (zz2795), Cynthia Zhang (cz2696)

Introduction
 A magic square is composed of a square array of numbers, usually positive integers, in

which the sums of the numbers in each row, each column, and both main diagonals are the

same. The order of the magic square 𝑛 is the size of the sides, and the magic constant 𝑀 of a

magic square is the constant sum. If the square only contains the positive integer 1,2, . . . , 𝑛2, the

magic square is called normal, and its magic constant is 𝑀 = 𝑛 ∗
𝑛2+1

2
. Generating magic

squares with 𝑛 > 5 is still an open challenge.

 This magic square solver could solve normal partially filled magic squares with a size

smaller than 5 within a reasonable time. It would produce all possible answers using a brute

force algorithm. To measure the performance of our parallelization, we used a magic square of

size 4 with only 1 number filled. We attempted several parallelization approaches, and the

optimal performance of is 18.618s using 4 threads. For simplicity, we will only display the 4

threads’ performance results of different approaches, and the rest of the data would be attached

at the end.

Solving strategy
The solver uses a brute force strategy of filling in possible numbers one by one while

checking for their validity. If the existing numbers don’t sum to or exceed the magic constant,

the solver would terminate the current branch early.
There are other algorithms for generating magic squares. We decided to use the brute force

approach because the other algorithms either only apply to a specific type of magic square, or are

difficult to be tailored to a partially filled magic square due to various constraints. For example, one

useful magic square property we considered using is that any magic square can be rotated and

reflected to produce 8 trivially distinct squares. Therefore, if we find one valid magic square, we find

8 trivially distinct squares. However, for a partially filled square, the existing numbers are in fixed

positions and the other trivially distinct squares are not valid answers.

Testing

 The above 4 by 4 matrix represents a magic square with 1 number filled. -1 represents

an empty position.

 We used the above matrix to measure the performance of our implementation. Because

this matrix has many empty positions, it has many possible solutions and a high difficulty level.

https://en.wikipedia.org/wiki/Rotation_(mathematics)
https://en.wikipedia.org/wiki/Reflection_(mathematics)

This means that parallelization overhead will not dominate over the actual calculation time, and

the performance differences between different approaches will be more obvious.

Sequential Implementation
1. Choose a blank position that appears first in the rows and columns.

2. Find all the numbers that can be placed in this position without making the magic square

invalid.

a. Since we are handling normal squares, all numbers between 1 and 𝑛2 will only

appear once. The numbers that can be filled in are simply the ones that have not

existed in the square.

b. For each number, check whether it will invalidate the magic square if it is put into

the black position. If the sum of partially filled rows, cols, or diagonals exceeds

the magic number, or if the sum of filled rows, cols, or diagonals does not equal

the magic number, the square becomes invalid.

3. For each potential number, place it into the square, then repeat step 1 to find the next

blank position.

a. Check if the square is filled, add it to the result list.

This sequential implementation uses 36.614 seconds, which is the performance

benchmark of our parallel implementations.

Parallel Implementation

Attempt 1:

We first try using parMap to parallelize each potential number for each blank position,

and use rdeepseq to ensure that each spark will calculate the final result. For example, given a

blank position and a list of potential numbers [1,2,4,5], there will be four parallel sparks for four

magics squares, each filled a different potential number in the blank position. Then, each spark

will continue with step 1 to find the next blank position, and start parallel sparks for its own

potential numbers to fill in the next blank position. Overall, the solver would create sparks

following a tree structure, where for each blank position, a node would branch out and create

sub sparks with one more position filled.

This approach creates too many unnecessary sparks because one spark is created for

every possible number at every blank position with a light workload. After each spark is created,

it will find the next potential numbers and create sparks for each of them, then simply wait until

all of its sub sparks are finished. The experiment results aligned with our prediction that the

solver creates 8862982 sparks.

parMap :: NFData b => (a -> b) -> [a] -> [b]

parMap f xs = L.map f xs `using` parList rdeepseq

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square]

solverHelper parLayer state

 | squareFilled s = [Just s >>= (\x -> guard (validator x) >> return x)]

 | otherwise = concat $ parMap (solverHelper (parLayer-1)) next

 where (s, choiceS) = state

 (x, y) = findEmptyPos s 0

 choiceL = S.toList choiceS

 next = nextSteps state x y choiceL

Attempt 2:

We improved upon attempt 1 by limiting the number of sparks the solver will create. Let

𝑛 be the size of the magic square. The solver now will only produce parallel sparks for the first 𝑛

blank positions. The code uses an integer parLayer to keep track of the positions by

decrementing for every blank position processed. After that, when parLayer becomes 0, each

spark will run sequentially to fill in the rest of the blank positions. Going back to the tree

structure analogy, this approach would only branch out 𝑛 times, creating a tree with a max

height of 𝑛.

One issue with this attempt is that when there are fewer correct answers, it’s possible for

the majority of the branches to get invalidated and terminated early, resulting in very few ending

sparks running parallelly. To resolve this problem, attempt 3 try to parallelize the internal

calculation of each spark. Nevertheless, we do not think this is a huge issue for performance

even if the situation occurs. For smaller magic squares, the workload of the internal calculations

is light, so a few sparks can still do the task quickly. This issue is more obvious for larger magic

squares. However, one reason that generating larger magic squares remains an open challenge

is because of the enormous amount of valid magic squares. Thus, it’s very unlikely to have only

a few correct answers.

As the data showed, the solver now only creates 21752 sparks, which is significantly

less than the sparks created in attempt 1. Its runtime is slightly better compared to attempt 1.

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square]

solverHelper parLayer state

 | squareFilled s = [Just s >>= (\x -> guard (validator x) >> return x)]

 | parLayer > 0 = concat $ parMap (solverHelper (parLayer-1)) next

 | otherwise = concat $ L.map (solverHelper parLayer) next

 where (s, choiceS) = state

 (x, y) = findEmptyPos s 0

 choiceL = S.toList choiceS

 next = nextSteps state x y choiceL

 Even though we used rdeepset, there’s a fair amount of sparks ended up fizzled, which

means that they evaluated to WHNF after creation. One possible cause is that the tasks needed

for a spark are not finished when the spark is created, so it evaluates to WHNF temporarily to

wait for the previous tasks.

This may happen when a spark in the solver creates parallel sparks for its potential

numbers in the next blank position, but has not finished finding the numbers. Thus, the newly

created sparks will become fizzled.

This also may happen after a spark finished finding all its potential numbers and has

created sub-sparks to calculate them. Since we used rdeepseq to require an NF result, the

spark could become fizzled when it is waiting for the sub sparks to finish their calculations.

Attempt 4 tries to explore this possibility.

Attempt 3:

For a parallel spark in attempt 2, its main task is to find the next blank position and the

potential numbers to fill in. Then, it will create parallel sparks for each potential number and wait

for them to calculate the rest.

We added parallelization to the function that finds the potential next numbers, attempting

to further reduce runtime. However, it runs slower compared to our previous implementations

and produced much more sparks. We think it is possible that the parallelization overhead

dominates over the performance benefits. Since the solver only handles squares with sizes

smaller than or equal to 4, there will be at most 16 potential numbers at each step, which is not

big enough for it to benefit from parallelization. If the solver handles bigger magic squares, this

parallelization could potentially be helpful since there will be more potential numbers.

splitHelper :: [Int] -> Int -> [[Int]]

splitHelper l s

 | n > 0 = cur : splitHelper remain s

 | otherwise = []

 where n = length cur

 cur = take s l

 remain = drop s l

splitList :: [Int] -> [[Int]]

splitList l

 | n < 4 = [l]

 | otherwise = splitHelper l size

 where n = length l

 x = round (sqrt (fromIntegral n))

 size = n `div` x

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square]

solverHelper parLayer state

 … (same as before)

 choiceLL = splitList choiceL

 next = concat $ parMap (nextSteps state x y) choiceLL

Attempt 4:

 Attempting to decrease the number of sparks fizzled, instead of using rdeepseq for all

the sparks, only the sparks that compute sequentially will use rdeepseq, in another word, the

sparks with parLayer = 1. The sparks with parLayer > 1 will create sub-sparks for each of its

potential next numbers. In this attempt, we use rseq to evaluate the sparks with parLayer > 1 to

WHNF, so they won’t need to wait until their sub-sparks are done.

 However, this attempt does not show improvement in performance time or the number of

fizzled sparks. It does decrease the number of fizzled sparks by 279, which could mean that our

earlier analysis is correct. Nevertheless, we concluded that most fizzled sparks are the result of

program synchronization.

Conclusion

Attempt 2 with 4 threads gives the optimal performance. The parallelization is able to

decrease the runtime of the sequential solver by half, with a 2.2x speedup, completing the

testing matrix using 18.618s, as opposed to 36.614s originally.

Speedup will varie for different matrices, because it depends on how many blank

position and potential numbers the solver need to try, and also how many branches get

terminated early.

For every attempts, the workload is distributed evenly among the threads, and all

threads are untilized almost fully. This behavior is as expected because the tasks of each

sparks are relatively independent and uniformly distributed. Since our computer only have four

threads, it’s expected that the thread untilization of each attempts with 8 threads becomes more

sporadic, and we only considered the performance result up to 4 threads.

Future Improvements

 There exist faster sequential algorithms that potentially could lead to a better

parallelization speedup. For example, instead of finding potential numbers for each blank

position, the solver could generate and test each potential rows that satisfy the magic square

requirements, which would eliminate false rows and reduce duplicates that get processed. The

parallelization steps would be the same as the brute force algorithm. The number of potential

rows are significantly less than potential numbers in each blank positions, so the solver will

create less sparks. However, the workload for each spark to generate all potential rows are

heavier. The overall performance may or may not improve.

 In terms of parallelization, one potential improvement would be having two processes,

one starts with the empty position from the beginning, and the other starts from the end.

Nevertheless, the complication is how to merge two processes when they reach the middle

point. Also, the Repa module is another potential tool to try.

 Having more physical threads is another way to improve the performance. Since the

tasks of each thread are relatively independent, in theory, the parallel solver would speedup as

the number of physical threads increase.

Additional Data:

Attempt 1 - 2 threads:

Attempt 1 - 8 threads:

Attempt 2 - 2 threads:

Attempt 2 - 8 threads:

Attempt 3 - 2 threads:

Attempt 3 - 8 threads:

Code:
Main.hs

—---

import Solver (solver, Square)

import qualified Data.List as L

import System.Environment(getArgs, getProgName)

import System.Exit(die)

prettyPrint :: Maybe Square -> IO()

prettyPrint (Just s) = putStrLn $ unlines $ L.map (unwords . L.map show) s

prettyPrint Nothing = putStrLn ""

parseHelper :: [String] -> [Int]

parseHelper (x:xs) = (read x :: Int) : parseHelper xs

parseHelper _ = []

parseInput :: [String] -> Square

parseInput (x:xs) = (parseHelper $ words x) : parseInput xs

parseInput _ = []

main :: IO ()

main = do

 args <- getArgs

 (filename) <- case args of

 [filename] -> return (filename)

 _ -> do pn <- getProgName

 die $ "Usage: " ++ pn ++ " <filename> +RTS -N? -ls"

 file <- readFile filename

 let inputMagic = parseInput $ lines file

 mapM_ prettyPrint (solver inputMagic)

MagicSquareSolver.hs

—---

module Solver

(solver, Square)

where

import qualified Data.List as L

import qualified Data.Set as S

import Control.Monad -- guard

import Control.Parallel.Strategies hiding (parMap)

type Square = [[Int]]

magic :: Square

magic = [[2,16,13,3],

 [11,5,8,10],

 [7,9,12,6],

 [14,4,1,15]]

-- prettyPrint :: Maybe Square -> IO()

-- prettyPrint (Just s) = putStrLn $ unlines $ L.map (unwords . L.map

show) s

-- prettyPrint Nothing = putStrLn ""

fDiagonal :: Square -> Int -> [Int]

fDiagonal (x:xs) i = (x !! i) : fDiagonal xs (i+1)

fDiagonal _ _ = []

aDiagonal :: Square -> Int -> Int -> [Int]

aDiagonal (x:xs) i n = (x !! (n-1-i)) : aDiagonal xs (i+1) n

aDiagonal _ _ _ = []

validator :: Square -> Bool

validator s = (all (== magicNum) rowSumf) && (all (< magicNum) rowSumu)

 where n = length s

 magicNum = (1 + (n*n)) * n `div` 2

 fDiagonalR = filter (/=(-1)) $ fDiagonal s 0

 aDiagonalR = filter (/=(-1)) $ aDiagonal s 0 n

 rows_ = L.map (filter (/=(-1))) s

 rows = rows_ ++ [fDiagonalR] ++ [aDiagonalR]

 filledRow = filter (\x -> length x == n) rows

 unfilledRow = filter (\x -> length x < n) rows

 rowSumf = L.map sum filledRow

 rowSumu = L.map sum unfilledRow

squareFilled :: Square -> Bool

squareFilled = and . L.map (all (/= -1))

findEmptyPos :: Square -> Int -> (Int, Int)

findEmptyPos (x:xs) curRow

 | emptyPos == length x = findEmptyPos xs $ curRow + 1

 | otherwise = (curRow, emptyPos)

 where emptyPos = length $ takeWhile (/= -1) x

findEmptyPos _ _ = (-1, -1)

updateAtPos :: Square -> Int -> Int -> Int -> Square

updateAtPos s x y val = prevRows ++ updatedRow:(tail otherRows)

 where (prevRows, otherRows) = splitAt x s

 curRow = head otherRows

 (prevElems, otherElems) = splitAt y curRow

 updatedRow = prevElems ++ val:(tail otherElems)

nextSteps :: (Square, S.Set Int) -> Int -> Int -> [Int] -> [(Square, S.Set

Int)]

nextSteps state x y (v:vs)

 | validator newS && validator newST = curPair:nextSteps state x y vs

 | otherwise = nextSteps state x y vs

 where (s, choiceS) = state

 newS = updateAtPos s x y v

 newST = L.transpose newS

 curPair = (newS, S.delete v choiceS)

nextSteps _ _ _ _ = []

parMapDeep :: NFData b => (a -> b) -> [a] -> [b]

parMapDeep f xs = L.map f xs `using` parList rdeepseq

parMap :: NFData b => (a -> b) -> [a] -> [b]

parMap f xs = L.map f xs `using` parList rseq

splitHelper :: [Int] -> Int -> [[Int]]

splitHelper l s

 | n > 0 = cur : splitHelper remain s

 | otherwise = []

 where n = length cur

 cur = take s l

 remain = drop s l

splitList :: [Int] -> [[Int]]

splitList l

 | n < 4 = [l]

 | otherwise = splitHelper l size

 where n = length l

 x = round (sqrt (fromIntegral n))

 size = n `div` x

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square]

solverHelper parLayer state

 | squareFilled s = [Just s >>= (\x -> guard (validator x) >> return

x)]

 | parLayer > 1 = concat $ parMap (solverHelper (parLayer-1)) next

 | parLayer == 1 = concat $ parMapDeep (solverHelper (parLayer-1))

next

 | otherwise = concat $ L.map (solverHelper parLayer) next

 where (s, choiceS) = state

 (x, y) = findEmptyPos s 0

 choiceL = S.toList choiceS

 next = nextSteps state x y choiceL

solver :: Square -> [Maybe Square]

solver s = solverHelper (n+1) (s, S.difference allState curState)

 where n = length s

 allState = S.fromList [1..n*n]

 curState = foldl (S.union) S.empty $ L.map S.fromList s

