Partially Filled Magic Squares Solver
Zijian Zhang (zz2795), Cynthia Zhang (cz2696)

Introduction

A magic square is composed of a square array of numbers, usually positive integers, in
which the sums of the numbers in each row, each column, and both main diagonals are the
same. The order of the magic square n is the size of the sides, and the magic constant M of a

magic square is the constant sum. If the square only contains the positive integer 1,2,...,n2, the
n?+1
2

magic square is called normal, and its magic constantis M = n = . Generating magic

squares with n > 5 is still an open challenge.

This magic square solver could solve normal partially filled magic squares with a size
smaller than 5 within a reasonable time. It would produce all possible answers using a brute
force algorithm. To measure the performance of our parallelization, we used a magic square of
size 4 with only 1 number filled. We attempted several parallelization approaches, and the
optimal performance of is 18.618s using 4 threads. For simplicity, we will only display the 4
threads’ performance results of different approaches, and the rest of the data would be attached
at the end.

Solving strategy

The solver uses a brute force strategy of filling in possible numbers one by one while
checking for their validity. If the existing numbers don’t sum to or exceed the magic constant,
the solver would terminate the current branch early.

There are other algorithms for generating magic squares. We decided to use the brute force
approach because the other algorithms either only apply to a specific type of magic square, or are
difficult to be tailored to a partially filled magic square due to various constraints. For example, one
useful magic square property we considered using is that any magic square can be rotated and
reflected to produce 8 trivially distinct squares. Therefore, if we find one valid magic square, we find
8 trivially distinct squares. However, for a partially filled square, the existing numbers are in fixed
positions and the other trivially distinct squares are not valid answers.

Testing
(-1 -1 =1 -1°
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 15,

The above 4 by 4 matrix represents a magic square with 1 number filled. -1 represents
an empty position.

We used the above matrix to measure the performance of our implementation. Because
this matrix has many empty positions, it has many possible solutions and a high difficulty level.

https://en.wikipedia.org/wiki/Rotation_(mathematics)
https://en.wikipedia.org/wiki/Reflection_(mathematics)

This means that parallelization overhead will not dominate over the actual calculation time, and
the performance differences between different approaches will be more obvious.

Sequential Implementation
1. Choose a blank position that appears first in the rows and columns.
2. Find all the numbers that can be placed in this position without making the magic square
invalid.

a. Since we are handling normal squares, all numbers between 1 and n? will only
appear once. The numbers that can be filled in are simply the ones that have not
existed in the square.

b. For each number, check whether it will invalidate the magic square if it is put into
the black position. If the sum of partially filled rows, cols, or diagonals exceeds
the magic number, or if the sum of filled rows, cols, or diagonals does not equal
the magic number, the square becomes invalid.

3. For each potential number, place it into the square, then repeat step 1 to find the next
blank position.

a. Check if the square is filled, add it to the result list.

This sequential implementation uses 36.614 seconds, which is the performance
benchmark of our parallel implementations.

Parallel Implementation

Attempt 1:
We first try using parMap to parallelize each potential number for each blank position,

and use rdeepseq to ensure that each spark will calculate the final result. For example, given a
blank position and a list of potential numbers [1,2,4,5], there will be four parallel sparks for four
magics squares, each filled a different potential number in the blank position. Then, each spark
will continue with step 1 to find the next blank position, and start parallel sparks for its own
potential numbers to fill in the next blank position. Overall, the solver would create sparks
following a tree structure, where for each blank position, a node would branch out and create
sub sparks with one more position filled.

This approach creates too many unnecessary sparks because one spark is created for
every possible number at every blank position with a light workload. After each spark is created,
it will find the next potential numbers and create sparks for each of them, then simply wait until
all of its sub sparks are finished. The experiment results aligned with our prediction that the
solver creates 8862982 sparks.

parMap :: NFData b => (a->b) -> [a] -> [b]
parMap f xs = L.map f xs ‘using’ parList rdeepseq

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square]
solverHelper parLayer state

Timeline

| squareFilled s = [Just s >>= (\x -> guard (validator x) >> return x)]|
| otherwise = concat $ parMap (solverHelper (parLayer-1)) next
where (s, choiceS) = state

(%, y) = findEmptyPos s 0

choiceL = S.toList choiceS

next = nextSteps state x y choiceL

Time Consumed

x—core y-time

40 38.538
.

ZU\'?EB 19.927 19.403
r—.

Time | Heap I GC Spark stats I Spark sizes | Process info | Raw events |
HEC |Total Converted |Overflowed |Dud | GC'd Fizzled
Total 8862982 534 0 0 8220547 641901
HEC 0 2227269 198 0 2066219 160273
HEC 1 2217522 112 0 2057434 160186
HEC 2 2197215 97 0 2037852 159356
HEC 3 2220976 127 0 2059042 162086

o o o o©

)

HECO

HEC T

‘Spark croaton
rate (sparkima)

SO

62

Total time:

GC time:

19.908s

Mutator time: 18.545s

1.363s

Productivity: 93.2% of mutator vs total

Attempt 2:

We improved upon attempt 1 by limiting the number of sparks the solver will create. Let
n be the size of the magic square. The solver now will only produce parallel sparks for the first n
blank positions. The code uses an integer parLayer to keep track of the positions by
decrementing for every blank position processed. After that, when parLayer becomes 0, each
spark will run sequentially to fill in the rest of the blank positions. Going back to the tree
structure analogy, this approach would only branch out n times, creating a tree with a max
height of n.

One issue with this attempt is that when there are fewer correct answers, it's possible for
the majority of the branches to get invalidated and terminated early, resulting in very few ending
sparks running parallelly. To resolve this problem, attempt 3 try to parallelize the internal
calculation of each spark. Nevertheless, we do not think this is a huge issue for performance
even if the situation occurs. For smaller magic squares, the workload of the internal calculations
is light, so a few sparks can still do the task quickly. This issue is more obvious for larger magic
squares. However, one reason that generating larger magic squares remains an open challenge
is because of the enormous amount of valid magic squares. Thus, it'’s very unlikely to have only
a few correct answers.

As the data showed, the solver now only creates 21752 sparks, which is significantly
less than the sparks created in attempt 1. Its runtime is slightly better compared to attempt 1.

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square]
solverHelper parLayer state
| squareFilled s = [Just s >>= (\x -> guard (validator x) >> return x)|
| parLayer > 0 = concat $ parMap (solverHelper (parLayer-1)) next
| otherwise = concat $ L.map (solverHelper parLayer) next
where (s, choiceS) = state
(%, y) = findEmptyPos s 0
choiceL = S.toList choiceS
next = nextSteps state x y choiceL

Time Consumed

re y—time

38.538

20.92
18.618 19.152

Even though we used rdeepset, there’s a fair amount of sparks ended up fizzled, which
means that they evaluated to WHNF after creation. One possible cause is that the tasks needed
for a spark are not finished when the spark is created, so it evaluates to WHNF temporarily to
wait for the previous tasks.

This may happen when a spark in the solver creates parallel sparks for its potential
numbers in the next blank position, but has not finished finding the numbers. Thus, the newly
created sparks will become fizzled.

This also may happen after a spark finished finding all its potential numbers and has
created sub-sparks to calculate them. Since we used rdeepseq to require an NF result, the
spark could become fizzled when it is waiting for the sub sparks to finish their calculations.
Attempt 4 tries to explore this possibility.

Time | Heap | GC Spark stats | Spark sizes | Process info | Raw events |
Converted | Overflowed |[Dud | GC'd | Fizzled

21752 941 0 1315 19496
HECO0 5673 410 0 0 314 4907
HEC1 5760 319 0 0 370 5026
HEC 2 5470 204 0 0 366 5004
HEC3 4849 8 0 0 265 4559
Timeline
0s 5 108 158 -

HEC

]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |
‘Totanlmo: 18.334s

Mutator time: 17.300s
GC time: 1.034s
Productivity: 94.4% of mutator vs total

Attempt 3:

For a parallel spark in attempt 2, its main task is to find the next blank position and the
potential numbers to fill in. Then, it will create parallel sparks for each potential number and wait
for them to calculate the rest.

We added parallelization to the function that finds the potential next numbers, attempting
to further reduce runtime. However, it runs slower compared to our previous implementations
and produced much more sparks. We think it is possible that the parallelization overhead
dominates over the performance benefits. Since the solver only handles squares with sizes
smaller than or equal to 4, there will be at most 16 potential numbers at each step, which is not
big enough for it to benefit from parallelization. If the solver handles bigger magic squares, this
parallelization could potentially be helpful since there will be more potential numbers.

splitHelper :: [Int] -> Int -> [[Int]]
splitHelperls
| n > 0 = cur: splitHelper remain s
| otherwise = []
where n = length cur
cur = take s 1
remain = drop s 1

splitList :: [Int] -> [[Int]]
splitList1
In<4=1[l]
| otherwise = splitHelper 1 size
where n = length |
x = round (sqrt (fromIntegral n))
size =n 'div’ x

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square]
solverHelper parLayer state

... (same as before)

choiceLL = splitList choiceL

next = concat $ parMap (nextSteps state x y) choiceLL

Time Consumed

x-core y-time

40 38.538
°

w
o

25,608
T 21742 21.974
-‘—.. -
20
10
0
1 2 4 8

'I'|me|Heap | GC Spark stats | Spark sizes | Process info | Raw events

HEC 0 6366684 82 0 0 6301479 64508
HEC 1 6274021 206 0 0 6211220 63281
HEC 2 6319540 68 0 0 6250410 68805
HEC 3 6311474 115 0 0 6246616 64929
Timeline
336

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total time: ~ 21.732s

Mutator time: 20.139s

GC time: 1.594s

Productivity: 92.7% of mutator vs total

Attempt 4:
Attempting to decrease the number of sparks fizzled, instead of using rdeepseq for all

the sparks, only the sparks that compute sequentially will use rdeepseq, in another word, the
sparks with parLayer = 1. The sparks with parLayer > 1 will create sub-sparks for each of its
potential next numbers. In this attempt, we use rseq to evaluate the sparks with parLayer > 1 to
WHNF, so they won'’t need to wait until their sub-sparks are done.

However, this attempt does not show improvement in performance time or the number of
fizzled sparks. It does decrease the number of fizzled sparks by 279, which could mean that our
earlier analysis is correct. Nevertheless, we concluded that most fizzled sparks are the result of
program synchronization.

Time | Heap I GC Spark stats | Spark sizes I Process info I Raw events |
Converted | Overflowed | Dud [GC'd | Fizzled

21687 1183

HECO 5456 26 0 0 329 5037
HEC1 5133 416 0 0 177 4565
HEC 2 4718 372 0 0 155 4213
HEC 3 6380 369 0 0 626 5402

Timeline

HEC3

3.76

HECO. — —

Spark creation 1
rate (sparkims) 1.88

bt o ddahabah o dade And abn bl o oba o AAa ek

3.76
HEC1 5

Spark creation]
e sowkins) 4 0o]

- m-.m&_u__._..-. Y MAAM A AA._ MA A Mo, LLAA_L.ﬂ“ﬂ

:
|
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Total time: ~ 20.438s

Mutator time: 18.934s

GC time: 1.504s

Productivity: 92.6% of mutator vs total

Conclusion

Time Consumed

Attempt 2 with 4 threads gives the optimal performance. The parallelization is able to
decrease the runtime of the sequential solver by half, with a 2.2x speedup, completing the
testing matrix using 18.618s, as opposed to 36.614s originally.

Speedup will varie for different matrices, because it depends on how many blank
position and potential numbers the solver need to try, and also how many branches get
terminated early.

For every attempts, the workload is distributed evenly among the threads, and all
threads are untilized almost fully. This behavior is as expected because the tasks of each
sparks are relatively independent and uniformly distributed. Since our computer only have four
threads, it's expected that the thread untilization of each attempts with 8 threads becomes more
sporadic, and we only considered the performance result up to 4 threads.

Future Improvements

There exist faster sequential algorithms that potentially could lead to a better
parallelization speedup. For example, instead of finding potential numbers for each blank
position, the solver could generate and test each potential rows that satisfy the magic square
requirements, which would eliminate false rows and reduce duplicates that get processed. The
parallelization steps would be the same as the brute force algorithm. The number of potential
rows are significantly less than potential numbers in each blank positions, so the solver will
create less sparks. However, the workload for each spark to generate all potential rows are
heavier. The overall performance may or may not improve.

In terms of parallelization, one potential improvement would be having two processes,
one starts with the empty position from the beginning, and the other starts from the end.
Nevertheless, the complication is how to merge two processes when they reach the middle
point. Also, the Repa module is another potential tool to try.

Having more physical threads is another way to improve the performance. Since the
tasks of each thread are relatively independent, in theory, the parallel solver would speedup as
the number of physical threads increase.

Additional Data:
Attempt 1 - 2 threads:

TlmelHeap | GC Spark stats | Spark sizes | Process info | Raw events

HEC |Total Converted | Overflowed |Dud |GC'd Fizzled
R e
HEC 0 4425135 16 0 0 4111616 313477
HEC 1 4436466 18 0 0 4122990 313484
= 0s 5s 10s 15s -
| | | | |
242

Spark creation
e (sparkims) 4y

0

[I2]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events
Total time: 20,9385
Mutator time: 19.472s
GC time: 1.466s
Productivity: 93.0% of mutator vs total

Attempt 1 - 8 threads:

Time | Heap | GC Spark stats | Spark sizes | Process info | Raw events
Converted erflowed Dud |GC'd Fizzled

... Rl Gl
224928 34966
368310 36329
484920 42370
573829 46764
598405 50436
1973858 161673
1952521 158469

1995453 160433

HEC 0 260677 209
HEC 1 405026 229
HEC 2 527696 177
HEC 3 620634 95

HEC 4 648916 197
HEC 5 2135459 465
HEC 6 2111035 152
HEC 7 2155896 151

O O O © © © © o
o O O ©O © © O o

Timeline

OO0 A OO OO A T 0O 10 O
SO N A MM AT U YA 00O
- SO AN NN NN 0O AR 0 O U (0 IO 0 TR RO RRR Y
- AR LR R IR R R R R RN el N
- AL R R RN R RN B AL BN R Rl

HECS

HEC7

LR R R AT A R R R R R AR R R R R A TR
- LRI R AR R R R PR R T PR
LR AT U R R LR R R R R

KT

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total time: 19.37Rs

Mutator time: 17.987s

GC time: 1.385s

Productivity: 92.8% of vs total

Attempt 2 - 2 threads:

Time | Heap | GC Spark stats | Spark sizes | Process info | Raw events
HEC [Total |Converted |Overflowed |Dud |[GC'd |Fizzled

Total 21687 25 | 1275 20387
HEC 0 10469 11 0 0 477 9973
HEC1 11218 14 0 0 798 10414
—
. | i] : 155) i i i l10s \ i : i 1155 L ; 3 i |

HEC O

HEC 1

Spark creation
rate (spark/ms)

«

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total time: ~ 20.037s|

Mutator time: 18.846s

GC time: 1.191s

Productivity: 94.1% of mutator vs total

Attempt 2 - 8 threads:

Time | Heap | GC Spark stats | Spark sizes | Process info | Raw events
HEC Converted | Overflowed

0
HEC 0 1494 302 0 0 80 706
HEC 1 1354 241 0 0 60 865
HEC 2 1903 336 0 0 138 1494
HEC 3 1816 299 0 0 207 1418
HEC 4 2094 130 0 0 167 1821
HEC5 3860 44 0 0 160 3678
HEC 6 4814 329 0 0 267 4543
HEC 7 4439 54 0 0 168 4267

Timeline

0Os 5s 10s 15s

- 1 00 T O 000N 000 KA T 0
- AN 0D NPT Mo 0T
- L AP ey it iy e Il iy

- MO0 MmO N W e mmm erwrmww wwnnem
= W mwy mEwrrwnew ey nmmmiwey peyiwem rm nin

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total time: 19.122s

Mutator time: 17.854s

GC time: 1.268s

Productivity: 93.4% of mutator vs total

Attempt 3 - 2 threads:

Time | Heap | GC Spark stats | Spark sizes | Process info | Raw events
HEC |Total Converted | Overflowed |Dud |GC'd Fizzled

Total 25271939 33 25033523 238383

HEC 0 12634261 18 0 0 12516784 118452
HEC 1 12637678 15 0 0 12517739 119931

Timeline

HECO

Spark creation
rate (sparkims)

HEC 1

Spark creation
rate (sparkims)

| 2]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total time: 25.596s

Mutator time: 23.903s

GC time: 1.693s

Productivity: 93.4% of mutator vs total

Attempt 3 - 8 threads:

Time | Heap | GC Spark stats | Spark sizes | Process info | Raw events
Converted |Overflowed |Dud |GC'd Fizzled

25273921 24804038 449733

HEC O 770353 2146 0 0 719983 35614

HEC 1 964932 2775 0 0 919696 38847

HEC 2 1808656 2574 0 0 1763830 40229

HEC 3 1897086 1620 0 0 1846868 43662

HEC 4 2072966 2398 0 0 2032546 40691

HEC 5 6058382 2643 0 0 5969812 89160

HEC 6 5690346 365 0 0 5631492 59143
. HEC 7 6011200 5629 0 0 5919811 102387

| . L . . I L . L . | L L . . I |

- WA N 0O O 0RO)0 1 10 Y00 00O A
- AN 0 0 A 0 100U OO D OO OO0 T 0 0 O O
- C AN AN RNNINUNE RRUINI B RIURYI N W NINN BRI IIEE RINUN RAD N BU RN

| QLU NN ERRUEE N N RANINIBR U BN BRI RE N]
- AL RN R NRI RN NN RN RN RE N iRy

HECS

HECE

HEC7

[«
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total time: ~ 21.937s

Mutator time: 20.275s

GC time: 1.661s

Productivity: 92.4% of mutator vs total

Code:

Main.hs

import Solver (solver, Square)

import qualified Data.List as L

import System.Environment (getArgs, getProgName)
import System.Exit (die)

prettyPrint :: Maybe Square -> I0()
prettyPrint (Just s) = putStrLn $ unlines $ L.map (unwords
prettyPrint Nothing = putStrLn ""

parseHelper :: [String] -> [Int]
parseHelper (x:xs) = (read x :: Int) : parseHelper xs

parseHelper = []

parselnput :: [String] -> Square

parselnput (x:xs) = (parseHelper $ words x) : parselnput xs

parselnput = []

main :: IO ()
main = do
args <- getArgs
(filename) <- case args of
[filename] -> return (filename)
_ —> do pn <- getProgName

L.map show)

die $ "Usage: " ++ pn ++ " <filename> +RTS -N?

file <- readFile filename
let inputMagic = parselInput $ lines file
mapM prettyPrint (solver inputMagic)

MagicSquareSolver.hs

module Solver
(solver, Square)
where

import qualified Data.List as L

import qualified Data.Set as S

import Control.Monad -- guard

import Control.Parallel.Strategies hiding (parMap)

type Square = [[Int]]

_lS"

S

magic :: Square

magic = [[2,16,13,3],

[11,5,8,10],

[(7,9,12,61,

[14,4,1,15]]
-- prettyPrint :: Maybe Square -> IO()
-—- prettyPrint (Just s) = putStrLn $ unlines $ L.map (unwords
show) s
-—- prettyPrint Nothing = putStrLn ""
fDiagonal :: Square -> Int -> [Int]
fDiagonal (x:xs) i = (x !! i) : fDiagonal xs (i+1l)
fbDiagonal = = []
aDiagonal :: Square -> Int -> Int -> [Int]
aDiagonal (x:xs) i n = (x !! (n-1-1i)) : abiagonal xs (i+l) n
aDiagonal = = []
validator :: Square -> Bool
validator s = (all (== magicNum) rowSumf) && (all (< magicNum)

where n = length s
magicNum = (1 + (n*n)) * n “div" 2

fDiagonalR = filter (/=(-1)) $ fDiagonal s O

aDiagonalR = filter (/=(-1)) $ abiagonal s 0 n

rows = L.map (filter (/=(-1))) s

rows = rows_ ++ [fDiagonalR] ++ [aDiagonalR]

filledRow = filter (\x -> length x == n)
unfilledRow = filter (\x -> length x < n)
L.map sum filledRow

L.map sum unfilledRow

rowSumf

rowSumu
squareFilled :: Square -> Bool
squareFilled = and . L.map (all (/= -1))

findEmptyPos :: Square -> Int -> (Int, Int)
findEmptyPos (x:xs) curRow

| emptyPos == length x = findEmptyPos xs $ curRow + 1

| otherwise = (curRow, emptyPos)
where emptyPos = length $ takeWhile (/= -1) x
findEmptyPos = = (-1, -1)

updateAtPos :: Square -> Int -> Int -> Int -> Square

updateAtPos s x y val = prevRows ++ updatedRow: (tail otherRows)

where (prevRows, otherRows) = splitAt x s

rows
rows

L.map

rowsumu)

curRow = head otherRows
(prevElems, otherElems) = splitAt y curRow
updatedRow = prevElems ++ val: (tail otherElems)

nextSteps :: (Square, S.Set Int) -> Int -> Int -> [Int] -> [(Square, S.Set
Int)]
nextSteps state x y (v:vs)
| validator newS && validator newST = curPair:nextSteps state x y vs
| otherwise = nextSteps state x y vs
where (s, choiceS) = state

newS = updateAtPos s x y Vv

newST = L.transpose newsS

curPair = (newS, S.delete v choiceS)
nextSteps = []
parMapDeep :: NFData b => (a -> b) -> [a] -> [Db]
parMapDeep f xs = L.map f xs “using parList rdeepseq

parMap :: NFData b => (a -> b) -> [a] -> [Db]
parMap f xs = L.map f xs “using parList rseq
splitHelper :: [Int] -> Int -> [[Int]]
splitHelper 1 s
| n >0 = cur : splitHelper remain s
| otherwise = []
where n = length cur
cur = take s 1
remain = drop s 1
splitList :: [Int] -> [[Int]]
splitList 1
| n < 4 = [1]

| otherwise = splitHelper 1 size
where n = length 1
x = round (sgrt (fromIntegral n))

size = n “div’ x

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square]
solverHelper parlayer state

| squareFilled s = [Just s >>= (\x -> guard (validator x) >> return
x)]

| parLayer > 1 = concat $ parMap (solverHelper (parLayer-1)) next

| parLayer == = concat $ parMapDeep (solverHelper (parLayer-1))
next

| otherwise = concat $ L.map (solverHelper parlLayer) next

where (s, choiceS) = state

(x, y) =
choicel

findEmptyPos s O

S.toList choiceS

next = nextSteps state x y choicel

solver :: Square ->
solver s = solverHelper
where n = length
allState =
curState =

[Maybe Square]

(n+tl) (s, S.difference allState curState)
S
S.fromList [1l..n*n]
foldl (S.union) S.empty $ L.map S.fromList s

