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Introduction 
 A magic square is composed of a square array of numbers, usually positive integers, in 

which the sums of the numbers in each row, each column, and both main diagonals are the 

same. The order of the magic square 𝑛 is the size of the sides, and the magic constant 𝑀 of a 

magic square is the constant sum. If the square only contains the positive integer 1,2, . . . , 𝑛2, the 

magic square is called normal, and its magic constant is 𝑀 =  𝑛 ∗
𝑛2+1

2
. Generating magic 

squares with 𝑛 > 5 is still an open challenge. 

 This magic square solver could solve normal partially filled magic squares with a size 

smaller than 5 within a reasonable time. It would produce all possible answers using a brute 

force algorithm. To measure the performance of our parallelization, we used a magic square of 

size 4 with only 1 number filled. We attempted several parallelization approaches, and the 

optimal performance of is 18.618s using 4 threads. For simplicity, we will only display the 4 

threads’ performance results of different approaches, and the rest of the data would be attached 

at the end. 

 

 

Solving strategy 
The solver uses a brute force strategy of filling in possible numbers one by one while 

checking for their validity. If the existing numbers don’t sum to or exceed the magic constant, 

the solver would terminate the current branch early. 
There are other algorithms for generating magic squares. We decided to use the brute force 

approach because the other algorithms either only apply to a specific type of magic square, or are 

difficult to be tailored to a partially filled magic square due to various constraints. For example, one 

useful magic square property we considered using is that any magic square can be rotated and 

reflected to produce 8 trivially distinct squares. Therefore, if we find one valid magic square, we find 

8 trivially distinct squares. However, for a partially filled square, the existing numbers are in fixed 

positions and the other trivially distinct squares are not valid answers.  

 

Testing 

 
 The above 4 by 4 matrix represents a magic square with 1 number filled. -1 represents 

an empty position.  

 We used the above matrix to measure the performance of our implementation. Because 

this matrix has many empty positions, it has many possible solutions and a high difficulty level. 

https://en.wikipedia.org/wiki/Rotation_(mathematics)
https://en.wikipedia.org/wiki/Reflection_(mathematics)


This means that parallelization overhead will not dominate over the actual calculation time, and 

the performance differences between different approaches will be more obvious. 

 

 

Sequential Implementation 
1. Choose a blank position that appears first in the rows and columns.  

2. Find all the numbers that can be placed in this position without making the magic square 

invalid.  

a. Since we are handling normal squares, all numbers between 1 and 𝑛2 will only 

appear once. The numbers that can be filled in are simply the ones that have not 

existed in the square. 

b. For each number, check whether it will invalidate the magic square if it is put into 

the black position. If the sum of partially filled rows, cols, or diagonals exceeds 

the magic number, or if the sum of filled rows, cols, or diagonals does not equal 

the magic number, the square becomes invalid. 

3. For each potential number, place it into the square, then repeat step 1 to find the next 

blank position. 

a. Check if the square is filled, add it to the result list. 

  

This sequential implementation uses 36.614 seconds, which is the performance 

benchmark of our parallel implementations. 

 

 

Parallel Implementation 

Attempt 1: 

We first try using parMap to parallelize each potential number for each blank position, 

and use rdeepseq to ensure that each spark will calculate the final result. For example, given a 

blank position and a list of potential numbers [1,2,4,5], there will be four parallel sparks for four 

magics squares, each filled a different potential number in the blank position. Then, each spark 

will continue with step 1 to find the next blank position, and start parallel sparks for its own 

potential numbers to fill in the next blank position. Overall, the solver would create sparks 

following a tree structure, where for each blank position, a node would branch out and create 

sub sparks with one more position filled. 

This approach creates too many unnecessary sparks because one spark is created for 

every possible number at every blank position with a light workload. After each spark is created, 

it will find the next potential numbers and create sparks for each of them, then simply wait until 

all of its sub sparks are finished. The experiment results aligned with our prediction that the 

solver creates 8862982 sparks. 

 

parMap :: NFData b => (a -> b) -> [a] -> [b] 

parMap f xs = L.map f xs `using` parList rdeepseq 

 

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square] 

solverHelper parLayer state 



      | squareFilled s = [Just s >>= (\x -> guard (validator x) >> return x)] 

      | otherwise = concat $ parMap (solverHelper (parLayer-1)) next 

      where (s, choiceS) = state 

            (x, y) = findEmptyPos s 0 

            choiceL = S.toList choiceS 

            next = nextSteps state x y choiceL 

 

 

 

 



Attempt 2: 

We improved upon attempt 1 by limiting the number of sparks the solver will create. Let 

𝑛 be the size of the magic square. The solver now will only produce parallel sparks for the first 𝑛 

blank positions. The code uses an integer parLayer to keep track of the positions by 

decrementing for every blank position processed. After that, when parLayer becomes 0, each 

spark will run sequentially to fill in the rest of the blank positions. Going back to the tree 

structure analogy, this approach would only branch out 𝑛 times, creating a tree with a max 

height of 𝑛. 

One issue with this attempt is that when there are fewer correct answers, it’s possible for 

the majority of the branches to get invalidated and terminated early, resulting in very few ending 

sparks running parallelly. To resolve this problem, attempt 3 try to parallelize the internal 

calculation of each spark. Nevertheless, we do not think this is a huge issue for performance 

even if the situation occurs. For smaller magic squares, the workload of the internal calculations 

is light, so a few sparks can still do the task quickly. This issue is more obvious for larger magic 

squares. However, one reason that generating larger magic squares remains an open challenge 

is because of the enormous amount of valid magic squares. Thus, it’s very unlikely to have only 

a few correct answers. 

As the data showed, the solver now only creates 21752 sparks, which is significantly 

less than the sparks created in attempt 1. Its runtime is slightly better compared to attempt 1. 

 

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square] 

solverHelper parLayer state 

      | squareFilled s = [Just s >>= (\x -> guard (validator x) >> return x)] 

      | parLayer > 0 = concat $ parMap (solverHelper (parLayer-1)) next 

      | otherwise = concat $ L.map (solverHelper parLayer) next 

      where (s, choiceS) = state 

            (x, y) = findEmptyPos s 0 

            choiceL = S.toList choiceS 

            next = nextSteps state x y choiceL 

 

 



 Even though we used rdeepset, there’s a fair amount of sparks ended up fizzled, which 

means that they evaluated to WHNF after creation. One possible cause is that the tasks needed 

for a spark are not finished when the spark is created, so it evaluates to WHNF temporarily to 

wait for the previous tasks.  

This may happen when a spark in the solver creates parallel sparks for its potential 

numbers in the next blank position, but has not finished finding the numbers. Thus, the newly 

created sparks will become fizzled. 

This also may happen after a spark finished finding all its potential numbers and has 

created sub-sparks to calculate them. Since we used rdeepseq to require an NF result, the 

spark could become fizzled when it is waiting for the sub sparks to finish their calculations. 

Attempt 4 tries to explore this possibility. 

 

 
 

 

 

 

 

 

 



Attempt 3: 

For a parallel spark in attempt 2, its main task is to find the next blank position and the 

potential numbers to fill in. Then, it will create parallel sparks for each potential number and wait 

for them to calculate the rest. 

We added parallelization to the function that finds the potential next numbers, attempting 

to further reduce runtime. However, it runs slower compared to our previous implementations 

and produced much more sparks. We think it is possible that the parallelization overhead 

dominates over the performance benefits. Since the solver only handles squares with sizes 

smaller than or equal to 4, there will be at most 16 potential numbers at each step, which is not 

big enough for it to benefit from parallelization. If the solver handles bigger magic squares, this 

parallelization could potentially be helpful since there will be more potential numbers. 

 

splitHelper :: [Int] -> Int -> [[Int]] 

splitHelper l s 

      | n > 0 = cur : splitHelper remain s 

      | otherwise = [] 

      where n = length cur 

            cur = take s l 

            remain = drop s l 

 

splitList :: [Int] -> [[Int]] 

splitList l 

      | n < 4 = [l] 

      | otherwise = splitHelper l size 

      where n = length l 

            x = round (sqrt (fromIntegral n)) 

            size = n `div` x 

 

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square] 

solverHelper parLayer state 

    … (same as before) 

    choiceLL = splitList choiceL 

    next = concat $ parMap (nextSteps state x y) choiceLL 

 



 

 

 

 

 

 



Attempt 4: 

 Attempting to decrease the number of sparks fizzled, instead of using rdeepseq for all 

the sparks, only the sparks that compute sequentially will use rdeepseq, in another word, the 

sparks with parLayer = 1. The sparks with parLayer > 1 will create sub-sparks for each of its 

potential next numbers. In this attempt, we use rseq to evaluate the sparks with parLayer > 1 to 

WHNF, so they won’t need to wait until their sub-sparks are done. 

 However, this attempt does not show improvement in performance time or the number of 

fizzled sparks. It does decrease the number of fizzled sparks by 279, which could mean that our 

earlier analysis is correct. Nevertheless, we concluded that most fizzled sparks are the result of 

program synchronization. 

 

 

 
 

 

 

 

 

 



Conclusion 

  
Attempt 2 with 4 threads gives the optimal performance. The parallelization is able to 

decrease the runtime of the sequential solver by half, with a 2.2x speedup, completing the 

testing matrix using 18.618s, as opposed to 36.614s originally.  

Speedup will varie for different matrices, because it depends on how many blank 

position and potential numbers the solver need to try, and also how many branches get 

terminated early. 

For every attempts, the workload is distributed evenly among the threads, and all 

threads are untilized almost fully. This behavior is as expected because the tasks of each 

sparks are relatively independent and uniformly distributed. Since our computer only have four 

threads, it’s expected that the thread untilization of each attempts with 8 threads becomes more 

sporadic, and we only considered the performance result up to 4 threads. 

 

Future Improvements 

 There exist faster sequential algorithms that potentially could lead to a better 

parallelization speedup. For example, instead of finding potential numbers for each blank 

position, the solver could generate and test each potential rows that satisfy the magic square 

requirements, which would eliminate false rows and reduce duplicates that get processed. The 

parallelization steps would be the same as the brute force algorithm. The number of potential 

rows are significantly less than potential numbers in each blank positions, so the solver will 

create less sparks. However, the workload for each spark to generate all potential rows are 

heavier. The overall performance may or may not improve.  

 In terms of parallelization, one potential improvement would be having two processes, 

one starts with the empty position from the beginning, and the other starts from the end. 

Nevertheless, the complication is how to merge two processes when they reach the middle 

point. Also, the Repa module is another potential tool to try.  

 Having more physical threads is another way to improve the performance. Since the 

tasks of each thread are relatively independent, in theory, the parallel solver would speedup as 

the number of physical threads increase. 

 



Additional Data: 

Attempt 1 - 2 threads: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Attempt 1 - 8 threads: 

 

 
 

 



Attempt 2 - 2 threads: 

 

 

 

 

 

 

 

 

 

 



Attempt 2 - 8 threads: 

 

 

 



Attempt 3 - 2 threads: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Attempt 3 - 8 threads: 

 

 
 

 

 

 

 



Code: 
Main.hs 

—------------------------------------------------------------------------- 

import Solver (solver, Square) 

import qualified Data.List as L 

import System.Environment(getArgs, getProgName) 

import System.Exit(die) 

 

prettyPrint :: Maybe Square -> IO() 

prettyPrint (Just s) = putStrLn $ unlines $ L.map (unwords . L.map show) s 

prettyPrint Nothing = putStrLn "" 

 

parseHelper :: [String] -> [Int] 

parseHelper (x:xs) = (read x :: Int) : parseHelper xs 

parseHelper _ = [] 

 

parseInput :: [String] -> Square 

parseInput (x:xs) = (parseHelper $ words x) : parseInput xs 

parseInput _ = [] 

 

main :: IO () 

main = do 

        args <- getArgs 

        (filename) <- case args of 

            [filename] -> return (filename) 

            _ -> do pn <- getProgName 

                    die $ "Usage: " ++ pn ++ " <filename> +RTS -N? -ls" 

        file <- readFile filename 

        let inputMagic = parseInput $ lines file 

        mapM_ prettyPrint (solver inputMagic) 

 

 

 

 

MagicSquareSolver.hs 

—------------------------------------------------------------------------- 

module Solver 

(solver, Square) 

where 

 

import qualified Data.List as L 

import qualified Data.Set as S 

import Control.Monad -- guard 

import Control.Parallel.Strategies hiding (parMap) 

 

type Square = [[Int]] 

 



magic :: Square 

magic = [[2,16,13,3], 

         [11,5,8,10], 

         [7,9,12,6], 

         [14,4,1,15]] 

 

-- prettyPrint :: Maybe Square -> IO() 

-- prettyPrint (Just s) = putStrLn $ unlines $ L.map (unwords . L.map 

show) s 

-- prettyPrint Nothing = putStrLn "" 

 

fDiagonal :: Square -> Int -> [Int] 

fDiagonal (x:xs) i = (x !! i) : fDiagonal xs (i+1) 

fDiagonal _ _ = [] 

 

aDiagonal :: Square -> Int -> Int -> [Int] 

aDiagonal (x:xs) i n = (x !! (n-1-i)) : aDiagonal xs (i+1) n 

aDiagonal _ _ _ = [] 

 

validator :: Square -> Bool 

validator s = (all (== magicNum) rowSumf) && (all (< magicNum) rowSumu) 

      where n = length s 

            magicNum = (1 + (n*n)) * n `div` 2 

            fDiagonalR = filter (/=(-1)) $ fDiagonal s 0 

            aDiagonalR = filter (/=(-1)) $ aDiagonal s 0 n 

            rows_ = L.map (filter (/=(-1))) s 

            rows = rows_ ++ [fDiagonalR] ++ [aDiagonalR] 

            filledRow = filter (\x -> length x == n) rows 

            unfilledRow = filter (\x -> length x < n) rows 

            rowSumf = L.map sum filledRow 

            rowSumu = L.map sum unfilledRow 

 

 

squareFilled :: Square -> Bool 

squareFilled = and . L.map (all (/= -1)) 

 

findEmptyPos :: Square -> Int -> (Int, Int) 

findEmptyPos (x:xs) curRow 

      | emptyPos == length x = findEmptyPos xs $ curRow + 1 

      | otherwise = (curRow, emptyPos) 

      where emptyPos = length $ takeWhile (/= -1) x 

findEmptyPos _ _ = (-1, -1) 

 

 

updateAtPos :: Square -> Int -> Int -> Int -> Square 

updateAtPos s x y val = prevRows ++ updatedRow:(tail otherRows) 

      where (prevRows, otherRows) = splitAt x s 



            curRow = head otherRows 

            (prevElems, otherElems) = splitAt y curRow 

            updatedRow = prevElems ++ val:(tail otherElems) 

 

 

nextSteps :: (Square, S.Set Int) -> Int -> Int -> [Int] -> [(Square, S.Set 

Int)] 

nextSteps state x y (v:vs)  

      | validator newS && validator newST = curPair:nextSteps state x y vs 

      | otherwise = nextSteps state x y vs 

      where (s, choiceS) = state 

            newS = updateAtPos s x y v 

            newST = L.transpose newS 

            curPair = (newS, S.delete v choiceS) 

nextSteps _ _ _ _ = [] 

 

parMapDeep :: NFData b => (a -> b) -> [a] -> [b] 

parMapDeep f xs = L.map f xs `using` parList rdeepseq 

 

parMap :: NFData b => (a -> b) -> [a] -> [b] 

parMap f xs = L.map f xs `using` parList rseq 

 

splitHelper :: [Int] -> Int -> [[Int]] 

splitHelper l s 

      | n > 0 = cur : splitHelper remain s 

      | otherwise = [] 

      where n = length cur 

            cur = take s l 

            remain = drop s l 

 

splitList :: [Int] -> [[Int]] 

splitList l 

      | n < 4 = [l] 

      | otherwise = splitHelper l size 

      where n = length l 

            x = round (sqrt (fromIntegral n)) 

            size = n `div` x 

 

solverHelper :: Int -> (Square, S.Set Int) -> [Maybe Square] 

solverHelper parLayer state 

      | squareFilled s = [Just s >>= (\x -> guard (validator x) >> return 

x)] 

      | parLayer > 1  = concat $ parMap (solverHelper (parLayer-1)) next 

      | parLayer == 1 = concat $ parMapDeep (solverHelper (parLayer-1)) 

next 

      | otherwise = concat $ L.map (solverHelper parLayer) next 

      where (s, choiceS) = state 



            (x, y) = findEmptyPos s 0 

            choiceL = S.toList choiceS 

            next = nextSteps state x y choiceL 

 

solver :: Square -> [Maybe Square] 

solver s = solverHelper (n+1) (s, S.difference allState curState) 

      where n = length s 

            allState = S.fromList [1..n*n] 

            curState = foldl (S.union) S.empty $ L.map S.fromList s 

 

 


