MRC: Parallel Cache Simulation for
Miss-Ratio Curves

Parallel Functional Programming | Fall 2021 | Final Project Proposal

Jeffrey Tao
jat2164

Goals

In this project, we aim to perform cache
simulations in parallel on a variety of
workloads, varying cache eviction algorithm
and cache size to produce a miss ratio curve
per-algorithm per-workload.

Background

L1E ]

0T 1

0.6 1

0.3 4

0.4

Miss Ratio

0.3

02 9

o1 A

o

o] 1IEI E:D Ellﬂ' E;-IJ E;D I;ﬂ T':EI &0
Cache Size (GB)
Miss ratio may fluctuate in unexpected ways
for a given cache algorithm and workload
across cache sizes. Cache misses invariably
translate to higher latency for a certain
data-dependent operation. To this end,
Miss-Ratio Curves (MRCs) are a useful tool
for profiling how a given cache eviction
policy performs on a given workload. The
miss ratio is expressed as:

# of misses
# of total operations

Kaylee Trevifio
kt2846

A MRC can be produced by running the
workload on a simulated cache. As the
simulation runs, it simply tracks whether
each cache operation is a hit or a miss, and
computes the miss ratio after it finishes
simulating the workload. This produces one
point in the MRC. The full MRC is produced
by doing this simulation at every cache size
between a lower and upper bound, usually
from 0 (100% miss rate) to the total size of
the data touched by the workload (0% miss
rate).

Scope of Work

An attractive characteristic of this project
plan is how extensible it is. Once the basic
trace loading and cache simulation
implementation is complete, we can always
add or cut work by adding new cache
eviction algorithms, new traces & adapters,
and new simulation features such as
sampling.

Trace Adapters

Production cache access traces are available,
but do not have a standardized format. Each
cache needs a simple adapter to produce a
unified format that our simulation function
accepts. Each trace adapter will produce a



list: [(id, size)], where id uniquely
identifies an item in the workload used for
lookups and evictions, and size is the size in
bytes of the item.

Eviction Algorithms

There are a variety of potential eviction
algorithms that we might like to implement.
Many algorithms require some state for
bookkeeping. We can conceptualize the
cache eviction algorithm as a pure function:
f(state, cache contents, next access) —
(state, eviction choice)
State is opaque to the simulation runner and
is algorithm-specific. As such, it is simply
stored after an invocation of the eviction
algorithm and passed back into the next
invocation. An example of state is the
priority queue for the Least Recently Used
algorithm.

Cache Simulation

The cache simulator is initialized with the
cache size, eviction algorithm, and
workload. It creates a representation of the
(initially empty) cache contents and begins
simulating the workload. For each access in
the workload, it tracks if the access is a hit or
miss. If it is a miss and the cache is full, it
invokes the eviction algorithm and applies
the eviction choice to the cache contents.
The simulator continues this process until
the workload trace is completely consumed.
At the end, the simulator returns the miss
ratio. Formally:

simulate(algorithm, size, workload) —

double

As final output, once all of the simulations
across cache sizes for a given workload and

eviction algorithm are complete, the
program outputs all of the data points as a
complete MRC. We can then visualize the
data points separately as MRC plots.

Parallelizability

Simulation of a particular eviction algorithm
over a given workload trace is necessarily
serial. However, the generation of MRCs
requires repeating simulations at different
cache sizes, which can be parallelized. In
general, each individual simulation takes as
input the intersection of three parameters
selected from the sets:

e Eviction Algorithm (A)
e Cache Size (S)
e Workload Trace (W)

Hence, we have |4]| * |S| * |W| total
simulations which can be performed in
parallel.

References

e Waldspurger, Carl A. et al. “Cache

Modeling and Optimization using
Miniature Simulations.” USENIX Annual

Technical Conference (2017).

e twitter/cache-trace: A collection of
Twitter's anonymized production cache
traces.

e cache2k/cache2k-benchmark:
Benchmarks for cache2k and third-party
Java caching products

e sunnyszy/lrb: A C++11 simulator for a

variety of CDN caching policies.



https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://github.com/twitter/cache-trace
https://github.com/twitter/cache-trace
https://github.com/twitter/cache-trace
https://github.com/cache2k/cache2k-benchmark
https://github.com/cache2k/cache2k-benchmark
https://github.com/cache2k/cache2k-benchmark
https://github.com/sunnyszy/lrb
https://github.com/sunnyszy/lrb

