
SOS
Tojo Abella, Sitong Feng, G Pershing, Sheron Wang

Introduction
of

SOS

(Shape Open System)

● Introduction
● Motivation

Introduction
 SOS (Shape Open System) Language

❏ Imperative
❏ Focus on 2D image support, especially complex shapes
❏ Emerges from C and OCaml like syntax
❏ Employs OpenGL for graphics utils
❏ Provide math operation based on C

< - artistic image rendered instantly - > leaf.ppm

Motivation
➢ Existing Languages/API

■ takes long time to learn
■ takes too much code to do complicated operations on shape
■ no great support on shapes alone

➢ SOS
■ simple and quick to master
■ create mathematically complex images elegantly

Features
of

SOS

(Stylistically Observed Structures)

● Basic Features
● Unique Features
● Import
● Math Library
● Graphics Library

Basic Features
● Types

○ bool, int, float

○ array, struct, func

● Expressions

○ Most statements have a value

○ No statement end syntax—expression ends

are unambiguous

○ Arithmetic, if/else, sequencing

● Recursion

○ We have it!

n : int = 1
f : float = 6.2832
l : array int = [1, 2, 3]
struct point = {x: float, y: float}
p : point = {-1.3, 4.6}

fac : (n: int) -> int =
 if n==0 then 1
 else n * fac(n-1)
fac_ref : func int->int = fac

print(fac(l[2]))

Unique Features
● Struct arithmetic

○ Addition, scaling, dot product

○ Matrix multiplication

● Implicit Array iteration

○ For operators

○ For functions

struct point = {x: float, y: float}
struct mat2 = {a11: float, a21:
float, a12: float, a22: float}

p : point = {1.0, 1.3}
q : point = 3*p + {0.0, 2.0}
dot: float = p * r
ccw: mat2 = {0.0, 1.0, -1.0, 0.0}
q = ccw ** q

double : (n: int) -> int = 2*n
double([0,1,2]) // = [0, 2, 4]
a: array array int = [0,1]+[2,3]
 // = [[2, 3], [3, 4]]

Import and standard libraries written in SOS
● Naive import

○ Works like #include in C

○ Replaces the line to codes in another file

○ Increases extendibility of our language

○ Duplicate files detection

● Standard Libraries written in SOS
○ Makes OpenGL calls easier to use

○ Define functions and structs using SOS

○ List of libraries:

■ renderer.sos

■ point.sos

■ shape.sos

■ color.sos

■ … and more in future!

color.sos

struct color = {r: float, g: float,
b: float, a: float}

alias colors = array color

helloworld.sos

import color.sos

c1 : color = {255.0, 0.0, 0.0, 0.8}

c2 : color = {0.0, 255.0, 0.0, 0.8}

color_arr : colors = [c1, c2]

Math Library
● Could link to C math library easily in LLVM

● Use by import math.sos

● Functions that we support as a graphic

language:

○ float sqrt(float x)

○ float sin(float x)

○ float cos(float x)

○ float tan(float x)

○ float asin(float x)

○ float acos(float x)

○ float atan(float x)

● Yet another function that we implemented

with C math library utilization:

○ float toradians(float x)

● Several math functions implemented with
pure SOS:

○ float floor(float x)

○ float ceil(float x)

○ float frac(float x)

○ float max(float x)

○ float min(float x)

○ float abs(float x)

○ and more!

Graphics Library - Renderer.sos
Canvas functions: given an SOS canvas, start or end OpenGL

context

● startCanvas(...) starts MESA context with

appropriate window size

● endCanvas(...) ends MESA context, saves

window to .ppm file

Drawing functions: given a point array and color array, draw

objects

● drawPoints() draws points on current canvas

● drawPath(...) draws path on current canvas

● drawShape(...) draws shape on current canvas

Graphic Library - OpenGL
CODE TO CREATE AN OPENGL CONTEXT: VERY COMPLICATED!

void gl_startRendering(int width, int height){
 ctx = OSMesaCreateContextExt(OSMESA_RGBA, 16, 0, 0, NULL);
 if (!ctx){
 printf("OSMesaCreateContext failed!\n");
 }

 buffer = malloc(width * height * 4 * sizeof(GLubyte));
 if (!buffer) {
 printf("Alloc image buffer failed!\n");
 }

 // Bind the buffer to the context and make it current
 if (!OSMesaMakeCurrent(ctx, buffer, GL_UNSIGNED_BYTE, width, height)) {
 printf("OSMesaMakeCurrent failed!\n");
 }
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glMatrixMode(GL_MODELVIEW);
 glClear(GL_COLOR_BUFFER_BIT);
 glPushMatrix();
 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);
 glColor4f(1.0, 1.0, 1.0, 1.0);

Compiler
of

SOS

(Sad Oblique Shapes)

● Architecture
● Docker Image

Compiler Architecture
● Math bindings supported by LLVM

● Utilize The Mesa 3D Graphics Library, one open

source software implementation of OpenGL

● Could run inside of the docker image provided

by us, thanks to Off-Screen Rendering Mesa

○ render into main memory without any

window system or operating system

dependencies

○ save graphics to *.ppm files when

rendering ends

Reference: https://docs.mesa3d.org/osmesa.html

If you are seeking a
Docker Image with
OpenGL & LLVM etc.

docker pull sheronw1174/sos-env

Wrap up
of

SOS

(SOS Object System)

● Challenges
● Future Work

Challenges
Running OpenGL is hard, and running OpenGL inside of Docker is especially hard.

— Sheron the one who says she’s going to help but she’s not

Codegen is easy as long as you don’t value your sanity.

— G the God

Using OpenGL is hard. Thank G, I mean thank God I have SOS!!

— Tojo the peasant

SOS has saved us from complicating our brain.

— Sitong the editor

Future Work
Basics

● Incorporate more OpenGL utilities such as

line type - glLineWidth

● Add function scope

● Add basic built-in shapes

● Memory Management

Advanced

● Add 3D Shape Support/Plot Support

● Add more third-party API support

● Allow real-time interactivity

DEMO for SOS
a.k.a. Silly Odd Shapes

Thank you!

