## Matcat

Mariam Khmaladze, Davit Barblishvili, James Ryan, Andreas Cheng
System Architect
Language Guru
Tester
Manager

## Agenda

- Matcat Overview
- Language Key Features
- Compiler Architecture
- Key Implementation Details
- Demo
- Wrap Up
- Q\&A


## Matcat Overview

Intro and Evolution

## Goals

- Convenient matrix manipulation
- Convenient matrix operations
- Rich matrix related built-in functions
- Polymorphic operators that work for primitive types and matrices


## Language Properties

- Imperative
- Statically scoped
- Strongly Typed
- Matrix supports
- Special data type
- C-like syntax



## Matcat in One Slide

Declaring
function


Formal argument

Our matrix data type

## 2

func $m$ (int ans) matrix $\{$
return [[ans, 0], [0, ans]]; Polymorphic
\}
Return statement

Declaring variables
as a
statement
func main() int
printStr("I can only show you the door.");
$\qquad$ int $a=657+64$;
\}


Calling user-defined function

## Timeline

Initializing Repo: lots of renaming

Create ast, sast, codegen based on MicroC

Start working on:
matrixLibrary.c, adding Vdecl


## Language Evolution - The iterations

## Zero

- Matrix
- Vector
- Matrix/Vector Operations
- String
- String concatenation: "a" + "b"
- Fancy ruby-like string interpolation:
"\#\{num\}"
- Structs
- Function that return Multiple Values


## One

- Matrix
- Some Matrix Operations
- Variable declaration as statement


## Current

- Matrix
- Many Matrix Operations
- Variable declaration as statement
- Fancy
automated test-suite


## Available Built-In Functions

- inv(matrix mt) : : inverse of matrix
- isInv(matrix mt) : : checks if the matrix is invertible
- $\operatorname{det}($ matrix mt) : : determinant of a matrix
- check_symmetry(matrix mt) : : checks if the matrix is symmetric
- rotate90(matrix mt) : : rotates the matrix in the clockwise direction
- transpose( matrix mt) : : transpose of a matrix



## Language Key Features

- Linear Algebra
- Matrix Operations
- +, -, *, /, ^
- [i,:], [: , j], [: ,:], [i, j]
- dot product


## Compiler Architecture

The Structure...

## Compiler Architecture



## Matrix Overview

- A new non-orthodox data type in Matcat;
- It does not require the user to define dimensions;
- numbers of columns and rows are accounted internally;
- Defined, implemented, and maintained in C using two-dimensional array.



## Matrix Structure



## Syntax for Matrix

The operators and some snippets

## Snippets: Dot Product

```
func main() int{
    matrix a = [[1,2,3]];
    matrix b = [[2,3,4]];
    printd(a dot b);
    return 0;
}
```

Result: 20

## Snippets: Matrix Multiplication

```
func main() int {
    matrix a = [[1,2][4,5]];
    printm(a * a);
    return 0;
}
```

Result:
[9.00 12.00 ]
$[24.0033 .00$ ]
)

## Snippets: Scalar * Matrix

```
func main() int {
    matrix a;
    a = [[1,0,0],[0,1,0],[0,0,1]];
    printm(4.2 * a);
    return 0;
}
```

Result:
(
$\left[\begin{array}{llll}4.20 & 0.00 & 0.00\end{array}\right]$
$\left[\begin{array}{lll}0.00 & 4.20 & 0.00\end{array}\right]$
$\left[\begin{array}{lll}0.00 & 0.00 & 4.20\end{array}\right]$
)


## Snippets: Matrix Inverse

```
func main() int {
    matrix a;
    a = [[1,0], [0,1]];
    printm(inv(a));
    return 0;
}
```

Result:
[1.00-0.00 ]
[-0.00 1.00 ]
)

## Demo

Sample programs

## Wrap up

Future work, challenges and lessons learnt

## Future Work

- Accept any types in the matrix
- Make it works like a interpreter
- Better semantic checking
- Allowing library import
- \#include<cmath>
- More built-in data types
- String, List, Tuple
- Struct/Class
- Integrate the automated testsuite on GitHub


## Challenges

- Learning Ocaml
- Learning LLVM
- Learning Git
- Timezone tix
- A bit lost after the Hello World
- "Personnel changes"
- Teammate and TA are changed


## Lessons Learnt

- Functional Programming
- Compiler
- Collaboration
- Linear Algebra


## Credits

Special thanks to Xijiao Li, our TA,
( $\lambda$ Stephen . $\lambda$ A . Edwards ), and those wonderful past projects:

- PixelPlusPlus
- Shoo
- Coral

Also, special thanks to all the people who made and released these awesome resources for free:

- Presentation template by SlidesCarnival
- Photographs by Unsplash


## Extra Screenshots

From the code to the test-suite
test-matrixMult.mc...
test-scalarDivDouble.
est-addFloats mc
test-addFloats.mc...
PASSED
PASSED
test-scaleMatrixDouble.mc...
test-for2.mc..
test-ifelse1.mc..
test-matrixAccess1D.mc...
test-addMatrix.mc...
test-matrixMult1.mc...
fail-assign2.mc...
fail-funcInLoop.mc...
fail-multipleTypes.mc...
fail-for4.mc...
fail-ifelse2.mc..
fail-for5.mc. .
fail-ifelse3.mc. .
fail-assign3.mc. .
fail-emptyMatrixDeclare.mc...
fail-for1.mc...
fail-funcInFunc.mc...
fail-while1.mc...
fail-binop-floats-ints.mc. . .
fail-call-nonfunc.mc...
fail-nestedMatrix.mc...
fail-illegalVarName.mc...
fail-helloworld1.mc...
fail-returnTypeMismatch.mc. . . fail-topLevelReturn.mc...
fail-for2.mc...
fail-assign1.mc...
fail-for3.mc...
fail-ifWithoutExpr.mc...
fail-ifelse1.mc..

```
Test summary:
Passed: 74/74
Failed: 0/74
Skipped: 1
```

> py testall.py --dir future_improvements test-transposeMatrix.mc... FAILED. Output does not match. Expected: b'(\n[1.00 4.00 ] $\ln [2.005 .00] \backslash n[3.006 .00] \backslash n) '$ Actual: b'(\n[0.00 0.00 ]\n[2.00 5.00 ]\n[3.00 6.00 ]\n)' test-assignMatrixTypes.mc... fail-noReturn.mc... fail-badMatrixIndex.mc...

FAILED
FAILED, it should not compile. FAILED, it should not compile.

Test summary:
Passed: 0/4
Failed: 4/4

