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Matcat Overview
Intro and Evolution
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Goals

● Convenient matrix manipulation
● Convenient matrix operations
● Rich matrix related built-in functions
● Polymorphic operators that work for 

primitive types and matrices
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Language Properties

● Imperative
● Statically scoped
● Strongly Typed
● Matrix supports

○ Special data type

● C-like syntax
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Matcat in One Slide
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func m(int ans) matrix {
        return [[ans, 0],[0, ans]];
}

func main() int {
        printStr("I can only show you the door.");
        int a = 657 + 64;
        while (true) {
                print(a);
                printm(inv( m(42) + m(42) ));
        }
}

Declaring 
function

Our matrix data type 😎

Built-in functions

Return statement

Declaring 
variables
as a 
statement

Calling user-defined function

Polymorphic 
Operators 😎

Formal 
argument



Timeline
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🐱
Presentation

🐱
LRM/Parser

🐱
Hello World

Initializing Repo: 
lots of renaming

Start working on:
matrixLibrary.c ,

adding Vdecl

Create ast, sast, 
codegen based 

on MicroC



Language Evolution - The iterations

Zero
● Matrix
● Vector
● Matrix/Vector 

Operations
● String 
● String 

concatenation: 
“a”+”b”

● Fancy ruby-like  
string interpolation: 
“#{num}”

● Structs
● Function that return 

Multiple Values

One
● Matrix
● Some Matrix 

Operations
● Variable 

declaration as 
statement

Current
● Matrix
● Many Matrix 

Operations
● Variable 

declaration as 
statement

● Fancy 
automated 
test-suite
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● inv(matrix mt) : : inverse of matrix
● isInv(matrix mt) : : checks if the matrix is invertible
● det(matrix mt) : : determinant of a matrix
● check_symmetry(matrix mt) : : checks if the matrix 

is symmetric 
● rotate90(matrix mt) : : rotates the matrix in the 

clockwise direction
● transpose( matrix mt) : : transpose of a matrix

Available Built-In Functions
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Language Key Features

● Linear Algebra
● Matrix Operations

○ +, −, *, /, ^
○ [i , :] , [: , j] , [: , :] , [i , j]
○ dot product
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Compiler 
Architecture
The Structure...
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Compiler Architecture
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Matrix Overview

● A new non-orthodox data type in Matcat;
● It does not require the user to define dimensions;
● numbers of columns and rows are accounted internally;
● Defined, implemented, and maintained in C using two-dimensional array.
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(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

         0                      1                        2

Column Index. 
Accessible →  [:,j]

0

1

2

Row Index.
Accessible → [i,:]

Matrix Diagonal.
 Accessible →  [:,:]



Matrix Structure
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1

2

Vector

1

Scalar

0           4          6             8           9           7

Matrix

1            1           4            5           1           1



Syntax for Matrix
The operators and some snippets
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Snippets: Dot Product

func main() int{

    matrix a = [[1,2,3]];

    matrix b = [[2,3,4]];

    printd(a dot b);

    return 0;

}

Result: 20
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Snippets: Matrix Multiplication

func main() int {

    matrix a = [[1,2][4,5]];

    printm(a * a);

    return 0;

}

Result:
(

[9.00 12.00 ]

[24.00 33.00 ]

)
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Snippets: Scalar * Matrix

func main() int {

    matrix a; 

    a = [[1,0,0],[0,1,0],[0,0,1]];

    printm(4.2 * a);

    return 0;

}

Result:
(

[4.20 0.00 0.00 ]

[0.00 4.20 0.00 ]

[0.00 0.00 4.20 ]

)
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Snippets: Matrix Inverse

func main() int {

    matrix a; 

    a = [[1,0],[0,1]];

    printm(inv(a));

    return 0;

}

Result:
(

[1.00 -0.00 ]

[-0.00 1.00 ]

)
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Demo
Sample programs
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Wrap up
Future work, challenges and 
lessons learnt
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Future Work

● Accept any types in the matrix
● Make it works like a interpreter
● Better semantic checking
● Allowing library import

○ #include<cmath>
● More built-in data types

○ String, List, Tuple
● Struct/Class
● Integrate the automated testsuite on GitHub
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Challenges

● Learning Ocaml
● Learning LLVM
● Learning Git
● Timezone 😿
● A bit lost after the Hello World
● “Personnel changes”

○ Teammate and TA are changed
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Lessons Learnt

● Functional Programming

● Compiler

● Collaboration

● Linear Algebra
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Thanks!
Any questions?
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Credits

Special thanks to Xijiao Li, our TA,
( λ Stephen . λ A . Edwards ),
and those wonderful past projects:
● PixelPlusPlus
● Shoo
● Coral

Also, special thanks to all the people who made and released these awesome resources for free:
● Presentation template by SlidesCarnival
● Photographs by Unsplash
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Extra Screenshots
From the code to the test-suite
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