
Matcat
Mariam Khmaladze, Davit Barblishvili, James Ryan, Andreas Cheng
System Architect Language Guru Tester Manager

Agenda

● Matcat Overview
● Language Key Features
● Compiler Architecture
● Key Implementation Details
● Demo
● Wrap Up
● Q&A

2

Matcat Overview
Intro and Evolution

3

Goals

● Convenient matrix manipulation
● Convenient matrix operations
● Rich matrix related built-in functions
● Polymorphic operators that work for

primitive types and matrices

4

Language Properties

● Imperative
● Statically scoped
● Strongly Typed
● Matrix supports

○ Special data type

● C-like syntax

5

Matcat in One Slide
6

func m(int ans) matrix {
 return [[ans, 0],[0, ans]];
}

func main() int {
 printStr("I can only show you the door.");
 int a = 657 + 64;
 while (true) {
 print(a);
 printm(inv(m(42) + m(42)));
 }
}

Declaring
function

Our matrix data type 😎

Built-in functions

Return statement

Declaring
variables
as a
statement

Calling user-defined function

Polymorphic
Operators 😎

Formal
argument

Timeline
7

🐱
Presentation

🐱
LRM/Parser

🐱
Hello World

Initializing Repo:
lots of renaming

Start working on:
matrixLibrary.c ,

adding Vdecl

Create ast, sast,
codegen based

on MicroC

Language Evolution - The iterations

Zero
● Matrix
● Vector
● Matrix/Vector

Operations
● String
● String

concatenation:
“a”+”b”

● Fancy ruby-like
string interpolation:
“#{num}”

● Structs
● Function that return

Multiple Values

One
● Matrix
● Some Matrix

Operations
● Variable

declaration as
statement

Current
● Matrix
● Many Matrix

Operations
● Variable

declaration as
statement

● Fancy
automated
test-suite

8

● inv(matrix mt) : : inverse of matrix
● isInv(matrix mt) : : checks if the matrix is invertible
● det(matrix mt) : : determinant of a matrix
● check_symmetry(matrix mt) : : checks if the matrix

is symmetric
● rotate90(matrix mt) : : rotates the matrix in the

clockwise direction
● transpose(matrix mt) : : transpose of a matrix

Available Built-In Functions
9

Language Key Features

● Linear Algebra
● Matrix Operations

○ +, −, *, /, ^
○ [i , :] , [: , j] , [: , :] , [i , j]
○ dot product

10

Compiler
Architecture
The Structure...

11

Compiler Architecture
12

Matrix Overview

● A new non-orthodox data type in Matcat;
● It does not require the user to define dimensions;
● numbers of columns and rows are accounted internally;
● Defined, implemented, and maintained in C using two-dimensional array.

13

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

 0 1 2

Column Index.
Accessible → [:,j]

0

1

2

Row Index.
Accessible → [i,:]

Matrix Diagonal.
 Accessible → [:,:]

Matrix Structure
14

1

2

Vector

1

Scalar

0 4 6 8 9 7

Matrix

1 1 4 5 1 1

Syntax for Matrix
The operators and some snippets

15

Snippets: Dot Product

func main() int{

 matrix a = [[1,2,3]];

 matrix b = [[2,3,4]];

 printd(a dot b);

 return 0;

}

Result: 20

16

Snippets: Matrix Multiplication

func main() int {

 matrix a = [[1,2][4,5]];

 printm(a * a);

 return 0;

}

Result:
(

[9.00 12.00]

[24.00 33.00]

)

17

Snippets: Scalar * Matrix

func main() int {

 matrix a;

 a = [[1,0,0],[0,1,0],[0,0,1]];

 printm(4.2 * a);

 return 0;

}

Result:
(

[4.20 0.00 0.00]

[0.00 4.20 0.00]

[0.00 0.00 4.20]

)

18

Snippets: Matrix Inverse

func main() int {

 matrix a;

 a = [[1,0],[0,1]];

 printm(inv(a));

 return 0;

}

Result:
(

[1.00 -0.00]

[-0.00 1.00]

)

19

Demo
Sample programs

20

Wrap up
Future work, challenges and
lessons learnt

21

Future Work

● Accept any types in the matrix
● Make it works like a interpreter
● Better semantic checking
● Allowing library import

○ #include<cmath>
● More built-in data types

○ String, List, Tuple
● Struct/Class
● Integrate the automated testsuite on GitHub

22

Challenges

● Learning Ocaml
● Learning LLVM
● Learning Git
● Timezone 😿
● A bit lost after the Hello World
● “Personnel changes”

○ Teammate and TA are changed

23

Lessons Learnt

● Functional Programming

● Compiler

● Collaboration

● Linear Algebra

24

Thanks!
Any questions?

25

Credits

Special thanks to Xijiao Li, our TA,
(λ Stephen . λ A . Edwards),
and those wonderful past projects:
● PixelPlusPlus
● Shoo
● Coral

Also, special thanks to all the people who made and released these awesome resources for free:
● Presentation template by SlidesCarnival
● Photographs by Unsplash

26

https://github.com/maobowen/PixelPlusPlus
https://github.com/sam-jay/shoo-lang/
https://github.com/jacobaustin123/Coral
http://www.slidescarnival.com/
http://unsplash.com/

Extra Screenshots
From the code to the test-suite

27

28

29

