BLAStoff

Graph computation language based on the BLAS* specification

Let's hop right in

OI Motivation

04 Other features

02 Semirings
03 Selection

OB Demo

Motivation

Graphs can be represented as matrices.

Graph operations can be written as matrix operations.

Benefits

Matrix operations are highly optimized, fully realizing parallel computation.

GraphBLAS API

BFS using the C GraphBLAS Library

```
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include "GraphBLAS.h"
* Given a boolean n x n adjacency matrix A and a source vertex s, performs a BFS traversal
* of the graph and sets v[i] to the level in which vertex i is visited (v[s]=1).
* If i is not reacheable from s, then v[i]=0. (Vector v should be empty on input.)
GrB_Info BFS(GrB_Vector *v, GrB_Matrix A, GrB_Index s)
GrB_Index n
    GrB_Matrix_nrows(&n,A); // n = # of rows of A
    GrB_Vector_new (v,GrB_INT32,n); // Vector<int32_t>v(n)
GrB-Vector q; 
    GrB_Vector_setElement(q,(bool)true,s); // q/s/ = true, false everywhere else
    * BFS traversal and label the vertices
    int32-t d = 0;
    // d = level in BFS traversal
    bool succ = false; // succ = true when some successor found
    do {
        HrB
    GrB_vxm(q,*v,GrB_NULL,GrB_LOR_LAND_SEMIRING_BOOL
            q,A,GrB_DESC_RC): }||q[!v]=q|.88S A finds all the 
```



```
q, A, GrB_DESC_RC): \(\quad / / q[!v]=q \| .88 A\); finds all the
GrB_reduce(\&succ, GrB_NULL,GrB_LOR_MONOID_BOOL unvisited successors from current \(q\)
q,GrB_NULL ): // succ \(=| |(q)\)
while (succ): // if there is no successor in \(q\), we are done
GrB_free (\&q); // q vector no longer needed
return GrB_SUCCESS:
```


Can we do better?

From "The GraphBLAS C API Specification", Buluç, et al

BFS in BLAStoff

```
def BFS(G, frontier) {
    #logical;
    N = |G|[0];
    levels = Zero(N : 1);
    maskedGT = G^T;
    depth = 0;
    while (plusColumnReduce(frontier)) {
        #arithmetic;
            depth = depth + 1;
            #logical;
            levels[rangeFromVector(frontier)] = depth;
            mask = !(levels)[0, Zero(N:1), N, 1];
            maskedGT = maskedGT @ mask;
            frontier = maskedGT * frontier;
    }
    #arithmetic;
    return levels + One(|levels|)~(-1);
}
```

There's a lot going on here. Let's talk about some of these features!

BLAStoff Overview

- Every object is a matrix
- Imperative
- Wide offering of primitive matrix operations
- Versatile matrix selection operator
- Semiring semantics

What is a semiring?

A set of two binary operators: addition and multiplication.

What is a semiring?

A set of two binary operators: addition and multiplication.

- $(R,+)$ is a commutative monoid with identity element 0
- $(\mathrm{R}, *)$ is a monoid with identity element 1
- Multiplication left and right distributes over addition
- Multiplication by 0 annihilates R

What is a semiring?

A set of two binary operators: addition and multiplication.

Arithmetic semiring:

- $3+7=10$
- 3 * $7=21$
- etc.

What is a semiring?

A set of two binary operators: addition and multiplication.

Arithmetic semiring:

- $3+7=10$
- 3 * $7=21$
- etc.

Logical semiring:

- $3+0=1$
- $3+7=1$
- $0+0=0$
- 3 * $0=0$
- etc.

What is a semiring?

A set of two binary operators: addition and multiplication.

Arithmetic semiring:

- $3+7=10$
- 3 * $7=21$
- etc.

Maxmin semiring:

- $3+7=7$
- 3 * $7=3$
- etc.

Semirings in BLAStoff

\#semiring-name; to change semiring

Semirings in BLAStoff

\#semiring-name; to change semiring

```
A = [ 1, 2;
    3, 4 ];
B = [ 0, -1;
    -2, 5 ];
```

\#maxmin;

```
printm(A + B); // prints: 1 2\n3 5
printm(A * B); // prints: -2 2\n-2 4
```

\#arithmetic; printm(A + B) printm(A * B); // prints: $-49 \backslash n-817$

Semirings in BLAStoff

```
def addThree(A, B, C) {
        sum = A + B + C;
        return sum;
}
    def f(A, B, C) {
        #maxmin;
        printm(addThree(A, B, C)); // prints 6
        printm(A + B + C); // prints 3
}
    A = 1;
    B = 2;
    C = 3;
    printm(A + B + C); // prints 6
    f(A, B, C);
```


Semirings in BLAStoff

```
def addThree(A, B, C) {
    #maxmin;
    sum = A + B + C;
    return sum;
}
    def f(A, B, C) {
        #maxmin;
        printm(addThree(A, B, C)); // prints 3
        printm(A + B + C); // prints 3
}
    A = 1;
    B = 2;
    C = 3;
    printm(A + B + C); // prints 6
    f(A, B, C);
```


Semirings in BLAStoff

```
def addThree(A, B, C) {
    #_;
    sum = A + B + C;
    return sum;
}
    def f(A, B, C) {
        #maxmin;
        printm(addThree(A, B, C)); // prints 3
        printm(A + B + C); // prints 3
}
    A = 1;
    B = 2;
    C = 3;
    printm(A + B + C); // prints 6
    f(A, B, C);
```


How should selection work?

- Robust
- Expressive
- Powerful
- But concise
- In other words, matrix.get(i,j) won't cut it

Our selection operator

- $\mathrm{M}[\mathrm{A}, \mathrm{B}, \mathrm{c}, \mathrm{d}]$
- A: row indices, B: column indices
- c, d: size of the submatrices
- A is the only required argument
- B, c, d default to [0], [1], [1], respectively

Example

$1 \quad v=[1 ; 2 ; 3 ; 4] ;$
$2 \quad \mathrm{M}=[1,2,3 ;$
3 4, 5, 6;
7, 8, 9];
5
6 v[2]; // gets [3]
7 M[2,1]; // gets [8]
8 v[[0;3]]; // gets [1;4]
9 M[1, 1, 1, 2]; // gets [5,6]

Example

column indices

Example

column indices
row indices

Example

26	M = [1, 2, 3;
27	$4,5,6 ;$
28	$7,8,9] ;$
29	
30	M [0, $[0 ; 2], 2,1]=[-1 ;-1] ;$
31	
32	/* sets M to
33	$[-1,2,-1 ;$
34	$-1,5,-1 ;$
35	$7,8,9] ; * /$

04

Operators

"It's not the operation itself that is the concern, it's the anesthesia."

Convolution ~

A ~ B: slide B across A like so...

...where each windowed view becomes just one entry in the resulting matrix.

Why is this useful for us?

Convolution ~

- Can be used to emulate other typical operators, most notably scalar multiplication.
- BLAStoff has no scalars. To achieve this, we just use a sliding window of size 1×1 !

```
A = [1, 2, 3; 4, 5, 6];
k = 2;
B = A ~ k;
// B is now [2, 4, 6; 8, 10, 12];
```


Size ||

- For an m x n matrix $A,|A|$ returns a 2×1 column vector with values m and n .
- For instance, to make an $m \times n$ matrix of zeros would simply be:

```
A = [1, 2, 3; 4, 5, 6];
B = Zero(|A|);
// B is now [0, 0, 0; 0, 0, 0];
```


Size ||: Nifty Example

If we isolate the values into separate variables, we can use selection to replace all values of A!

```
m = |A|[0];
n = |A|[1];
A[range(m), range(n)] = 3;
```


Reduce Rows \%

Row-reductions with either summation or product.

```
A = [1, 2; 3, 4];
B = +%A; // B is [3; 7]
C = *%A; // C is [2; 12]
```

(And this works with semirings!!)

Another Feature: Graph Literals

Graphs can be declared just like matrices

```
// These create equivalent matrices
G = [ 0->1; 2->3; 3->0 ]
M = [ 0,1,0,0;
    0,0,0,1;
    0,0,0,0;
    1,0,0,0 ]
```


Other basic operators

- Matrix multiplication (*)
- Element-wise multiplication (@) and addition (+)
- Exponent: ${ }^{\wedge}(\mathrm{b} \mid \mathrm{T})$ where b is a 1×1 matrix and $\mathrm{b} \geq 0$
- Vertical concatenation (:)

What Were Proud Of

O1 Our Process

- Excellent division of labor, everyone specialized while still interacting with all the code
- Github issues for feature tracking

02 Our Project

- Implemented our full LRM, save stretch goals
- Learned linear algebra and abstract algebra

03 Our Code

- Removed SAST while keeping type-checking of int vs float matrices
- Programmatically created function types, definitions, and calls
- Lazy evaluation
- Semiring stack

BFS Demo

Questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics \& images by Freepik

