
Group:

Amina Assal (aa4290)

Ivan Barral (iab2131)

Rafail Khalilov (rk2960)

Myric Lehner (mhl2157)

Red Pandas

Introduction

We are looking to create a language that recreates some of Numpy's core functionality

natively so that compiled code can quickly churn through linear algebra problems, which would

be useful in applications of robotics, data compression, and building neural networks in machine

learning. Users can write programs to solve systems of equations and manipulate data in

matrices. We would like this to be readable, intuitive, and fast, although realistically we will

achieve at most two of those goals. In order to do this, we plan on implementing this as an

object oriented language, centered around matrix objects. We plan on implementing type

inference and allowing the user to define functions. We’re thinking about implementing indexing

as well as a Map() operation that would allow mapping between two matrix objects. The user

defined functions will be passable into core operations and functions as well as allowing for a

robust library to be developed.

Data Types

Int / Float

Tuple

num1 = 3
num2 = 3.0

Character

Vector

2-dimensional matrix

Intrinsic matrix attributes:

● Row & Column by index methods that return the appropriate vector
● Rank
● Kernel
● Image

Operations:
Add, Subtract

Multiply, Power

tup = (0, 1)

print(“Hello World”)

vector = vec([3,2,1])
vector_alt = [[3],

[2],
[1]]

mat = [[3,2,1],
 [1,3,4],
 [1,3,5]]

mat_alt = populate(0, 3, 3) #creates a 3x3 zero matrix

mat = populate(0, 3, 3) #creates a 3x3 zero matrix
mat2 = populate (2,3,3) #creates a 3x3 matrix with value two
newMat = mat2 + mat
mat = newMat - mat

mat = populate(1, 3, 3) #creates a 3x3 one matrix
mat2 = populate (2,3,3) #creates a 3x3 matrix with value two
mat3 = mat2^3 * mat1
mat3*= mat2

Map

Transpose

Determinant

Inverse

Rank

Gauss Jordan (RREF)

Row Echelon

Eigenvalues, Eigenvectors

mat = populate(2, 3, 3) #creates a 3x3 matrix of 2s
mat = Map(mat, {_*2}) #returns 3x3 matrix of 6s

mat = populate(0, 3, 3) #creates a 3x3 zero matrix
mat = mat^T
mat = transpose(mat)

mat = populate(1, 3, 3) #creates a 3x3 one matrix
determinantVal = det(mat)

mat = populate(1, 3, 3) #creates a 3x3 one matrix
Inv_mat = inv(mat)
Inv_mat_alt = mat^(-1)

mat = populate(1, 3, 3) #creates a 3x3 one matrix
rank = rank(mat)

mat = populate(1, 3, 3) #creates a 3x3 one matrix
Reduced_row= rref(mat)

mat = populate(1, 3, 3) #creates a 3x3 one matrix
row_echelon = ref(mat)

mat = populate(1, 3, 3) #creates a 3x3 one matrix
eigen_vector = eigvec(mat)

Diagonalization

Dot Product

Cross Product

Source Code

eigen_value = eigval(mat)

mat = populate(1, 3, 3) #creates a 3x3 one matrix
D = diag(mat)

vec1 = vec([1,2,3]) #creates a vector
vec2 = vec([3,2,1])
result = vec1*vec2

vec1 = vec([1,2,3]) #creates a vector
vec2 = vec([3,2,1])
result = vec1 *x vec2

x_system = [1, 1]
y_system = [2, 3]

result = [[5],

 [8]]
alt_result = vec([5,8])

def solve_equation(x,y,r):

system = [x_system,
 y_system]

finalMatrix = system^(-1) * result
return finalMatrix

final = solve_equation(x_system, y_system, alt_result)

print(“final val:”)
print(final)

