
nodable Language Reference Manual

Karen Shi
Manager

ks3650@columbia.edu

Elena Sotolongo
Language Guru

es3693@columbia.edu

Ajita Bala
System Architect

ab4420@columbia.edu

Ariel Goldman
System Architect

apg2164@barnard.edu

Naviya Makhija
Tester

nm3076@columbia.edu

February 2021

1

Contents

1 Introduction 4

2 Lexical Conventions 4
2.1 Character Set . 4
2.2 Comments . 4
2.3 Identifier (Names) . 4
2.4 Keywords . 4
2.5 Constants . 5
2.6 Elementary Operations and Spacing 5

3 Syntax Notation 5

4 Objects and Types 5
4.1 Fundamental Objects . 5
4.2 Lists . 5
4.3 Graph Objects . 6

5 Conversions 6
5.1 Integer and Floating . 6
5.2 Arithmetic Conversions . 7
5.3 String Conversions . 7

6 Expressions 7
6.1 Operator Precedence and Association 7
6.2 Literals . 7
6.3 Primary Expressions . 8

6.3.1 Identifiers . 8
6.3.2 Constants . 8
6.3.3 Parenthesized Expressions 8

6.4 Unary Operators . 8
6.5 Arithmetic Operators . 8
6.6 Assignment Operators . 9
6.7 Relational Operators . 9
6.8 Logical Operators . 10

7 Declarations 10
7.1 Type Specifiers . 10
7.2 List Declarations . 11
7.3 Node Declarations . 11
7.4 Graph Declarations . 12

7.4.1 Edge Matrix Declaration 12
7.5 Tree Declarations . 13
7.6 Binary Tree Declarations . 14
7.7 Function Declarations . 14

2

8 Statements 15
8.1 Expression Statements . 16
8.2 Iterative Statements . 16

8.2.1 While Loop . 16
8.2.2 For Loop . 16

8.3 Conditional Statements . 17

9 Scope 17

10 Library Functions 17
10.1 General Library Functions . 17
10.2 Graph Library Functions . 18
10.3 Tree Library Functions . 19
10.4 Binary Tree Library Functions 19

11 Examples 20
11.1 Hello world . 20
11.2 Lists . 20
11.3 Creating a graph, nodes and edges 21
11.4 Finding neighboring nodes in a graph 21

3

1 Introduction

nodable is an imperative, statically-typed graph programming language designed
to help users create, use, manipulate, and search graphs. Graphs are essential
for data representation in computer science, but the most popular programming
languages require users to implement graphs with low-level data structures.
nodable’s aim is to simplify the implementation of graphs and their algorithms
by featuring built-in data types for graphs, trees, and edges. Users will be
able to define node types and attributes themselves. Several graph algorithms,
including various shortest-path algorithms and search algorithms, will be part
of nodable’s standard library. nodable’s syntax contains elements of the Java
and C programming languages.

2 Lexical Conventions

2.1 Character Set

Our language’s character set is a-zA-Z0-9,-;<>*+/=!&|{}()[]

2.2 Comments

Single line comments are denoted by //

// this is a single line comment

Multi-line comments are denoted by /* */

/* this is a

multi-line

comment */

2.3 Identifier (Names)

An identifier in our language must begin with an alphabetic letter (a-zA-Z),
is made up only of the characters a-zA-Z0-9, and is a arbitrarily long string.

2.4 Keywords

These keywords are reserved words that should not be used as identifiers:

int float char string boolean true false if else while for node graph

tree bintree eM

4

2.5 Constants

There are four types of constants in our language int, float, char, and
boolean.

2.6 Elementary Operations and Spacing

Each expression is delimited by a semicolon and sets of expressions are marked
by curly braces {}. Whitespace and indentation do not play a role in the flow
of the code.

3 Syntax Notation

Syntactic categories/non-terminals will be written in italics. Literal words will
be written in courier new.

4 Objects and Types

In nodable, object types have been created for graph objects along with the
fundamental object types to allow for easy manipulation of graphs. All types
below are valid types if they are elementary types or made up of another valid
type.

4.1 Fundamental Objects

nodable has the following elementary types:

Type Description
int 4 bytes, integer value
char 8 bytes, decimal value
float 1 byte, character value

boolean 1 byte, True or False
string An array of characters

4.2 Lists

Lists in nodable are derived from Java’s Arrays and Python’s lists. They are
ordered collections of elements of the same type. A list declaration requires the
user to specify the type of list being created from the types in Sections 4.1 and
4.3. Lists are mutable and do not have a fixed size so elements can be added
(at the end or at an index), removed or replaced.

Lists are indexed beginning at 0 and elements can be retrieved, altered or added
using the below functions on a specified index.

5

4.3 Graph Objects

nodable also has a series of graph-specific object types as follows:

Type Description
graph A set of nodes (nodeset) and an adjacency array of

edges (eM) that connect pairs of nodes
tree A set of nodes (nodeset) and an adjacency array of

edges (eM) that connect pairs of nodes with the con-
dition that two vertices are connected by exactly one
path

bintree A set of nodes (nodeset) and an adjacency array of
edges that connect pairs of nodes with the condition
that a node has at most two children

node Similar to a struct in C, nodes contain attributes that
uniquely identify the node. Users are able to define
their own nodes so the size and attributes are cus-
tomizable. Nodes must have at least one attribute.

These are all valid types because they are comprised of the fundamental
types which are themselves valid.

5 Conversions

5.1 Integer and Floating

Integers and floating point numbers can be converted between each other by
creating a variable of the desired data type and assigning it to the variable of
the opposing data type that is wished to be converted.

To convert an integer to a float:

int i = 2;

float f = i;

// f = 2.0

To convert a float to an integer, the decimal portion gets truncated:

float f = 2.0;

int i = f;

// i = 2

6

5.2 Arithmetic Conversions

Any basic arithmetic operation must involve two operands of the same type. It
is possible to perform operations on ints and floats if one of the operands is cast
to another type so that the types match.

For example:

int i = 2;

float f = 2.5;

// i + f will not compile

// i * f will not compile

These code samples will compile. Note that when casting a float to an int, the
number will round down.

int i = 2;

float f = 2.5;

// i + (int) f = 4

// (float) i * f = 5.0

5.3 String Conversions

To concatenate string and another data type, the other type must be explicitly
cast to a string.

6 Expressions

6.1 Operator Precedence and Association

In nodable, operations of higher precedence are always evaluated before oper-
ations of lower precedence. Multiplicative operators (multiplication, division,
and modulus) have higher precedence than additive operators (addition and
subtraction), which has higher precedence than relational, logical, and assign-
ment operators. Addition, subtraction, multiplication, division, and modulus
are left-associative.

6.2 Literals

Literals represent fixed boolean, numeric, string, and character data and are
represented directly in the code. Literals can be used in arguments to functions.

7

6.3 Primary Expressions

Primary expressions include identifiers, constants, and parenthesized expres-
sions.

primary-expression :
identifier
constant
(expression)

6.3.1 Identifiers

Identifiers are names - unique within their own scope - given to refer to data
types or functions. Reserved key words/names are not eligible to be used as
identifiers.

6.3.2 Constants

Constants are strings, characters, numbers (integer, float), and boolean con-
stants.

6.3.3 Parenthesized Expressions

These are simply expressions surrounded by parentheses, and this implies prece-
dence over other arithmetic expressions.

6.4 Unary Operators

Unary operators require only one operand and are grouped from right to left
and include incrementation/decrementation operators and logical negation.

unary-expression :
not unary-expression

6.5 Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on variables and
on literals. These operators are grouped left to right.

arithmetic-expression :
expr * expr
expr / expr
expr % expr
expr + expr
expr - expr

8

Type Description Example
+ Addition, left-associative a + b;
- Subtraction, left-associative a - b;
* Multiplication, left-associative a * b;
/ Division, left-associative a / b;
% Modulus, left-associative a % b;

Each of these operators can be performed on integers and floating point expres-
sions. Additionally, the + operator can be used for string concatenation. For
the operators % and /, if the right operand is 0 the result is undefined.

6.6 Assignment Operators

Assignment operators are used to assign values to variables. The only assign-
ment operator in nodable is =. The value to the right of the operator is assigned
to the variable on the left of the operator.

assignment-expression :
unary-expr = expr

Type Description Example
= Assignment, right-associative int a = 5;

6.7 Relational Operators

Relational operators are used to check the relationship between two operands
(literals or variables). The type on each side of these operators should be either
an integer or float. All relational operators return a boolean value true or false.

relational-expression :
expr > expr
expr < expr
expr >= expr
expr <= expr

Type Description Example
> Greater than, left-associative 3 > 1;
< Less than, left-associative 3 < 5;
≥ Greater than or equal to, left-associative 1 ≥ 1;
≤ Less than or equal to, left-associative 3 ≤ 5;

9

6.8 Logical Operators

Logical operators are used to assert whether multiple values or expressions, or
the negation of a value or expression, are true. Logical operators are used with
boolean values, and return a boolean value (true or false).

logical-AND-expression :
expr && expr

logical-OR-expression :
expr || expr

Type Description Example
&& logical AND, non-associative a && b;
|| logical OR, non-associative a || b;

7 Declarations

Declarations specify the interpretation (value and type) given to a set of iden-
tifiers.

7.1 Type Specifiers

nodable has 5 primary type specifiers:

typ:
int
float
char
string
boolean

nodable has one type-specifier that requires a specific element type (either prim-
itive or a user-defined node):

list

nodable also has 4 graph-related type specifiers that require element types:
graph
tree
bintree
node

10

7.2 List Declarations

A list, as described in section 4.2, is a mutable ordered collection of elements of
the same type. Lists must be declared with a specific element type.

list <typ >identifier ;

Lists can be initialized as an empty or with values.

list <typ >identifier = []; list <typ >identifier = [expr list];

7.3 Node Declarations

Nodes are modeled on C structs and are created and defined by the user. Nodes
can store various data types and values and can be customized to the user’s and
graph’s needs. Before declaring a node, a specific node type must be defined
with a node prototype. The node prototype includes a list of attributes associ-
ated with that node and their data types (int, char, string, float, or boolean).
Nodes must contain at least one attribute. Attributes cannot be of type graph,
tree, or bintree.

node identifier {vdecl list};

The sample code below creates a node known as ‘city’. It has three properties:
a name (String), population (int), and state (String) of varying data types, but
all of which will uniquely identify each node.

node city {

String name;

int population;

String state;

}

To create a particular instance of a node, the node type must be specified in
the construction as well as the values to all of the attributes of that node type.

nodetype identifier = (expr-list);

The code below creates a sample city node. Here the city is named ‘nyc’, it
has a population of 8000000 and has a state ‘NY’:

city nyc = ("New York City", 8000000, "NY");

Node equality can be compared using == and !=. This equality checks if the
two nodes are located in the same place in memory, not if they store the same
content.

11

7.4 Graph Declarations

Graph declarations in nodable act the same as declarations of other basic types.
Graphs must have a size (number of nodes) specified when they are instantiated.
Graphs and trees can be declared in the same way once a type of node has been
created by the user.

graph identifier = graph <nodetype >(int-literal);

Creating a graph will create an empty list of nodes of the specified nodetype
and length. It will also create a square adjacency edge matrix with length equal
to the number of nodes in the graph. The matrix will be initialized with null
values.

To modify the nodes contained in the graph by their index use this context
free grammar:

identifier [int-literal] = typ-instance;

Graph<city> cityGraph = Graph<city>(3); //creates a graph with room

//for three nodes

cityGraph[0] = ("nyc", 8000, "NY");

cityGraph[1] = ("boston", 500, "MA");

cityGraph [2]= ("philadelphia", 800, "PA");

The nodes are stored as a list where the ID of each node is their index in this
list. They can be accessed by indexing the Graph object which will return all
the data of that node struct as a tuple.

7.4.1 Edge Matrix Declaration

Edges are connecting objects between two node objects. Graphs can either be
directed, where edges display a one-way relationship between nodes, or undi-
rected where edges are bidirectional and can be traversed both ways.

The edges in a graph are represented by an edge matrix (eM), which is es-
sentially a 2D array that is immutable in size. When a graph is declared with
n nodes, a corresponding n×n edge matrix is generated. Edges whose weights
have not been declared are automatically set to null in the edge matrix.

The sample code below shows the edge matrix for the Graph cityGraph de-
clared earlier. Here, we can see that there are no loops since the edge weights
are set to 0 along the diagonals of the matrix. The edge between the ”nyc”
node (index 0) and the ”boston” node (index 1) has a weight of 8, and the
edge between the ”nyc” node (index 0) and the ”philadelphia” node (index 2)

12

has a weight of 6. There has not been a weight declared for the edge between
the ”boston” node (index 1) and the ”philadelphia” node (index 2) so it still
remains as the default null value.

cityGraph.eM = [[0, 8, 6],

[8, 0, null],

[6, null, 0]]; //eM stands for edge matrix

Notice that this follows the CFG format:

id.eM = [list-of-list-of-expr]

Edge values in the edge matrix can be accessed and subsequently modified by
simply using array indexing.

cityGraph.eM[1][0] = 4; //changes the distance from boston to nyc to 4

Notice that this follows the CFG format:

id [int-literal] [int-literal] = int-literal

If a node is removed from the graph, the edge matrix will set its values in
the corresponding row and column of the index of the removed node back to
null. The size of the edge matrix will not change.

cityGraph.removeNode(0); // remove the "nyc" node in index 0

cityGraph.eM = [[null, null, null],

[null, 0, null],

[null, null, 0]];

// values in row 0 and column 0 set to null

7.5 Tree Declarations

nodable trees are declared and implemented in the same way as graphs. How-
ever, there are changes and restrictions on the edge matrix to account for their
specific conditions. Edge matrices for trees consist of booleans, not ints, where
the boolean alue represents whether there is a parent-child relationship between
two nodes or not.

tree identifier = tree <nodetype >(int-literal);

This creates a list of nodes of the given nodetype as well as an empty adja-
cency matrix. When nodes are added to the node list, users will have to specify
the structure of the tree by updating the appropriate entries in the edge matrix.

13

The compiler will prevent certain edges from being added if they violate the
definition of the tree.

The code below declares a tree with city nodes as well:

Tree cityTree = Tree<City>(2);

7.6 Binary Tree Declarations

nodable binary trees bintrees are a specialized type of tree. When a binary
tree is initialized, a node list and adjacency matrix are created. Unlike in graphs
and trees, the adjacency matrix of a binary tree will be automatically populated
upon initialization.

bintree identifier = <nodetype >(int-literal);

This creates a list of nodes of the given nodetype as well as an empty adja-
cency matrix. When nodes are added to the node list, users will have to specify
the structure of the tree by updating the appropriate entries in the edge matrix.
The compiler will prevent certain edges from being added if they violate the
definition of the tree.

bintree cityTree = new bintree<City>(2);

7.7 Function Declarations

nodable declares functions in a similar way to the standard Python style, but
uses curly braces to determine scope. The keyword def must be used at the
beginning of all function definitions.

def identifier (args-list) ->type-specifieropt { function definition };

The args-list is a list of arguments inside of parentheses. This list must in-
clude type specifiers and an identifier for each argument. An argument can be
of any type, including graph types.

The function definition can include a list of statements and expressions of un-
limited length. If the function has a return type, the definition must contain
a return statement with a value indicated by the type-specifier. Otherwise, if
there is no return type, the function does not require a return statement.

nodable also requires the usage of semicolons at the end of each statement to
reduce confusion and ambiguity.

14

Here are some written examples of function definitions:

int add(int x, int y) {

return x + y;

}

Functions must be written above the main function when they’re called:

int main(){

add(2, 7);

}

The function signature must specify the data types of the parameter list, as well
as the return type:

int count_empty(list<int> values){

count = 0;

for v in values{

if (v == 0) {

count = count + 1;

}

return count;

}

}

8 Statements

Statements in nodable are executed in sequence with a series of statements act-
ing as a list of statements.

Statements can be expression statements, conditional statements, and itera-
tion statements. All statements are delimited by semicolons.

stmt :
expr ;
return expr ;
{ stmt-list ; }
if (expr) stmt elif-list else stmt ;
if (expr) stmt elif-list ;
while (expr) stmt ;
for (expropt; expr ; expr) stmt ;

15

8.1 Expression Statements

An expression statement is the most basic form of statement. These include
assignments, declarations, operations, and function calls.

Here are some examples:

int x = 5;

x = x + 1;

int y = add(4, 5) + add(9, 10);

8.2 Iterative Statements

Iterative statements in nodable include while loops and for loops.

8.2.1 While Loop

Based on Java syntax, this loop executes the inner statements if the outer
boolean expression is satisfied. It terminates once the condition is false.

int i = 5;

while (i > 0) {

print(i);

i--;

}

8.2.2 For Loop

Based on Java syntax, For Loops allow iteration through lists and other data
structures/objects so that expressions can be executed on that data. nodable has
two types of for loops. There is a loop that iterates through the data structure:

for v in values {

if (v == 0) {

count = count + 1;

}

}

nodable also has a generic for loop that allows iteration through a set of integers
as a counter:

for i in range(1, 4) {

if (arr[i]== 0){

count = count + 1;

}

}

16

8.3 Conditional Statements

These are conditional statements established based on Java syntax to allow
users to selectively execute expression and other statements. nodable includes
if statements (with no else), if-elif-else statements, and if-else statements.

if(temp >= 90)) {

weather = hot ;

}

elif (temp > 40 && temp <= 90) {

weather = nice ;

}

else {

weather = cold ;

}

In the above, if the first condition (temp >= 90) evaluates to be True then the
first statement (weather = ”hot”) executes. Else it evaluates another condition
(temp > 40 temp <= 90). If this is True, it executes the second statement
(weather = ”nice”). Finally, if neither condition 1 nor condition 2 are true, the
third statement (weather = ”cold”) is executed.

9 Scope

nodable uses curly brackets {} to determine scope (functions, conditional state-
ments, and iterative statements). Any variable declared within a particular code
block cannot be referenced outside of it, and any variable declared outside of
code blocks are regarded as global variables and can be used anywhere in the
program.

10 Library Functions

10.1 General Library Functions

nodable will provide a number of library functions related to graphs and trees
that can perform standard and commonly-used graph and tree operations. A
list of proposed standard library functions is provided here:

print(any_type t)

length()

17

10.2 Graph Library Functions

int capacity(graph g) //returns an int representing the total number of

nodes that graph g can hold

int size(graph g) //returns an int representing the total number of

non-null nodes in graph g

boolean expandCapacity(graph g, int newSize) //copies the nodes and edge

matrix of g to a new graph with a larger capacity

boolean existsPath(graph g, node n1, node n2)

//returns true if there’s a path connecting n1 and n2 (a valid sequence

of edges), and returns false otherwise

list<int> shortestPath(graph g, node n1, node n2)

//returns a list of ints representing the indices of the nodes

connecting node n1 and node2. returns null if there is no existing

path between the nodes. list<list<int>> shortestToAll(graph g, node

n1) //returns a list of list of ints representing the shortest

paths to all other nodes in the graph.

boolean removeNode(graph g, int index)

//this function will set the appropriate element in the nodeset of g

equal to null. All edges in the edge matrix that involve that node

will be set to null.

//format: removeNode(g, 0)

int getDegree(graph g, node n) //returns the number of neighbors of node

n

list<int> getChildren(graph g, node n) //returns a list of integers

representing the indices of the child nodes of n (assuming g is

directed).

list<int> getNeighbors(graph g, node n) //returns a list of integers

representing the indices of the adjacent nodes to n.

g.bfs(node s, node g) //returns a list of ints, representing the index

numbers of the nodes of the graph accessed from the start node to

the goal node using breadth first traversal

g.dfs(node s, node g) //returns a list of ints, representing the index

numbers of the nodes of the graph accessed from the start node to

the goal node using depth first traversal

boolean containsCycle(graph g) //returns a boolean value indicating if

there is a cycle in graph g or not

tree<nodetype> mst(graph g<nodetype>) //returns a tree object

representing the minimum spanning tree of graph g using Kruskal’s

algorithm

boolean kColoring(graph g, int k) //returns a boolean value - true if g

can be colored with at most k colors, and false otherwise.

list<list<int>>shortestPaths(graph g) //returns a list of lists of ints

representing the shortest distances between every pair of vertices.

Implemented using the Floyd Warshall algorithm

boolean isStronglyConnected(graph g) //returns a boolean value - true if

the graph is strongly connected, false otherwise.

18

10.3 Tree Library Functions

int capacity(tree t) //returns an int representing the total number of

nodes that tree t can hold

int size(tree t) //returns an int representing the total number of

non-null nodes in tree t

boolean removeNode(tree t, int index) //will set the indicated node and

all of its children equal to null list<int> preorder(tree t)

//returns a list of nodes in tree t, with the root node first

followed by the nodes in the left subtree and the right subtree

(recursively generated)

list<int> inorder(tree t) //returns a list of nodes in tree t. Traverses

the left subtree, the root node, then the right subtree.

list<int> postorder(tree t) //returns a list of nodes in tree t by

recursively traversing the left and right subtrees followed by the

root node.

int height(tree t) //returns an integer representing the height of the

tree

boolean isEmpty(tree t) //returns whether or not a tree is empty (i.e.

it’s nodeset only contains null values)

int branchingFactor(tree t) //returns an int representing the average

branching factor of a tree (i.e. the average number of children)

int numberOfChildren(tree t, int nodeIndex) //returns, as an int, the

number of children of the node with the inputted index in the graph

boolean isChild(tree t, int parentIndex, int childIndex) //returns, as a

boolean, whether the node at the childIndex is the child node of

the node at the parentIndex

10.4 Binary Tree Library Functions

These functions can be run on trees that are confirmed by the compiler to be
binary trees.

int capacity(bintree b) //returns an int representing the total number

of nodes that tree t can hold

int size(bintree b) //returns an int representing the total number of

non-null nodes in tree t

removeNode(bintree b, int index) //will set the indicated node and all

of its children equal to null in the tree’s nodeset.

list<int>preorder (bintree b) //returns a list of nodes in tree t, with

the root node first followed by the nodes in the left subtree and

the right subtree (recursively generated)

list<int> inorder(bintree b) //returns a list of nodes in tree t.

Traverses the left subtree, the root node, then the right subtree.

list<int> postorder(bintree b) //returns a list of nodes in tree t by

recursively traversing the left and right subtrees followed by the

root node.

int height(bintree b) //returns an integer representing the height of

19

the tree

boolean isEmpty(bintree b) //returns whether or not a tree is empty

(i.e. it’s nodeset only contains null values)

int branchingFactor(bintree b) //returns an int representing the average

branching factor of a tree (i.e. the average number of children)

bintree leftRotate(bintree b) //returns a left rotated version of the

tree, but does not change the tree it is acting on, this function

treats the tree as a binary search tree

bintree rightRotate(bintree b) //returns a right rotated version of the

tree, but does not change the tree it is acting on, this function

treats the tree like a binary search tree

bintree balance(bintree b) //returns a balanced version of the tree, but

does not change the tree it is acting on, this fuction treats the

tree like a binary search tree

int numberOfChildren(int nodeIndex, bintree b) //returns the number of

children of the node with the inputted index in the graph

\newpage

11 Examples

11.1 Hello world

print("Hello world!");

11.2 Lists

//initialize list

list<int> example = [4, 6, 2, 9, 0];

print(example); //print out elements of list

for int i in example { //iterate through list

print(i);

}

for int i in range(len(example)) {//using regular for loop

print(i);

}

example.append(10); //appends to end

example.add(3, 10); //inserts int 10 to the 3rd index

example.get(3); //returns element at 3rd index

example.replace(3, 10); //replaces element at index 3 with 10

example.remove(3); //removes element at index 3

len(example); //returns length of list

example.contains(10); //returns boolean value

20

11.3 Creating a graph, nodes and edges

node City {

String name;

int population;

String state;

};

Graph cityGraph = Graph<City>(3); //creates a graph with room

//for three nodes

cityGraph[0] = ("nyc", 8000, "NY");

cityGraph[1] = ("boston", 500, "MA");

cityGraph [2]= ("philadelphia", 800, "PA");

cityGraph.eM = [[0, 8, 6],

[8, 0, null],

[6, null, 0]];

cityGraph.eM[1][0] = 4; //changes the distance from boston to nyc to 4

11.4 Finding neighboring nodes in a graph

//cityGraph created in last example

//find the neighbors of node cityGraph[0], and return them in a list of

ints representing their indices in the list cityGraph

list<int> neighbors = [];

int numNodes = size(cityGraph);

for (int i = 0; i < numNodes; i = i + 1) {

if (cityGraph.eM[0][i] != null) {

neighbors.append(i);

}

}

print(i);

//expected result: [1, 2]

21

	Introduction
	Lexical Conventions
	Character Set
	Comments
	Identifier (Names)
	Keywords
	Constants
	Elementary Operations and Spacing

	Syntax Notation
	Objects and Types
	Fundamental Objects
	Lists
	Graph Objects

	Conversions
	Integer and Floating
	Arithmetic Conversions
	String Conversions

	Expressions
	Operator Precedence and Association
	Literals
	Primary Expressions
	Identifiers
	Constants
	Parenthesized Expressions

	Unary Operators
	Arithmetic Operators
	Assignment Operators
	Relational Operators
	Logical Operators

	Declarations
	Type Specifiers
	List Declarations
	Node Declarations
	Graph Declarations
	Edge Matrix Declaration

	Tree Declarations
	Binary Tree Declarations
	Function Declarations

	Statements
	Expression Statements
	Iterative Statements
	While Loop
	For Loop

	Conditional Statements

	Scope
	Library Functions
	General Library Functions
	Graph Library Functions
	Tree Library Functions
	Binary Tree Library Functions

	Examples
	Hello world
	Lists
	Creating a graph, nodes and edges
	Finding neighboring nodes in a graph

