bugsy

Reference Manual

PLT Spring 2021

Ben Snyder Sofia Sanchez Zarate Evan Tilley

Michael Winitch Jason Cardinale

February 24, 2021

Contents
1 Overview

2 Comments
2.1 Single Line Comments
2.2 Multi-line Comments

3 Reserved Words

4 Data Types

4.1 Primitive Data Types
4.2 Built in Shapes
5 Variables
5.1 Variable Naming
6 Arrays
6.1 Declaring Arrays oo
6.2 Initializing Arrays
6.3 Arraysin Arrays
7 Classes
7.1 Class Declarations
7.1.1 Constructors
7.2 Dot Notation
8 Operators and Arithmetic
8.1 Unary Operators
8.2 Binary Operators
8.3 Logical Operators.
9 Control Flow
9.1 Loops o . e
9.1.1 While Loops L.
9.1.2 ForLoops
9.1.3 Break Statement 0L
9.1.4 Continue Statement,
9.2 Conditional Statements
921 If...elif... else.,
9.3 Exceptions
9.3.1 Try ... Catch Statement
9.3.2 Raise
9.4 Pass

10 Functions

SN

a

oo

© oo 0o

11 Memory Management

12 Standard Library
12.1 animateTo

Description
Example Usage

Description
Example Usage

Description
Example Usage

Description
Example Usage

13 Sample Code
13.1 Rotating Circle And Square
13.2 bugsy Printer
13.3 FizzBug

17

18
18
18
18
18
18
18
18
18
18
18
19
19
19
19
19
19

1 Overview

The bugsy language is a statically typed object oriented programming lan-
guage focused on creating 2D graphics and animations. It is loosely inspired
by p5.js and Processing. The syntax is a mixture of C and SwiftUI. bugsy
has built in shape and polygon classes allowing users to create shapes, along
with accompanying animation functions. The language is designed to be of
assistance to those who want to work with visualization, but may not neces-
sarily have a strong programming background. When a program is run, the
language will compile an executable that will run the animation. bugsy inter-
faces with OpenGL, abstracting some of the library’s complexities to make a
simple graphical language.

2 Comments

Comments in bugsy are used to document code and are ignored by the parser,
written solely for readability purposes.

2.1 Single Line Comments

Single line comments in bugsy are creating using two forward slashes.

// This is an example of a single line comment

2.2 Multi-line Comments

bugsy also supports multi-line comments. To start a multi-line comment type
/* and close it with */

/*
This is an example
of a multi-line comment

*/

3 Reserved Words

bugsy has words that are reserved for specific uses and thus cannot be used
in a typical manner. The following is a list of reserved words that can not be
used for the names of variables, classes, functions:

— if — continue — class — not — array

— elif — break — True — num — null

— else — try — true — bool — and

— while — catch — False — char — or

— for — raise — false — string — void
- pt — shape — square — rect — circle
— ellipse — triangle — polygon — regagon — canvas
— line — spline

4 Data Types

bugsy has a variety of data types, each suited for representing different types
of information.

4.1 Primitive Data Types

num is used to express any number, including both integers and floating point
numbers.

num a = 10;
num b -12.35;

char is used to store a single ASCII character. The type char is declared us-
ing single quotes.

char ¢ = ‘f’;

bool is used for boolean truth values (either true or false). As a note the
word true or false can be capitalized, but it is not required.

bool x = True;
bool y = true;
bool z = false;

The string type is used to represent a concatenation of characters. Strings are
made from ASCII characters and are declared using double quotes.

string greet = "Hello world!";
string code = "abc 123";

4.2 Built in Shapes

bugsy is an animation language and has pre-defined shape objects. These in-
clude typical shapes like squares and circles, but also user defined polygons as

well. Below is a table of all built in shapes. The most basic unit is the point,
denoted as pt, which consists of an x and y coordinate. The default place-
ment for a shape is pt (0,0), which corresponds to the bottom-left corner of

the view. Points are especially useful when creating shape objects. See exam-
ples below for how each shape is created.
Type Description Parameters Example
pt Object that represents a pt(x,y) pt x = pt(4,3);
point. Takes two num pa-
rameters as input that spec-
ify the origin of the point.
shape Default object parent of all shape (thickness) shape(3) ;
builtin shapes that defines
thickness which extends to
all other objects. Takes one
num parameter specifying
thickness.
square Defined from an origin point square (pt (x,y), square (pt(0,0),
and given a num size. size) 3);
rect Defined from an origin point rect(center, rect(pt(0,0), 2,
and takes an input width width, 3);
num and height num. height);
triangle 3-pointed polygon defined triangle(center, triangle(pt(4,5),
from an origin point, with width, 5, 8);
num height and width in- height);
puts.
circle Infinite-sided polygon de- circle(center, circle(pt(2,3),
fined from an origin point, radius) ; 5);
with a num radius input.

center, and specified by an
array of nums, points

ellipse Infinite-sided polygon de- ellipse(center, ellipse(pt(0,0),
fined from an origin point, a, b); 4, 5);
and a num a and b which
are the which are the ma-
jor and minor radii inputs,
respectively.
line A straight line defined by line(start, end); line(pt(x,y),
two points, start and end. pt(x,y));
canvas Defines a 2D plane whose canvas (width, canvas (80, 100);
boundaries constrain the lo- height);
cations of shapes. Has width
and height parameters of
type num.
polygon Defines a figure with num polygon (number, polygon(5,
number lines, of potentially points) [pt(1,1),
varying lengths, according to pt(2,2,),
the array points. pt(3,3),
pt(5,4),
pt(4,5)1);
regagon Creates a regular x sided regagon(pt, x, regagon(pt(4,3),
polygon of radius r at origin r); 5, 3);
point pt, where x is a num
input and pt is the origin
point.
spline A curve with several anchor spline (number, spline(3,
points, centered at point points) [1,7,91);

5 Variables

In bugsy variables are declared using a type and a name. The type comes first
followed by a variable name and then an equals sign. The right hand side of
the expression is returned as a value. If the variable is only being declared,
then a semicolon follows the name instead of an equals sign.
The grammar is as follows:
type ID equals expression

type ID
num a;
a = 10;

num b = 20;

num a = b =4 *x 5;

square x = square(pt(0,4), 4);
string hello = "hello sirs.";

5.1 Variable Naming

Variables names follow the following regex [a-zA-z_] [a-zA-Z0-9_]* and as
stated in the Reserved Words section, cannot be a reserved word.

6 Arrays

An array is a collection of variables of the same type that can be accessed un-
der one variable name and a numerical index.

6.1 Declaring Arrays

Arrays in bugsy are declared by describing the type followed by square brack-
ets containing the size of the array ([10]) followed by a variable name.
The grammar goes:

type LeftBracket number RightBracket 1D

type LeftBracket number RightBracket ID equals LeftBracket li_contents
Right Bracket
With 1i_contents being the contents of the array (name coming from list
contents). These contents can be literals, booleans, shape objects, or other
expressions.

num[10] myArray;

6.2 Initializing Arrays

Arrays in bugsy must be declared but can be later initialized; alternatively,
arrays can be initialized at the time of declaration. Once declared, the value
at a certain index in the array can be modified by using the name of the ar-
ray, followed by square brackets containing the index that you want to refer-
ence or change.

num[3] myFirstArray = [1,2,3]; //declared and initialized

string[4] mySecondArray = ["bugsy", "is", "a", "guinea pig"]; //declared
and initialized, size omitted

num[2] myThirdArray; //declared without initialization (defaults all
values to 0)

//here we initialize the values inside the array
myThirdArr[0] = 7; //this notation allows you to directly assign numbers

myThirdArr[1] = 8; //to the index between the square brackets

6.3 Arrays in Arrays

bugsy supports declaring arrays inside of arrays. Declaration is very similar
to that of normal arrays, but includes an additional pair of square brackets.
An array type which is a number followed by square brackets (eg. num[]), is
followed by an additional set of square brackets with the size of the new array.

num[] [] myNestedArr = [myFirstArray, MySecondArray, myThirdArray];
print (myNestedArr) ;

Compiling and running the above would output the following;:

[r1, 2, 31, [4, 5, 6], [7, 8]]

7 Classes

bugsy is object oriented in the sense that it supports custom object declara-
tion. This is done through custom classes, or user-defined types. The class
declaration informs the compiler what variables belong to the newly declared
object and what functions can be used on objects of this type.

7.1 Class Declarations

A class is declared by using the keyword class, as defined in the reserved
word section, followed by the name of the class in lowercase followed by a
body surrounded by curly braces that defines the behavior of that object.

Classes fall under the general declaration grammar, being one of vdecls (vari-
able declarations), fdecls (function declarations), and cdecls (class declara-
tions) since programs can either be variables and functions, or a class followed
by other declarations.

Under cdecls, a record is created that categorizes cdvars (the class variables),
cdconst (the constructor), and edfuncs (class functions).

Essentially:

decls —
vdecls
| fdecls
| cdecls

cdecls —
cdvars

| cdconst
| cdfuncs

7.1.1 Constructors

Classes require a single constructor in order to initialize the instance vari-
ables. A constructor is a method called constructor and takes in a set of pa-
rameters. Constructors do not have a return type unlike functions, which are
described in section 10.

class guineapig{
num myNum;
string myStr;

constructor(num v, string st){
myNum = v;
myStr = st;

}

// a function that can be called on a MyObject object.
printMyObject O{
print("I am an object that says " + myStr + " and hold the
value: " + myNum) ;

7.2 Dot Notation

bugsy has no understanding of scope modifiers like private or public variables
so all variables of classes are accessible using dot notation. This is done sim-
ply by referencing the object followed by the property that you want to access
or mutate.

guineapig graynold = guineapig(20, "Hello!");
print (graynold.myNum) ;
graynold.printMyObject () ;

Compiling and running the above would output the following:

20
I am an object that says Hello! and hold the value: 20

10

8 Operators and Arithmetic

All arithmetic done in bugsy will be expressions composed of operators and
values. bugsy supports both unary and binary operators.

The grammar for expressions breaks down into literals, booleans, unary oper-
ations, and binary operations. The unary and binary operations either include
one or two more expr’s in the pattern matching so that it can expand. For
instance, addition is done with ezpr PLUS expr.

8.1 Unary Operators

bugsy utilizes three four of unary operators, increment (++), decrement (--),
the unary minus sign (-) in front of an expression to flip the sign of a numer-
ical value (or a variable containing a numerical value), and an exclamation
mark (!) in front of an expression to flip the resulting boolean. Using the
unary minus on a boolean expression is not valid.

Grammar:
OPERATOR expr
expr OPERATOR

Operator Character(s) Example
Increment ++ num i = 0;
i++;
++1i;
Decrement - num j = 0;
i=s
__j ;
Unary minus (negation - num x = -5;
operator) num y = -x;
Not ! bool x = true;
bool y = Ix;

8.2 Binary Operators

The binary operators in bugsy are outlined as follows in the table below. Ad-
dition (+), subtraction (-), multiplication (*), division (/), plus equals (+=),
minus equals (-=), multiplication equals (*=), division equals (/=), assignment
(=), modulus (%), and exponentiation (~) all result in numerical values and
can only take expressions that produce numerical values. The greater than

11

comparison (>), less than comparison (<), greater than or equal to compari-
son (>=), less than or equal to comparison (<=), equality check (=7), and not
equals to (!=) result in booleans but only accept numeric values. And (and),
and or (or) also produce booleans only accept boolean expression inputs. The
exponent operator will not flip bits.

Grammar: expr OPERATOR expr

Note that in the following examples, x and y are initialized as

num x = 0;

num y = 0;
Operator Character(s) Example
Addition + X+ y;
Subtraction - X - ¥
Multiplication x X * ¥
Division | x /v
Plus equals 4= X += y;
Minus equals = X -= y;
Multiplication equals *= X %= y;
Division equals /= x /= y;
Assignment = X =y
Modulus v x %y
Exponentiation - X"y

12

Equality check = x =7 y;
Not equals (neq) 1= x = y;
Greater than > x>y
Less than < X <y;
Greater than or equal to >= x >= y;
Less than or equal to <= X <= y;

8.3 Logical Operators

As previously mentioned, not (!), and (‘and’), or (‘or’) are bugsy’s logi-

cal operators. Booleans can be expressed as either (1), any positive number,
(‘true’), or (‘True’) for true. and (0), any negative number, (‘false’), or
(‘False’) for false.

The grammar is the same as the previous operators, depending on if it’s unary
or binary.

9 Control Flow

bugsy supports a majority of the most common aspects of control flow. As
an animation oriented language, looping plays an important role in displaying
the intended content and will be used within several of the standard library
functions.

9.1 Loops
9.1.1 While Loops

while loops in bugsy work identical to a while loop in other imperative lan-
guages such as Python, C, or Java. A while loop is uniquely defined by its
two major components which are the conditional statement which bugsy re-
quires be enclosed in parentheses following the while keyword. After the close
parentheses the code intended to be performed each iteration of the loop will
be enclosed in curly braces.

A while loop will continue to execute the code encapsulated within the open-
ing and closing curly braces until the condition defined within the parentheses

13

evaluates to false (Refer to Section 4.1 Primitive Data Types and Section
8.3 Logical Operators).
Grammar:

while LeftParen expr RightParen LeftBracket stmt_list RightBracket

num val = 0;
while(true) {
// execute code
val = val + 1;

}

9.1.2 For Loops

for loops, similar to while loops will execute a block of code enclosed in curly
braces until the end condition is met. The for loop is defined by three state-
ments enclosed in parentheses following the keyword for.
The first statement declares a num variable and initializes to some starting
value. The second statement, separated by a semicolon, defines the compar-
ison condition involving the previously declared num and another num. The
third statement provides the increment or decrement step sizes for the num
declared in the first statement.
Grammar:

for LeftParen Num ID SEMI ID CMP_OPERATOR SEMI ID INC_.OPERATOR
RightParen LeftBracket stmit_list RightBracket

num val = 0;
for(num i = 0; i < 10; i++) {
val = val + i;

}

9.1.3 Break Statement

The keyword break on a line of its own will cause the loop to abruptly exit
meaning further iterations of the loop will not be executed.
Grammar:

break SEMI

num val = 0

for(num i = 0; i < 10; i++) {
val = val + i;
break;

}

14

9.1.4 Continue Statement

When a continue statement is placed on a line of its own within a loop it will
force the next iteration of the loop to execute immediately, disregarding code
that would have occurred sequentially after the continue statement within the
block of executing code.
Grammar:

continue SEMI

\begin{lstlisting}

num val = 0

for(num i = 0; i < 10; i++) {
continue;
val = val + i;

}

9.2 Conditional Statements

The if statement will execute a block of code enclosed in curly braces if the
provided condition is satisfied. The condition follows the keyword if and is en-
closed in parentheses. The elif statement cannot stand on its own and must
follow a previous declared if statement. The condition of the elif statement is
only checked if the condition of the previous if statement does not evaluate to
true. elif statements can be chained with the earlier declared conditions hav-
ing the highest priority. The else statement is used as a catch-all which will
execute if none of the previously defined if or elif conditions are met. The else
statement consists of the keyword else followed by curly braces as it does not
have its own condition.
It is important to note that if statements cannot be chained together like
elif statements. It is possible for both if statements to evaluate to true and
execute their respective code blocks.
Grammar: if LeftParen expr RightParen LeftBracket stmt_list Right-
Bracket

if LeftParen expr RightParen LeftBracket stmt_list RightBracket else Left-
Bracket stmt_list RightBracket

if LeftParen expr RightParen LeftBracket stmt_list RightBracket elif Left-
Paren expr RightParen LeftBracket stmt_list RightBracket

if LeftParen expr RightParen LeftBracket stmt_list RightBracket elif Left-
Paren expr RightParen LeftBracket stmt_list RightBracket else LeftBracket
stmt_list RightBracket

9.2.1 If... elif... else

num val = 5;

15

num res = 0;
if(val =7 5) {

res = 1;
} elif(val > 5) {
res = 2;
} else {
res = 3;

}

9.3 Exceptions
9.3.1 Try ... Catch Statement

A try statement is used in order to prevent the program from crashing unex-
pectedly if a specific block of code returns some sort of error. It is defined as
a block of code surrounded by curly braces following the keyword try.
The try statement should be followed by a catch statement which is passed
an argument which specifies the type of error the code in the try block is ex-
pected to return. The exception follows the keyword catch and is surrounded
by parentheses. Code that will execute if an exception is caught can be placed
between curly braces following the exception.
Grammar:

try LeftBracket stmt_list RightBracket catch LeftParen Exception ID
RightParen LeftBracket stmt_list RightBracket

try {
//run code

}

catch(Exception e) {
//error occurred

}

9.3.2 Raise

The raise keyword is used at the start of a line followed by an Exception
declaration. If the program encounters a raise call it will stop executing and
return with the error message described in the Exception.
Grammar:

raise Exception LeftParen string RightParen SEMI

raise Exception("error occurred");

16

9.4 Pass

The pass keyword is used as a temporary placeholder for a function that has
yet to be filled in with executable code. It will not produce any noticeable
outcome and will be simply read and skipped over.

Grammar:
pass SEMI

num random() {
pass;

}

10 Functions

Functions in bugsy are designed to be simple, clean, and reusable. The syntax
for defining a function is as follows.

return_type function_name(inputl_type inputl, input2_type input2...)
{...}

Where the types of the return value and the parameter can be any primitive
or custom type. A function that does not return anything can be specified
with the return type void. The following is an example of a function which
finds the greatest common denominator of two numbers.

num gcd(num a, num b) {
while (a !=b) {

if (a > b) {
a=a-b;
} else {
b=>b- a;
¥
}
return a;
¥

Also note that parameters are passed by value and thus the return value of a
function must be set equal to a variable.
Grammar:

V type ID LeftParen formal list RightParen LeftBracket var_list stmt_list
RightBracket

11 Memory Management

In bugsy, memory is leaked by default.

17

12 Standard Library

The standard library in bugsy consists of a variety of functions which are pri-
marily used for animation and graphical manipulation. Below are the func-
tions included in the standard library.

12.1 animateTo
12.1.1 Definition

animateTo(point: a_point, speed: speed_value, scaleVal: scale_value)

12.1.2 Description

a_point is a Point object, speed_value is a num, and scaleVal is a num. The
default values for these variables are pt(0,0), speed: 1, and scaleVal: 1. pt is
the destination of the object, speed controls the speed at which the object
reaches pt (where a value of 1 corresponds to 1 pixel/second), and scaleVal
controls the scale of the object throughout the duration of the animation.

12.1.3 Example Usage

square x = square(pt(0,0), 2);

// moves to 5,6 with speed of 24 and scales down while doing that
x.animateTo(pt(5,6), speed: 24, scale: 0.6);

12.2 scale

12.2.1 Definition

scale(factor: a_factor)

12.2.2 Description
a_factor is a num. Calling this function on a graphical object will scale the

object by a_factor.

12.2.3 Example Usage

square x = square(pt(0,0), 2);
// scales the square down by 50%
x.scale(0.5);

12.3 rotate
12.3.1 Definition

rotate(degree: a_degree, rpm: a_rpm, repeating: rep)

18

12.3.2 Description

where a_degree is a num. Calling this function on a graphical object will ro-
tate the object by the degree specified, with a speed corresponding to a_rpm
rotations per minute. If rep is equal to true, the shape will continue rotating
forever, starting from 0 degrees each time. Note that if, for instance, 30 de-
grees is specified with an rpm of 1, the shape will thus rotate 30 degrees in
12 seconds, as this would correspond to an rpm of 1. Also note that if a de-
gree value larger than 360 is specified, the object will be rotated by a_degree
% 360. a_degree must be greater than or equal to 0.

12.3.3 Example Usage

square x = square(pt(0,0), 72);

// rotates the square by 72 degrees
x.rotate(degree: 72, rpm: 1, repeating: false);
square x = square(pt(0,0), 2);

// continually rotates the square
x.rotate(degree: 360, rpm: 2, repeating: true);

12.4 Color
12.4.1 Definition

color(r: red, g: green, b: blue)

12.4.2 Description

where red, green, and blue correspond to RGB values specifying a color.

12.4.3 Example Usage

square x = square(pt(0,0), 72);
// color the square green
x.color (0, 255, 0);

13 Sample Code

The following samples of code provide some illustrative examples of the pur-
pose and coding style of bugsy.

13.1 Rotating Circle And Square

circle circ = circle(pt(3,3), 5); //creates a circle at the point (3,3)
of radius 5

square sq = square(pt(3,3), 5); //creates a square at the point (3,3) of
radius 3

sq.rotate(360, 10, true); //starts the square rotating infinitely

19

sq.scale(0.4); //scales the square down to 40% of original height and
width

13.2 bugsy Printer

void oddBeanPrinter (num x){
num counter = 0;
while (counter <= num){
if counter % 2 == 1 {
print("bean") ;

13.3 FizzBug

int n = 100;

// loop for 100 times
for (int i=1; i<=n; i++){
//number divisible by 15
if (i%15=70) {
print ("FizzBug");
}

//number divisible by 5
else if (i%5=70){

print ("Bug");
}

//number divisible by 3
else if (i%3=70){
print ("Fizz");

}

// print the numbers
else{

print(i);
}

20

